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When a flexible plate is peeled off a thin and soft elastic film bonded to a rigid sup-
port, uniformly spaced fingering patterns develop along their line of contact.
Although the wavelength of these patterns depends only on the thickness of the
film, their amplitude varies with all material and geometric properties of the film
and that of the adhering plate. Here we have analyzed this instability by the reg-
ular perturbation technique to obtain the excess deformations of the film over and
above the base quantities. Furthermore, by calculating the excess energy of the sys-
tem, we have shown that these excess deformations, associated with the instability,
occur for films that are critically confined. We have presented two different experi-
ments for controlling the degree of confinement: by prestretching the film and by
adjusting the contact width between the film and the plate.
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INTRODUCTION

Pattern formation by self-organization is a subject of much interest
because of its immense scientific and technological importance.
Although examples of instability-driven evolution of such patterns
abound in dynamic systems involving viscous and viscoelastic
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materials [1–10], such instances reported for purely elastic solids are
rather scanty. Recently, such a pattern-forming system has been
identified [11–13] with thin, soft elastic films confined between rigid
or flexible substrates. Here the patterns of instability appear when a
flexible plate is peeled off a layer of elastic adhesive bonded to a rigid
substrate, resulting in undulations along their line of contact. Neither
the appearance of these patterns nor their wavelength depend on the
rate of peeling, thus remaining independent of the dynamics of the
system. Indeed, the morphology does not exhibit any temporal evol-
ution even when the contact line comes to a complete rest. The elastic
nature of the film allows us to form the patterns repeatedly on the
same film, so that similar patterns can be replicated many times.
Looking at the prospect of this instability being used as a powerful pat-
tern-forming tool, we have studied it extensively [14] in a variety of
experimental geometries as well as with adhesives and adherents with
varying material and physical properties. We have also developed
methods to fix permanently these patterns [15].

In these experiments, a layer of elastic film of thickness, h, and
shear modulus, l, remains strongly bonded to a rigid substrate, and
a microscope cover slip of flexural rigidity, D, is peeled off it by insert-
ing a spacer at the opening of the crack. The patterns appear in the
form of well-defined undulations at the contact line. Although the
wavelength, k, of these waves increases linearly with the thickness,
h, of the film, remaining independent of its shear modulus, l, and
the flexural rigidity, D, of the plate, the amplitude, A, varies rather
nonlinearly with these parameters. For the sake of systematic presen-
tation of these results, we have introduced a confinement parameter
e ¼ hq [16] defined as the ratio of two different length scales: thickness
h and q�1 ¼ ðDh3=3lÞ1=6 [17,18], the latter being the stress decay
length along the film=plate interface from the contact line (along the
negative x direction in Fig. 1a). These definitions imply that the lower
the value of e, the longer the stress decay length for a film of a given
thickness; hence, more confined is the film. For large values of e, i.e.,
low levels of confinement, the film can compensate its stretching
perpendicular to the interface via lateral Poisson contraction. How-
ever, when e decreases to less than a critical value ðe < 0:35Þ, the films
cannot afford a large-scale Poisson contraction. Then, to accommodate
lateral contraction at a local level, the contact line turns undulatory to
engender uniformly spaced fingers and cavities. In this report, we
present two different experimental schemes to demonstrate how the
confinement can be controlled in a systematic way. In one experiment,
a flexible plate is lifted off a thin elastic film from both of its ends, thus
effecting an adjustable contact width between the two, whereas in the
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FIGURE 1 (a) Two-dimensional sketch (figure not drawn according to scale)
of the experiment in which a flexible glass plate (silanized with self-assembled
monolayers of hexadecyltrichlorosilane) is peeled off an elastic film of cross-
linked poly(dimethylsiloxane) (PDMS) with two spacers. (b)–(e) Typical
images of the contact region as the distance between the spacers (2l) is pro-
gressively increased: 2l ¼ 14.5, 19.5, 22.5, and 27.6 mm, respectively. These
micrographs are obtained with a film of l ¼ 0.2 MPa, h ¼ 40 mm, and a flexible
plate of D ¼ 0:02 Nm. (f) Amplitude data from experiments with films of shear
modulus l ¼ 0:2� 1:0 MPa, thickness h ¼ 40� 200mm, and flexible plates of
rigidity D ¼ 0:02� 0:06 Nm scaled as n ¼ Aq and plotted against the quantity
h=c. The solid line is a guide to the eye. (g)–(h) These instability patterns can
be generated on a partially crosslinked PDMS film, which can then be fully
cross-linked to fix these patterns permanently. Typical atomic force
microscopy images of such a permanently fixed pattern of the film
(�150 mm) in close proximity to the fingers suggest that the maximum normal
strain of the film is <0.02. (g) Image of the region adjoining two fingers. (h)
Tip of finger.
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other, it is lifted off a film that is prestretched uniaxially. The confine-
ment of the film increases in both of these experiments, with increase
in the contact width and the extent of stretching.

EXPERIMENT WITH DOUBLE SPACERS

Materials

We obtained the glass slides (Corning microslides) and cover slips
(Corning cover plates) from Fisher Scientific, USA. We cleaned the
glass slides in a Harrick plasma cleaner (model PDC-23G, 100 W,
Harrick Scientific, Pleasantville, NY, USA) before surface treatment.
The material for film preperation, i.e., vinyl-endcapped poly(dimethyl-
siloxane) oligomers of different chain lengths, platinum catalyst, and
the methylhydrogen siloxane cross-linker, were obtained as gifts from
Dow Corning Corp., Midland, MI, USA. We used also two sets of filler
gauges of various thicknesses, which were purchased from a local
auto-parts shop. The instability patterns were observed with a Nikon
Diaphot (Nikon, USA) inverted microscope equipped with a charge
coupled device (CCD) camera and a video recorder.

Method

Figure 1(a) depicts the schematic of the first experiment in which the
flexible plate is detached from the bonded elastic layer by inserting
two spacers of height D on two sides of the plate=film interface. The
distance between the spacers is 2l. The spacers generate two propagat-
ing cracks at the interface and peel the flexible plate off the adhesive
film from both its ends. A finite contact width, 2c, is attained following
the equilibrium of forces, which include the adhesion and elastic forces
in the adhesive and the adherent. When the spacers remain far apart,
so that 2l and 2c both tend to infinity, the experiment represents the
limiting case in which a single spacer is used to lift the flexible plate
off the film from one of its ends [11]. However, as the distance 2l is
decreased, the contact width 2c shrinks, thereby increasing the curva-
ture of the plate. Finally, a distance is reached at which the stress
required to bend the plate exceeds the adhesion strength of the inter-
face and the plate no longer remains stuck to the film. Here we present
a systematic analysis of this experiment to rationalize our experi-
mental observations.

Preamble

Because no dynamics is involved in the formation of these uncondition-
ally stable patterns, we develop our arguments on the premise that
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their final states are attained by the minimization of the overall energy
of the system. In particular, we consider four types of energy: the bend-
ing energy of the contacting plate, the elastic energy of the film, the
adhesion energy at the interface of the plate and the film, and the
surface energy associated with the creation of curved surface near
the finger region. This last contribution however, is, negligible in com-
parison with the elastic energy of the film as the ratio of two scales [11]
c=lh � 10�5 where c is the surface energy of the film and l is its shear
modulus. Furthermore, following observations from experiments, the
contacting plate has been assumed to bend only in the direction of
propagation of the contact line (i.e., along x), remaining uniform along
the wave vector (i.e., along y); its contribution to the total energy has
been accounted for accordingly. Although, because of the peeling action
on the plate, the film deforms normal to the surface, because of its own
incompressibility, it sags in the vicinity of the contact line. For a thick
film, the shear deformation occurs in both the xy and yz planes, i.e., in
planes normal to the z and the x axes, respectively. The latter defor-
mation causes sagging in the region ahead of the line of contact of
the film and the plate, which is enough to compensate for the normal
deformation of the film. This kind of deformation does not cause undu-
lation of the contact line. However, when the film is thin, the hydro-
static stress in it causes shear deformations also in the xz (i.e.,
normal to y axes) plane. It is this additional lateral deformation that
results in undulation of the contact line, which is accounted for in
the energy calculations. The remaining component of the energy
is the work of adhesion, which depends on the area of contact between
the film and the cover plate. Previous studies [13] indicated that the
magnitude of the adhesion energy does not affect the wavelength of
the instability. These linear analyses, however, provide no information
about the amplitude of the instability. In the current problem, as the
overall energy is minimized with respect to wavelength and amplitude
as variables, a weak nonlinearity is naturally invoked that presup-
poses a geometric and energetic relationship between these two vari-
ables. This nonlinearity is valuable in generating the bifurcation
diagram of the morphology of fingers, in which the total energy goes
through a minimum at specific amplitude and wavelength for a given
confinement parameter. Our analysis shows that such minima exist
only when the film is sufficiently confined.

Governing Equations and Boundary Conditions

In the absence of any body force, the stress and the displacement
profiles in the elastic adhesive are obtained by solving the stress
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equilibrium and the incompressibility relations for an incompressible
elastic material:

�rpþ lr2 �uu ¼ 0 and r � �uu ¼ 0 ð1Þ
where p is the pressure field and �uu ¼ uex þ vey þwez is the displace-
ment vector in the film with x, y, and z being, respectively, the direc-
tion of propagation of the contact line, the direction of the wave vector,
and the thickness coordinate of the film. The x ¼ 0 line, i.e., the y
axis, goes through the tip of the wavy contact line, whose position is
represented by gðyÞ. Equations (1) are solved with the following bound-
ary conditions [11–15]:

(a) The film remains perfectly bonded to the rigid substrate so that
at z ¼ 0, displacements �uu ¼ 0.

(b) The flexible contacting plates are coated with a self-assembled
monolayer (SAM) of hexadecyltrichlorosilane molecules, which allow
for partial slippage at the interface of the film and the flexible plate,
i.e., at z ¼ hþ w, where w is the vertical displacement of the interface
measured from the undeformed surface of the film. Although similar
surface treatments can alter the interfacial friction as evident in our
earlier experiments [14,19], the wavelength of perturbations does
not depend on the level of frictional resistance at the surface. Further-
more, our calculation in Ref. [18] shows that the two extreme con-
ditions of perfect bonding and infinite slippage both lead to similar
values for work of adhesion at the interface. Hence, for the sake of sim-
plicity, we assume frictionless contact at the film–flexible plate inter-
face so that the shear stress rxz z¼hþw ¼ ryz

�� ��
z¼hþw

¼ 0.
(c) At the film–flexible plate interface ðx < gðyÞÞ, the traction on the

film is equal to the bending stress on the plate, which, in our experi-
ments, bends through a very small angle of less than 1�. Hence, under
small bending approximations, we have rzz x<gðyÞ;z¼hþw þDD2w ¼ 0

�� , i.e.,
�pþ 2l @w

@z

� ���
x<gðyÞ;z¼hþw

þDD2w ¼ 0. At gðyÞ < x < a, the film and the

plate are free of any traction, so that rzz gðyÞ<x<a;z¼hþw ¼ 0
�� and

DD2w ¼ 0. Here a represents the distance of the spacer from x ¼ 0. These
boundary conditions applied at the two different regions then should lead
to discontinuity of the normal stress across the contact line. However,
this discontinuity does not occur, because within a very small distance
away from the contact line x > gðyÞþ, the film and the plate remain sub-
jected to distance-dependent intermolecular forces of adhesion, which
drop continuously to zero, leading to a continuous variation of the normal
stress. This point is further elaborated in the following paragraph.

(d) Although there is no ambiguity regarding this set of boundary
conditions applied in the two regions, i.e., at x < gðyÞ and at
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gðyÞ < x < a, the nature of the boundary condition at x ¼ gðyÞ is less
clear and has been a subject of considerable discussions in recent years
[20–22]. Recently, Adda-Bedia and Mahadevan [23] treated the crack-
tip instability problem by considering a single plate in contact with a
thin, soft, elastic film. At the boundary line, they considered the
condition of the classical singularity of normal stress, which led to
the discontinuity of the displacement derivatives of the plate and the
film. However, Maugis [20], who discussed this issue rather extensively,
came to the conclusion that singularity of the stress field, as developed
by the remote loading at the crack-tip, is cancelled by another singular-
ity due to internal loading resulting from the cohesive stresses at the
crack-tip. The cancellation of the two singularities leads to a smooth
variation of all the slopes at the crack-tip region. The problem has also
been addressed recently [20,22] from the point of view that the stress at
the crack-tip for soft polymer films cannot exceed the value of its elastic
modulus because the polymer chains bridging the two surfaces undergo
thermal fluctuations. While Ref. [21] treats the problem using rigorous
statistical mechanics, here we address the problem in a somewhat
simplified way by considering that any one of the bridging chains can
be either in the attached or detached state. At equilibrium, the areal
density of the bonded chains is given by

Rb ¼
R0

1þ expðksd
2=2kBT � eA=kBTÞ

ð2Þ

where R0 is the total areal density of bonded and unbonded chains, ks is
the spring constant of the chain, eA is the energy of adsorption per
chain, and d is the extension of the chain. The stress is obtained by mul-
tiplying Rb by the spring force ðksdÞ. Furthermore, recognizing that the
spring constant (ks) of a Gaussian chain is given by kBT=nsl

2
s (ls is the

statistical segment length and ns is the numbers of statistical segments
per chain) and the elastic modulus of the network E � kBT=nsl

3
s , the nor-

mal stress at the interface can be written as

r ¼ E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2/=kBT

p
1þ expð/� eA=kBTÞ ð3Þ

where / ¼ ksd
2=2. This representation suggests that the normal stress,

r, converges asymptotically to zero for / approaching either zero or
infinity and attains a maximum at an intermediate value of /. Far
away from the crack-tip, i.e., at x! �1, at the interface of the film
and the plate, no polymer chain is stretched so that the normal stress
is zero. Within the cohesive zone of the crack-tip, as we traverse in the
other direction, the polymer chains get more and more stretched, thus
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/ increases. However, this increase in / is accompanied by the decrease
in number of the bonded chains, resulting in the decrease of the normal
stress as dictated by Eq. (2). Within these two zones, in the open mouth
of the crack, very close to the crack-tip, i.e., at x! gðyÞ, the normal
stress, r, goes through a maximum. However, this stress cannot exceed
the maximum cohesive stress at the contact line, which is only a fraction
of the elastic modulus, E, as predicted by Eq. (3) for representative
values of the adsorption energy, eA, for van der Waals interactions.
For these soft materials, therefore, the normal stress rises smoothly to
a finite maximum value at the crack-tip and then it falls smoothly within
a very small distance of the contact line. Within the context of the con-
tinuum mechanics formalism, we use the boundary condition that
the hydrostatic tension is maximum in the near vicinity of the contact
line, i.e., @p

@x

��
x¼gðyÞ¼ 0.

Using this boundary conditions, we proceed to solve Eq. (1). We first
write the displacements and the coordinates in dimensionless form
using the following two length scales: q�1 ¼ ðDh3=3lÞ1=6 as the charac-
teristic length along x obtained naturally from the analysis presented
in Refs. [14] and [15] and the thickness, h, of the film as that along y
following observation that the wavelength of instability, k, varies lin-
early with the thickness of the film [11]. Furthermore, thickness, h, is
also the characteristic length along the z axis. Using these character-
istic lengths, we obtain the following dimensionless quantities:

X ¼ xq; Y ¼ y

h
; Z ¼ z

h
; U ¼ uq; V ¼ v

h
; W ¼ w

h
:

We write the stresses also in dimensionless form by dividing them by
l=e2 as the characteristic pressure

P ¼ p

ðl=e2Þ ; RXZ ¼
rXZ

ðl=e2Þ ; RYZ ¼
rYZ

ðl=e2Þ :

Using these dimensionless quantities, the stress equilibrium and
incompressibility relations are written as

@P

@X
¼ e2 @

2U

@X2
þ @

2U

@Y2
þ @

2U

@Z2
;

@P

@Y
¼ e4 @

2V

@X2
þ e2 @2V

@Y2
þ @

2V

@Z2

� �
;

@P

@Z
¼ e4 @

2W

@X2
þ e2 @2W

@Y2
þ @

2W

@Z2

� �
;

and

@U

@X
þ @V

@Y
þ @W

@Z
¼ 0;

ð4Þ
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and the boundary conditions result in

ðaÞ UðZ ¼ 0Þ ¼ VðZ ¼ 0Þ ¼ 0;

ðbÞ RXZðX;Y;Z ¼ 1þWÞ ¼ 0 ¼ RYZðX;Y;Z ¼ 1þWÞ;

or
@U

@Z
þ e2 @W

@X

� �
¼ @V

@Z
þ @W

@Y

� �
¼ 0;

ðcÞ PðZ ¼ 1þWÞ ¼ 2e2@W

@Z

����
Z¼1þW

þ3
@4W
@X4

þ 2

e2

@4W
@X2@Y2

þ 1

e4

@4W
@Y4

� �
at X < NðYÞ;

ðdÞ 0 ¼ @
4W
@X4

at NðYÞ < X < aq;

ðeÞ @P

@X

����
X¼NðYÞ

¼ 0;

ð5Þ

where aq is the dimensionless distance of the spacer from X ¼ 0; W is
the dimensionless vertical displacement of plate, and X ¼ NðYÞ repre-
sents the position of the contact line in the dimensionless form. We
assume that the solutions of displacements and pressure consist of
two components: the base solutions, which vary only along the X and
Z axes and remain uniform along Y, and a perturbation term, which
appears over and above these base solutions and incorporates the
spatial variation of the displacements along the y axis. The general
form of these solutions are expressed as [24] T ¼ T0ðX;ZÞþ
e2T1ðX;Y;ZÞ þ e4T2ðX;Y;ZÞ þ . . ., where T ¼ P;U;V, and W. Similarly,
the vertical displacement, W, of the plate is expanded as
W ¼ W0ðXÞ þ e2W1ðX;YÞ þ e4W2ðX;YÞ þ . . .. Here, the base solutions
are of order e0, and the perturbed ones are of order e2; e4, etc. At this
juncture, it is worthwhile to point out the physical nature of the
perturbation as e2 approaches zero, which corresponds to the stress
decay length, q�1, approaching infinity. For any finite deformation
of the elastomeric film at the crack-tip region, the condition implies
that the local radius of curvature of the cantilever plate also
approaches infinity or that the slope of the cantilever plate is vanish-
ingly small. As we show, this base state solution follows from the
premise that the pressure and the displacements remain uniform
along the y axis, and the classical lubrication approximation is appli-
cable. Later, we seek a solution of Eq. (4) {or Eq. (6)} by considering
periodic perturbations of the field variables along the y direction.
This leads to a geometric perturbation of the contact line, where
the base state corresponds to a vanishing wave vector of the periodic
perturbation (i.e., straight contact line).
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Notice that in a typical experiment h ¼ 50 mm, l ¼ 1.0 MPa, and
D ¼ 0.02 Nm, so that e2 ¼ 0:03 << 1 is small enough to allow pertur-
bation expansion for the displacement and pressure fields as powers
of e2. When we insert these definitions in Eq. (4) and separate the
base (Y independent) and the perturbation (Y dependent) terms, we
obtain

� @P0

@X
þ e2 @

2U0

@X2
þ @

2U0

@Z2
¼ e4 @

2V0

@X2
þ e2 @

2V0

@Z2
¼ 0;

� @P0

@Z
þ e4 @

2W0

@X2
þ e2 @

2W0

@Z2
¼ @U0

@X
þ @W0

@Z
¼ 0;

ð6Þ

and

e2 @P1

@X
þ e4 @P2

@X
¼ e2 @2U1

@Y2
þ @

2U1

@Z2

� �

þ e4 @2U1

@X2
þ @

2U2

@Y2
þ @

2U2

@Z2

� �
þ e6 @

2U2

@X2
;

e2 @P1

@Y
þ e4 @P2

@Y
¼ e4 @2V1

@Y2
þ @

2V1

@Z2

� �
þ e6 @2V1

@X2
þ @

2V2

@Y2
þ @

2V2

@Z2

� �
;

e2 @P1

@Z
þ e4 @P2

@Z
¼ e4 @2W1

@Y2
þ @

2W1

@Z2

� �
þ e6 @2W1

@X2
þ @

2W2

@Y2
þ @

2W2

@Z2

� �
;

0 ¼ @U1

@X
þ @V1

@Y
þ @W1

@Z
;

ð7Þ

which are solved using the following boundary conditions derived from
Eqs. (5a–e):

ðaÞ at Z¼ 0;

U0 ¼W0 ¼ 0 and e2U1 þ e4U2 ¼ e2V1þ e4V2 ¼ e2W1þ e4W2 ¼ 0;

ðbÞ at Z¼ 1þW;

@U0

@Z
þ e2 @W0

@X
¼ @W0

@Y
¼ 0 and

e2 @U1

@Z
þ e4 @U2

@Z
þ @W1

@X

� �
¼ e2 @V1

@Z
þ @W1

@Y

� �
þ e4 @V2

@Z
þ @W2

@Y

� �
¼ 0;

ðcÞ at Z¼ 1þW;

P0 ¼ 3
@4W0

@X4
þ 2e2 @W0

@Z
; X < 0;

e2P1þ e4P2 ¼
1

e2

@4W1

@Y4
þ 2

@4W1

@X2@Y2
þ @

4W2

@Y4

� �
;

688 A. Ghatak and M. K. Chaudhury



and

X < NðYÞ þ e2 3
@4W1

@X4
þ 2

@4W2

@X2@Y2

� �
þ e4 3

@4W2

@X4
þ 2

@W1

@Z

� �
;

ðdÞ at Z ¼ 1þW;

0 ¼ @
4W0

@X4
; 0 < X < aq;

and

0 ¼ e2 @
4W1

@X4
þ e4 @

4W2

@X4
; NðYÞ < X < aq;

ðeÞ 0 ¼ @P0

@X

����
X¼0

and 0 ¼ e2@P1

@X

����
X¼NðYÞ

þ e4@P2

@X

����
X¼NðYÞ

: ð8Þ

Solution of Eq. (6) using Long Scale Approximation

We solve Eq. (6) in light of boundary conditions in Eq. (8). However,
the characteristic length scales along x and z axes are so far apart that
e2 << 1, as noted earlier. This allows us to simplify these equations
using the long-scale approximations [21]:

� @P0

@X
þ @

2U0

@Z2
¼ � @P0

@Z
¼ @U0

@X
þ @W0

@Z
¼ 0;

at Z ¼ 0; U0 ¼ W0 ¼ 0, and at Z ¼ 1þW,

@U0

@Z
¼ @W0

@Y
¼ 0:

When these equations are integrated over 0 < Z < 1þW0, the follow-
ing relations for the displacements in the film are obtained:

U0 ¼
@P0

@X

Z2

2
� 1þW0ð ÞZ

� �
;

W0 ¼ �
@2P0

@X2

Z3

6
þ Z2

2

@2P0

@X2
1þW0ð Þ þ @P0

@X
W0

� �
:

ð9Þ

Hence, the vertical displacement W0 ¼W0jZ¼1þW0
of the interface is

obtained as

W0 ¼
@2P0

@X2

1þW0ð Þ3

3
þ @P0

@X

W0 1þW0ð Þ2

2
;

¼ @
6W0

@X6
1þW0ð Þ3þ @

5W0

@X5

3W0 1þW0ð Þ2

2
:

ð10Þ
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Although the nonlinearity of this equation renders it nonamenable
to analytical solutions, we simplify it by noting that in all our
experiments the dimensionless vertical displacement W0 < 0:02. Thus,
linearization of the equation results in

W0 �
@6W0

@X6
¼ 0 at X < 0: ð11Þ

At 0 < X < aq, there is no traction on the plate, i.e., @4W0=@x4 ¼ 0.
Equation (11) is solved using the boundary condition that about the
centerline X ¼ �cq of the contact area, displacement W0 and the bend-
ing moment and normal stress on plate are continuous, so that

@W0

@X
¼ @

3W0

@X3
¼ @

5W0

@X5
¼ 0

and that it is freely supported at X ¼ aq by the spacer

W0jX¼aq ¼ D ¼ D
h
;

@2W0

@X2
¼ 0

� �
:

Finally, at the vicinity of the contact line (X ¼ 0) displacement, slope,
bending moment, and vertical shear force are continuous, so that

W0jX¼0� ¼ W0jX¼0þ;
@W0

@X

����
X¼0�

¼ @W0

@X

����
X¼0þ

;
@2W0

@X2

����
X¼0�

¼ @
2W0

@X2

����
X¼0þ

and

@3W0

@X3

����
X¼0�

¼ @
3W0

@X3

����
X¼0þ

:

Maximal tensile stress at the contact line results in

@P0

@X

����
X¼0

¼@
5W0

@X5

����
X¼0

¼ 0:

In Fig. 2a and b, we plot the numerical solutions of dimensionless ver-
tical displacement, W0, and normal stress R0ZZ

¼ e2r0zz
=l (R0ZZ

: base
components of the normal stress on film) with respect to the dimen-
sionless distance X for a representative set of values for dimensionless
distances aq ¼ 15� 25 and cq ¼ 2:5� 10. Curve 1 represents the
limiting case of semi-infinite contact area, for which the displacement
and stress profiles remain oscillatory with exponentially diminishing
amplitude away from the contact line [18], whereas curve 2 represents
an intermediate situation in which contact area decreases as the
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spacers are brought closer. Here, too, we see oscillatory profiles with
diminishing amplitude, but the number of oscillation decreases.
Finally, for curves 3 and 4, the contact width is so small that a region
of positive W0 and R0ZZ

close to X ¼ 0 is followed by a region of negative
values of W0 and R0ZZ

. Using the expressions of these displacement
profiles, we can estimate the total energy of the system, which consists
of the elastic energy of the film, the bending energy of the plate, and
the interfacial work of adhesion, WA. The dimensionless form of the
total energy is obtained as

P0¼
e3

2

Z aq

�cq

d2W0

dX2

� �2

dXþ1

6

Z aq

�cq

Z 1

0

@U0

@Z
þ e2@W0

@X

� �2

dXdZ

 !
þWAh2

D

aq

e
;

ð12Þ

which is a function of the four dimensionless quantities aq; e;WAh2=D,
and cq, the numerical value of which are such that the total energy of
the system is minimum. This latter condition allows us to obtain one
of the parameters for a given set of three other parameters. For
example, for a given set of values of cq; e, and WAh2=D, we obtain aq
by minimizing

P0 :
@P0

@ aqð Þ

����
cq;e;WAh2=D

¼ 0:

FIGURE 2 Plots depict the dimensionless vertical displacement, W0=D, and
normal stress, R0 ZZ=3, in the elastic (PDMS) film in experiments of Fig. 1(a).
The profile 1 obtained with interspacer distance 2l!1 represents the limit-
ing case in which a single spacer peels off the plate. Curves 2–4, corresponding
to (aq ¼ 25; cq ¼ 5), (15; 2:5) and (15; 1:4) are obtained when 2l is progressively
reduced, thereby decreasing the width of the contact area.
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It is important to note also that in curves 1 and 2 of Figs. 2a and b, normal
and shear stresses remain concentrated within a distance equivalent to
one wavelength of the oscillation, i.e., �5q�1; for curves 3 and 4, this dis-
tance spans to half the width of the contact area, i.e., c. Therefore, for
these profiles, the relevant characteristic length along x is not q�1 but
c, which motivates us to redefine the confinement parameter as h=c.

Geometric Perturbation Analysis

We now discuss the situation when the contact line becomes undulatory.
The effect of confinement on the contact line instability is evident in the
video-micrographs 1b–e, which show the typical images of the contact
region with increasing contact width 2c. No undulation can be observed
when the distance 2c decreases to less than a critical value; however,
they appear along the contact line when the contact width is increased
and their amplitude progressively increases with further increase in
2c. We measure the amplitude, A, of these waves, after the contact line
stops completely and normalize it as n ¼ Aq. These data summarized in
Fig. 1f show that the scaled amplitude, n, varies inversely with the con-
finement parameter, h=c. The amplitude, however, does not increase
from zero but from a finite value at the critical confinement,
h=c ¼ 0:14. No undulations could be observed beyond this limit.

To estimate the threshold confinement at which nontrivial solutions
of excess quantities ðTi; i 6¼ 0Þ are energetically favorable, we solve the
following equations obtained by matching the coefficients for
ei; i ¼ 2; 4 in the left- and the right-hand side of Eq. (7):

ðaÞ e2 :
@P1

@X
¼ @

2U1

@Y2
þ @

2U1

@Z2
;

@P1

@Y
¼ 0;

@P1

@Z
¼ 0;

ðbÞ e4 :
@P2

@X
¼ @

2U1

@X2
þ @

2U2

@Y2
þ @

2U2

@Z2
;

@P2

@Y
¼ @

2V1

@Y2
þ @

2V1

@Z2
;

@P2

@Z
¼ @

2W1

@Y2
þ @

2W1

@Z2
;

ðcÞ @U1

@X
þ @V1

@Y
þ @W1

@Z
¼ 0:

ð13Þ

Similarly, the boundary conditions in Eq. (8) result in

ðaÞ at Z ¼ 0;

e2 : U1 ¼ V1 ¼ W1 ¼ 0; e4 : U2 ¼ V2 ¼W2 ¼ 0;

ðbÞ at Z ¼ 1þW;

e2 :
@U1

@Z
¼ @V1

@Z
þ @W1

@Y

� �
¼ 0; e4 :

@U2

@Z
þ @W1

@X
¼ @V2

@Z
þ @W2

@Y
¼ 0;
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ðcÞ at Z ¼ 1þW and X < N Yð Þ;

e�2 : 0 ¼ @
4W1

@Y4
;

e0 : 0 ¼ 2
@4W1

@X2@Y2
þ @

4W2

@Y4
;

e2 : P1 ¼ 3
@4W1

@X4
þ 2

@4W2

@X2@Y2
;

ðdÞ at Z ¼ 1þW and NðYÞ < X < aq;

e2 : 0 ¼ @
4W1

@X4
ð14Þ

We further assume that the excess displacements and pressure
vary sinusoidally along Y : Ti ¼ Ti sinðKYÞ; T ¼ U;W and P; and
Vi ¼ Vi cosðKYÞ: i ¼ 1,2, . . ., where K ¼ 2p=ðk=hÞ is the dimensionless
wave number of the perturbed waves and k is the wavelength. Notice that
the long-scale approximations used for estimating the nonperturbative
(i:e:; when the contact line is not undulatory) solutions are not relevant
for obtaining the expressions for the perturbed components, because,
here, the simplification is effected by mapping the coefficients of
ei; i ¼ 2; 4 on either side of the Eq. (7). Using these new definitions for
the excess quantities in Eq. (13), we obtain the following equations:

ðaÞ e2 :
dP1

dX
¼ �K2U1 þ

d2U1

dZ2
; P1 ¼ 0;

dP1

dZ
¼ 0;

ðbÞ e4 :
dP2

dX
¼ d2U1

dX2
� K2U2 þ

d2U2

dZ2
; KP2 ¼ �K2V1 þ

d2V1

dZ2
;

dP2

dZ
¼ �K2W1 þ

d2W1

dZ2
;

ðcÞ dU1

dX
�KV1 þ

dW1

dZ
¼ 0;

ð15Þ

which are solved using the following boundary conditions obtained from
Eqs. (14a and b):

ðaÞ at Z ¼ 0;

e2 : U1 ¼ V1 ¼ W1 ¼ 0; e4 : U2 ¼ V2 ¼W2 ¼ 0;

ðbÞ at Z ¼ 1þW;

e2 :
dU1

dZ
¼ dV1

dZ
þKW1

� �
¼ 0;

e4 :
dU2

dZ
þ dW1

dX
¼ dV2

dZ
þKW2 ¼ 0: ð16Þ
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Equation (15a) suggests that the e2 order of the excess pressure, P1, is zero,
whereas that for the e4 order of the pressure, P2, is finite, implying that the
film undergoes undulations at the surface under a very small excess press-
ure. This excess pressure, however small, varies along Y, signifying that it
depends upon the gap between the plate and film [13,25]. Nevertheless,
this excess pressure applies only in the immediate vicinity (<0.1mm) of
the contact between the film and plate as the gap between the two
increases rather sharply, as can be seen in the atomic force microscope
(AFM) images presented in Fig. 1 g; it does not contribute significantly
to the overall energy of the final state of the system. Therefore, in this cal-
culation, we find only the e2 order of the excess displacements and press-
ure. These are obtained by solving Eq. (15) subjected to the boundary
conditions in (16a–b) relevant to the film; as for the plate, its excess vertical
displacement is such that it remains in contact with the film only through
one-half of the wave. Hence, a simple way of expressing the excess displace-
ment of the plate is W1 ¼W1ðX;Z ¼ 1þWÞ þW11ðXÞ ð1� sinðKYÞÞ and
W2 ¼ W2ðX;Z ¼ 1þWÞ þW22ðXÞð1� sinðKYÞÞ, in which W11 and W22

are the amplitudes. This definition implies that the plate remains in con-
tact with the film at KY ¼ ð2nþ 1Þp=2, n ¼ 0; 2; 4; . . .. At all other values
of KY, it remains out of contact. Notice that this definition ensures only a
line contact between the plate and the film; this has to do with the fact that
here we consider only one component of the Fourier spectrum. A more
accurate approach would be to consider all the components, which would
ensure contact through one-half of the wave as was done rather elegantly
by Sarkar et al. [25] while modeling the debonding of a rigid plate from a
confined elastic layer bonded to a rigid substrate. However, at the onset
of appearance of the perturbation, it is sufficient to consider only a single
wave vector of the whole spectrum to obtain the condition of occurrence
of the instability. We assume further that W11 << W1 and W22 << W2, so
that we can write directly W1 ¼W1ðX;Z ¼ 1þWÞ and
W2 ¼ W2ðX;Z ¼ 1þWÞ without sacrificing much accuracy. In essence,
this assumption implies that the plate bends only along the X axis, remain-
ing uniform along Y, as we observed in our experiments. Then the bound-
ary conditions (14c) and (14d) simplify to the following equations for the
excess displacement of the plate: at Z ¼ 1þW; X < NðYÞ;

0 ¼ @
4W1

@X4
;

at NðYÞ < X < aq;

0 ¼ @
4W1

@X4
: ð17Þ

In essence, this condition is applicable at any X; then it is convenient
to apply the following boundary conditions at X ¼ 0, rather than at
X ¼ NðYÞ:
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The excess displacement, W1, and its slope are continuous at X ¼ 0
so that

W1jX¼0� ¼ W1jX¼0þ ¼ C0UðKÞ;
@W1

@X

����
X¼0�

¼ @W1

@X

����
X¼0þ;

and
@2W1

@X2

����
X¼0�

¼ @
2W1

@X2

����
X¼0þ

�

.
Here, C0UðKÞ is the excess stretching of the film at X ¼ 0 (Ref. 13), C0

is a constant, and the function UðKÞ falls out naturally from the sol-
ution of the excess quantities. At X ¼ �n, where, n ¼ Aq is the dimen-
sionless amplitude of the waves the excess displacement of the plate,
its slope vanishes, which results in the boundary condition:

W1jX¼�n ¼
@W1

@X

����
X¼�n

¼ 0:

.
Similarly, at X ¼ aq, excess displacement and curvature of the plate is
zero, which results in the boundary condition

W1jX¼aq ¼
@2W1

@X2

����
X¼aq

¼ 0:

.
Equation (15), and the boundary conditions discussed thus far, dictate
the analytical expressions of the excess quantities which are the same
as those obtained for the experiment with a single spacer and have
been solved in Ref. 16.

Excess Energy

After obtaining the expressions for the base and the excess displace-
ments [16], we proceed to estimate the excess energy of the system
P ¼ PTotal �P0. Using l=e3 as the characteristic energy and consider-
ing only the leading order terms (e4 and e6), we obtain the expression
for the excess energy as

P ¼ e6

4

Z 0

�n

Z 2p=K

0

Z 1

0

@V1

@Z
þ @W1

@Y

� �2

dZ dY dX

þ 3p
K

Z aq

�n
2e2 @

2W0

@X2

@2W1

@X2
þ e4 @2W1

@X2

� �2
 !

dX þ 6n
K

WAh2

De4
: ð18Þ
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The first term in the right side corresponds to the excess elastic energy
of the film, estimated only within a distance �n � X � 0, at which the
surface of the film becomes undulatory. The second term corresponds
to the bending energy of the plate, which needs to be estimated within
a distance �n � X � aq. The third term represents the excess interfa-
cial energy associated with the planar area of the fingers. We have
neglected, however, the interfacial energy associated with their side
walls.

After substituting the expressions for the base component of dis-
placement W0 and the excess displacements V1;W1, and W1, we finally
obtain

P ¼ ðe6 f2ðn; cq;KÞ þ e4 f1ðn; cq;KÞÞC2
0 þ e2 f3ðn; cq;KÞDC0

þ 6n
K

WAh2

De4
: ð19Þ

Here, the expressions for f1ðn; cq;KÞ; f2ðn; cq;KÞ, and f3ðn; cq;KÞ are
obtained using Mathematica. Furthermore, hypothesizing that P
minimizes when @P=@C0 ¼ 0, we obtain an expression for C0, which,
when substituted in Eq. (19), yields

P ¼ �D
2

4

f 2
3

f1 þ e2f2
þ 6n

K

WAh2

De4
: ð20Þ

Thus, the excess energy, P, is obtained as a function of three types of
parameters: the length scales of perturbation (i:e:, wavelength k=h
and amplitude n ¼ Aq), geometric length scales of the experiment (i:e:,
h=c and e), and dimensionless work of adhesion (i:e:, WAh2=D). Figure
3a depicts the dimensionless excess energy as a function of the dimen-
sionless wave number, K ¼ 2ph=k, and amplitude, n, while h=c, e, and
WAh2=D are kept constant. P goes through a minimum (Pmin), which
remains positive as long as h=c is greater than a critical value. However,
when h=c < ðh=cÞc, we obtain a negative minimum for Pmin, implying
that undulations with finite amplitude are energetically favorable at
and beyond this confinement. The corresponding values of k=h, plotted
against h=c in Figure 3b for a representative set of values of
e ¼ 0:19� 0:35 and ðWAh2=DÞ1=4 ¼ 0:01� 0:015, show that undulations
appear only when the film is sufficiently confined, i.e., h=c < 0:13 as is
observed in experiments (Figure 1f) with a variety of films of different
thickness and modulus and cover plates of different rigidity. The wave-
length of instability varies nonmonotonically with the contact width,
which qualitatively captures the experimental observation that k=h
does not show monotonic increase or decrease with h=c as shown in
Figure 3b. Furthermore, in the limit h=c! 0, i.e., for large enough
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contact width, k=h becomes independent of h=c as the experiment then
converges to the single spacer geometry. The theory also captures our
experimental observation that the amplitude does not increase from
zero, but from a finite value, so that only perturbations with finite
amplitude grow while others decay. However, the amplitude is some-
what overestimated, which could be due to the assumption of sinusoidal
variation of the excess quantities along the y axis.

Prestretched Films

Although so far we discussed elastic films free of any prestress, here
we describe our experiments with the ones subjected to uniaxial pre-
stretching. Figure 4a–c depict the schematic in which an elastic film
is first stretched along x and is then placed on a rigid substrate on
which it remains strongly adhered. A flexible plate is then peeled off
the film. If k1 is the extension ratio of the film along x, i.e.,
k1 ¼ Lf =L0 (k1 > 1), then, because of incompressibility, the extension

FIGURE 3 (a) Typical plot of dimensionless excess energy, P, as a function of
wavenumber K ¼ 2ph=k and amplitude n ¼ Aq of fingers for dimensionless
parameters: e ¼ 0:29, h=c ¼ 0:084, and ðWAh2=DÞ1=4 ¼ 0:008. Instability
ensues when P is negative and minimum. (b) These plots are obtained for var-
iety of e and h=c at a given ðWAh2=DÞ1=4 and by extracting from them the data
of k=h at which P ¼ Pmin and is negative. The solid lines (1 to 5) represent
these data of k=h plotted against h=c for variety of values for e ¼ 0:192,
ðWAh2=DÞ1=4 ¼ 0:01, (0:21; 0:011), (0:252; 0:0122), (0:282; 0:0147), and
(0:35; 0:01), respectively. The symbols &, �, 4, &, and . represent the data
obtained from experiments for e ¼ 0:189 and ðWAh2=DÞ1=4 ¼ 0:01,
(0:186; 0:0114), (0:166; 0:009), (0:252; 0:0122), and (0:133; 0:0082), respectively.
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ratio along the other two directions is k2 ¼ 1=
ffiffiffiffiffi
k1

p
. Video-micrographs

in Figures 4d–f depict the typical examples of instability patterns that
appear along the contact line. Here V-shaped fingers appear, unlike
the U-shaped ones as seen in previous experiments. Although, these
patterns were detected earlier by Lake et al. [26] during low-angle
peeling of an adhesive and also by others [27] in a different context,
here we study them systematically by subjecting the polymer films
of different thicknesses to different extension ratios and by peeling
off flexible plates of varying rigidity.

For example, in Figures 4d–f, a film with l ¼ 1:0 MPa and
h ¼ 210 mm is progressively stretched to k2 ¼ 0:847; 0:774, and 0.732,

FIGURE 4 Pattern formation with prestretched films. A uniaxially stretched
thin film of Sylgard1 184 (Dow Corning, Midland, MI, USA) is clamped to a
rigid substrate using an adhesive tape from which a flexible plate is peeled
using a spacer. (d)–(f) Videomicrographs of patterns obtained with a plate of
rigidity D ¼ 0:02 Nm and a film of modulus l ¼ 1:0 MPa and thickness
h ¼ 210 lm, stretched to k1 ¼ 1:4; 1:67, and 1:87, respectively. The arrow
shows the direction in which the crack opens. (g) Amplitude data from experi-
ments with different h, D, and k1 are normalized as n ¼ Aq and are plotted
against the modified confinement parameter e=

ffiffiffiffiffi
k1

p
. The solid curve is a guide

to the eye and captures the overall variation of n with e.
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and a plate of D ¼ 0.02 Nm is peeled from it. The resultant fingers
have round tips when k2 is close to 1.0; however, with increasing
extension of the film, the sharpness of the tip increases. Furthermore,
the increase of the amplitude of the fingers with decreasing k2 implies
that increase in pre-extension leads to longer fingers. Similar to our
earlier observations, the amplitude increases also with the rigidity
of the contacting plate and decreases as the thickness of the film is
increased.

These features can be rationalized by considering the equilibrium of
incremental stresses [28] in an incompressible elastic layer as follows
(please see Appendix A for derivation):

1

l
@s

@x
þ 1

3

2

k1
þ k2

1

� �
@2u

@x2
þ 1

k1

@2u

@z2
¼ 0;

1

l
@s

@z
þ k2

1

@2w

@x2
þ 1

3

1

k1
þ 2k2

1

� �
@2w

@z2
¼ 0:

ð21Þ

Here u and w are the incremental deformations along x and z, whereas
s is the incremental average stress. Although the effect of pre-
extension is intrinsically accounted for in Eq. (21), it is not amenable
to analytical solutions except in the limiting situations:
k1 ! 1 and k1 >> 1. When k1 ! 1, long-scale approximations can be
used to simplify Eq. (21) as

1

l
@s

@x
þ 1

k1

@2u

@z2
¼ @s

@z
¼ @u

@x
þ @w

@z
¼ 0;

which is integrated using these conditions: perfect bonding at z ¼ 0,
frictionless contact, and continuity of normal stresses at z ¼ h=

ffiffiffi
k
p

1

(due to stretching, thickness decreases to h=
ffiffiffi
k
p

1). This procedure
yields the relation

w0 ¼
Dh3

3l
ffiffiffi
k
p

1

@6w0

@x6
at x < 0; ð22Þ

from which we obtain the characteristic lengths, along x:
ðDh3=3l

ffiffiffi
k
p

1Þ1=6 � q�1 and along z : h=
ffiffiffi
k
p

1. The confinement parameter
�ee ¼ e=

ffiffiffi
k
p

1 then implies that prestretching enhances the confinement of
the film so that undulations can appear even for thicker films when they
are sufficiently prestretched. The video micrographs in Figures 5a–d
illustrate this situation, in which a plate of rigidity D ¼ 0:02 Nm is lifted
from an elastic film (h ¼ 645 lm and l ¼ 1:0 MPa). The contact line
remains straight until k1 < 1:38, beyond which it turns undulatory.
The critical value of the confinement parameter is then obtained as

Critical Confinement and Elastic Instability 699



�ee � 0:52, which is rather large. However, in the limit of k1 >> 1, simpli-
fication of Eq. (21) with the assumption of constant s along z leads to

w0 þ
3Dh

l

ffiffiffi
k
p

1

ðk3
1 þ 2Þ

@4w0

@x4
¼ 0 at x < 0; ð23Þ

which results in a different definition, �ee ¼ ðlh3=3DÞðk3
1 þ 2=

ffiffiffi
k
p

1Þ1=4, and
a critical value of confinement parameter �ee ¼ 0:36, which is similar to our
earlier observations with unstretched films (e ¼ 0:35) [14]. Furthermore
the scaled amplitude n ¼ Aq from variety of experiments (h ¼ 245–
760mm, l ¼ 1.0 MPa, D ¼ 0.02–0.42 Nm, and k1 ¼ 1:45� 1:93) increases
with decrease in e (Figure 4g), as observed earlier. The scaled wave-
length, however, does not remain constant; it increases from 2.25 to 4.25.

SUMMARY

In this report we have examined the effect of confinement of a thin
elastic film via two different experiments in which we systematically
varied the confinement by controlling the width of contact between
the film and a flexible plate and by subjecting the film to pre-
extension. We have characterized the confinement of the film by the
ratio of two characteristic lengthscales: thickness of the film and the
distance from the contact line within which the stresses remain con-
centrated. Whereas for experiments with semi-infinite contact width
(i.e., with a single spacer), the confinement parameter is obtained as

FIGURE 5 Videomicrographs of patterns observed with Sylgard1 184 elasto-
meric film of thickness h ¼ 645mm and shear modulus l ¼ 1.0 MPa, stretched
to k1 ¼ 1:45. Micrographs (a)–(d) are obtained with glass plates of rigidity
D ¼ 0:02; 0:09; 0:154; and 0:21 Nm, respectively.
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e ¼ hq, it is obtained as h=c when the contact width is finite (as in
Figure 1) and hq=

ffiffiffiffiffi
k1

p
for prestretched films (Figure 4). We show that,

in this variety of situations, the instability in the form of finger-like
patterns appears at the contact line when a threshold confinement
is attained, and the amplitude increases with further increase in
confinement. Furthermore, in all these experiments, the amplitude
increases not from zero but from a finite value. These features are
all captured through our analysis in which we estimate the excess
energy of the system associated with the appearance of these undula-
tions. We show that the instability should, indeed, ensue with finite
amplitude as the minima of the excess energy turns negative at a criti-
cal value of the confinement parameter. Our analysis, however,
depicts a simplified picture of the very complex displacement and
stress fields in the vicinity of the contact line, because, here, we con-
sider only a single Fourier mode in describing the transverse modula-
tions of the displacements, which fails to account for the detailed
three-dimensional morphology of the interface. A full simulation of
the problem coupled with a Fourier series expansion of the undulation
should capture the detailed morphology of the instability patterns
beyond critical confinement.
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APPENDIX

The detailed analysis of incremental deformations can be found in
Reference [25] from which we obtain the stress equilibrium relations
in terms of the incremental stresses in an elastic material which is
already subjected to pre-stresses. Let us say that an elastic body is
subjected to the initial stress field:

S11 S12 S13

S12 S22 S23

S13 S23 S33

where directions 1, 2 and 3 correspond to x; y and z, respectively. If the
body is now deformed, a new stress field develops in the body, which
when expressed with respect to the axes that rotate with the medium
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can be written as,

S11 þ s11 S12 þ s12 S13 þ s12

S12 þ s12 S22 þ s22 S23 þ s23

S13 þ s13 S23 þ s23 S33 þ s33

Here s11, s22 and s12 etc. are the incremental stresses. In our problem,
an incompressible elastic film is pre-stretched uniaxially, so that k1 is
the extension ratio, k1 ¼ Lf=L0 (k1 > 1), then, due to incompressibility,
the extension ratios along the other two directions are
k2 ¼ k3 ¼ 1=

ffiffiffiffiffi
k1

p
. Using the neo-Hookean model, the initial stress,

S11, in the material along direction x can be written as:

S11 ¼ l k2
1 �

1

k1

� �
ðA1Þ

The other components of the initial stresses are zero, i.e.
S12 ¼ S13 ¼ S23 ¼ S33 ¼ S22 ¼ 0. In the absence of body forces, the
simplified form of the stress equilibrium relations (see Equation 7.49
on page 52 of Reference 25) are:

@s11

@x
þ @s12

@y
þ @s13

@z
þ S11

@xz

@y
� @xy

@z

� �
¼ 0

@s12

@x
þ @s22

@y
þ @s23

@z
þ S11

@xz

@x
¼ 0

@s13

@x
þ @s23

@y
þ @s33

@z
� S11

@xy

@x
¼ 0

ðA2Þ

and the incompressibility relation is exx þ eyy þ ezz ¼ 0.
The incremental stress components are expressed in terms of

strains as (see Equation 8.46 on page 104 of Reference 25),

s11 � s22 ¼
2l
k1

eyy � ezz

� �
; s22 � s33 ¼ 2l

1

k1
ezz � k2

1exx

� �

s ¼ 1

3
s11 þ s22 þ s33ð Þ

s12 ¼ l k2
1 þ

1

k1

� �
exy; s23 ¼

2l
k1

eyz; s31 ¼ l k2
1 þ

1

k1

� �
exz

ðA3Þ

and, the incremental strain and rotational components are
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exx ¼
@u

@x
; exy ¼

1

2

@u

@y
þ @v

@x

� �
; xz ¼

1

2

@v

@x
� @u

@y

� �

eyy ¼
@v

@y
; ezx ¼

1

2

@w

@x
þ @u

@z

� �
; xy ¼

1

2

@u

@z
� @w

@x

� �

ezz ¼
@w

@z
; eyz ¼

1

2

@v

@z
þ @w

@y

� �
; xx ¼

1

2

@w

@y
� @v

@z

� �
ðA4Þ

Using the definitions in Equations (A1), (A3) and (A4) we can rewrite
Eq. (A2) as,

@s

@x
þ l

3
k2

1 þ
2

k1

� �
@u

@x2
þ l

k1

@2u

@y2
þ @

2u

@z2

� �
¼ 0

@s

@y
þ lk2

1

@v

@x2
þ l

k1

@2v

@y2
þ @

2v

@z2

� �
þ 2l

3
�k2

1 þ
1

k1

� �
@2u

@x@y
¼ 0

@s

@z
þ lk2

1

@2w

@x2
þ l

k1

@2w

@y2
þ @

2w

@z2

� �
þ 2l

3
�k2

1 þ
1

k1

� �
@2u

@x@z
¼ 0

ðA5Þ

In order to obtain the base solutions, we can simplify Equation A5
using the long scale approximation,

1

l
@s

@x
þ 1

3
k2

1 þ
2

k1

� �
@u

@x2
þ 1

k1

@2u

@z2
¼ 0

1

l
@s

@z
þ k2

1

@2w

@x2
þ 1

3
2k2

1 þ
1

k1

� �
@2w

@z2
¼ 0

ðA6Þ

Equation A6 is used for analyzing the problem with pre-stretched films.
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