

Supplementary Material Fig. 27: Rate coefficients for rotationally inelastic collisions of NaK $2(A)^{1} \Sigma^{+}(v=0, J=14)$ molecules with (a) argon, (b) helium, and (c) potassium atoms as functions of ΔJ.

Supplementary Material Fig. 28: Rate coefficients for rotationally inelastic collisions of NaK $2(A)^{1} \Sigma^{+}(v=0, J=30)$ molecules with (a) argon, (b) helium, and (c) potassium atoms as functions of ΔJ.

Supplementary Material Fig. 29: Rate coefficients for rotationally inelastic collisions of NaK $2(A)^{1} \Sigma^{+}(v=1, J=26)$ molecules with (a) argon, (b) helium, and (c) potassium atoms as functions of ΔJ.

Supplementary Material Fig. 30: Rate coefficients for rotationally inelastic collisions of NaK $2(A)^{1} \Sigma^{+}(v=2, J=44)$ molecules with (a) argon, (b) helium, and (c) potassium atoms as functions of ΔJ.

Supplementary Material Fig. 31: Comparison of zeroth order (fit neglecting multiple collision effects - solid symbols) and final rate coefficients including multiple collision effects (open symbols) for rotationally inelastic collisions of $\mathrm{NaK} 2(A)^{1} \Sigma^{+}(v=0, J=14)$ molecules with (a) argon, (b) helium, and (c) potassium atoms as functions of ΔJ. The final values were obtained from the average of the $99^{\text {th }}$ and $100^{\text {th }}$ iterations for (a) and (c) and from the average of the $5^{\text {th }}$ and $6^{\text {th }}$ iterations for (b).

Supplementary Material Fig. 32: Comparison of zeroth order (fit neglecting multiple collision effects - solid symbols) and final rate coefficients including multiple collision effects (open symbols) for rotationally inelastic collisions of $\mathrm{NaK} 2(A)^{1} \Sigma^{+}(v=0, J=30)$ molecules with (a) argon, (b) helium, and (c) potassium atoms as functions of ΔJ. The final values were obtained from the average of the $5^{\text {th }}$ and $6^{\text {th }}$ iterations for (a), (b), and (c).

Supplementary Material Fig. 33: Comparison of zeroth order (fit neglecting multiple collision effects - solid symbols) and final rate coefficients including multiple collision effects (open symbols) for rotationally inelastic collisions of $\mathrm{NaK} 2(A)^{1} \Sigma^{+}(v=1, J=26)$ molecules with (a) argon, (b) helium, and (c) potassium atoms as functions of ΔJ. The final values were obtained from the average of the $99^{\text {th }}$ and $100^{\text {th }}$ iterations for (a) and (c) and from the average of the $5^{\text {th }}$ and $6^{\text {th }}$ iterations for (b).

Supplementary Material Fig. 34: Comparison of zeroth order (fit neglecting multiple collision effects - solid symbols) and final rate coefficients including multiple collision effects (open symbols) for rotationally inelastic collisions of $\mathrm{NaK} 2(A)^{1} \Sigma^{+}(v=2, J=44)$ molecules with (a) argon, (b) helium, and (c) potassium atoms as functions of ΔJ. The final values were obtained from the average of the $99^{\text {th }}$ and $100^{\text {th }}$ iterations for (a) and (c) and from the average of the $999^{\text {th }}$ and $1000^{\text {th }}$ iterations for (b).

