

Supplementary Material Fig. 35: (a) Plot of rate coefficients $k_{Ar}^{\Delta J}$ for rotationally inelastic collisions of NaCs 2(*A*)¹ Σ^+ (*v*=14, *J*=32) molecules with argon atoms, comparing the results of fits obtained with various fixed values of k_{Cs}^{Q}/Γ or with k_{Cs}^{Q}/Γ allowed to vary. (b) Plot of rate coefficients for rotationally inelastic collisions of NaCs 2(*A*)¹ Σ^+ (*v*=14, *J*=32) molecules with cesium atoms, in units of the cesium quenching rate coefficient k_{Cs}^{Q}/Γ comparing the results of fits obtained with various fixed values of k_{Cs}^{Q}/Γ or with k_{Cs}^{Q}/Γ allowed to vary. k_{Cs}^{Q}/Γ values are in units of cm³. For cases listed as "vary k_{Cs}^{Q}/Γ within limits" the range of allowed values was 1×10^{-17} cm³ $< k_{Cs}^{Q}/\Gamma < 1 \times 10^{-15}$ cm³. The value of Γ was taken to be 2.82 $\times 10^7$ s⁻¹.

Supplementary Material Fig. 36: Plots of fluorescence ratio data (R_F) versus argon density for $\Delta J = +1$ collisions of NaCs 2(A)¹ Σ^+ (v=14, J=32) molecules with argon and cesium perturbers. Each panel represents a fixed cesium density n_{Cs} .

 R_F vs. n_{Ar} for NaCs 2(A)¹ Σ^+ (v=14, J=32), ΔJ = +2

Supplementary Material Fig. 37: Plots of fluorescence ratio data (R_F) versus argon density for $\Delta J = +2$ collisions of NaCs 2(A)¹ Σ ⁺(v=14, J=32) molecules with argon and cesium perturbers. Each panel represents a fixed cesium density n_{Cs} .

 R_F vs. n_{Ar} for NaCs 2(A)¹ Σ^+ (v=14, J=32), ΔJ = +3

Supplementary Material Fig. 38: Plots of fluorescence ratio data (R_F) versus argon density for $\Delta J = +3$ collisions of NaCs 2(A)¹ Σ^+ (v=14, J=32) molecules with argon and cesium perturbers. Each panel represents a fixed cesium density n_{Cs} .

 R_F vs. n_{Ar} for NaCs 2(A)¹ Σ^+ (v=14, J=32), ΔJ = +4

Supplementary Material Fig. 39: Plots of fluorescence ratio data (R_F) versus argon density for $\Delta J = +4$ collisions of NaCs 2(A)¹ Σ ⁺(v=14, J=32) molecules with argon and cesium perturbers. Each panel represents a fixed cesium density n_{Cs} .

Supplementary Material Fig. 40: Plots of fluorescence ratio data (R_F) versus argon density for $\Delta J = -1$ collisions of NaCs 2(A)¹ Σ^+ (v=14, J=32) molecules with argon and cesium perturbers. Each panel represents a fixed cesium density n_{Cs} .

 R_F vs. n_{Ar} for NaCs 2(A)¹ Σ^+ (v=14, J=32), $\Delta J = -2$

Supplementary Material Fig. 41: Plots of fluorescence ratio data (R_F) versus argon density for $\Delta J = -2$ collisions of NaCs 2(A)¹ Σ ⁺(v=14, J=32) molecules with argon and cesium perturbers. Each panel represents a fixed cesium density n_{Cs} .

Supplementary Material Fig. 42: Plots of fluorescence ratio data (R_F) versus argon density for $\Delta J = -3$ collisions of NaCs 2(A)¹ Σ^+ (v=14, J=32) molecules with argon and cesium perturbers. Each panel represents a fixed cesium density n_{Cs} .

 R_F vs. n_{Ar} for NaCs 2(A)¹ Σ^+ (v=14, J=32), $\Delta J = -4$

Supplementary Material Fig. 43: Plots of fluorescence ratio data (R_F) versus argon density for $\Delta J = -4$ collisions of NaCs 2(A)¹ Σ ⁺(v=14, J=32) molecules with argon and cesium perturbers. Each panel represents a fixed cesium density n_{Cs} .

Supplementary Materials Fig. 44: Plot of NaCs excitation spectra for two different cesium densities and similar argon densities $(n_{Ar} \sim 6.0 \times 10^{16} \text{ cm}^{-3})$ comparing the difference in relative peak intensities for $\Delta J = +1$ and $\Delta J = -1$ collisional lines. a) $n_{Cs} = 1.04 \times 10^{16} \text{ cm}^{-3}$, $I_{col}^{\Delta J=+1}/I_{col}^{\Delta J=-1} = 0.78$. b) $n_{Cs} = 4.37 \times 10^{16} \text{ cm}^{-3}$, $I_{col}^{\Delta J=+1}/I_{col}^{\Delta J=-1} = 0.62$.

Supplementary Materials Fig. 45: Spectra showing $\Delta J = \pm 1, \pm 2$ NaCs $2(A)^1 \Sigma^+(v = 14, J = 32)$ rotationally inelastic collisions with argon and helium buffer gases. The top trace shows a spectrum obtained using argon as the buffer gas, where a decrease in the intensity of the collisional peaks with increasing $|\Delta J|$ can be seen. The bottom trace shows the same NaCs collisional transitions, except with helium as the buffer gas. The number of $\Delta J = \pm 2$ collisions, relative to the number of $\Delta J = \pm 1$ collisions, appears to be greater for helium than for argon perturbers.