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Abstract--In this work, we discuss the effects of incomplete frequency redistribution on 
radiation trapping of the sodium D lines in laboratory experiments. We compare measured 
radiative escape factors from two recent experiments with values calculated from the Holstein 
theory, which assumes complete redistribution, and the Post theory, which explicitly takes 
into account both incomplete redistribution and the hyperfine structure of the atom. We 
show that the upturn of the escape factor vs density curve reported in the experiments of 
Romberg and Kunze is not a manifestation of the effects of incomplete redistribution. We also 
show that the data of Huennekens and Gallagher are more accurately fitted by a simple 
Holstein theory expression, where all effects of natural broadening on the lineshape are 
ignored, than by the more complete Post theory calculations. This is due to the fact that, in 
the present case, the density region where trapping is affected by incomplete frequency 
redistribution is small. Other recent experiments in mercury by Post and coworkers have 
demonstrated that such effects can be significant under different conditions. In addition, we 
present a calculation of Post's escape function ~/for an infinite slab geometry. This function 
is needed for Post theory calculations of escape factors and effective radiative rates in that 
geometry. 

ANALYSIS  

In a recent article appearing in this journal, I Romberg and Kunze reported experimental studies 
of  radiation trapping on the resonance lines of  lithium and sodium for optical densities in the range 
0.2 ~< kol < 60. These measurements complement previous studies of  radiation trapping on the 
sodium resonance lines by Kibble et al 2 (covering the range kol < 16) and by Huennekens and 
Gallagher 3 (8 < k01 < 800). Romberg and Kunze carried out measurements on lithium and sodium 
in an atomic beam, in addition to cell measurements on sodium. Their measurements confirm the 
main features of  the diffusion model of  Milne 4 at low optical densities, in agreement with the 
findings of  Kibble et al, and are consistent with the Holstein theory results 5'6 at higher opacities 
(4 < kol < 50). In this discussion, k0 is the line-center absorption coefficient and I is a geometry- 
dependent length parameter (l is equal to either the radius of  a cylinder R or half the thickness 
of a slab L/2) .  

The purpose of  the present article is to discuss the effects of  incomplete frequency redistribution 
on radiation trapping in sodium vapor. In particular, we want to address the conclusion of  
Romberg and Kunze I that the Holstein theory results must be modified to take into account partial 
frequency redistribution for optical densities > 50 under their experimental conditions. Experi- 
mentally, this conclusion of  Ref. 1 is based upon an upturn in their measured escape factor ge~ with 
increasing density when kol >t 50. This upturn can only be seen clearly for the two highest density 
data points of  their sodium atomic beam experiments (see their Fig. 6 or Fig. 1 of  the present 
article). Their lithium data did not extend to high enough density to produce similar effects. 
However, they state in reference to the upturn in the sodium atomic beam data, that "The escape 
factor reaches a minimum and increases again with increasing optical depth. Because of  these at 
first surprising results, the same investigations were also performed in the Na resonance cell: the 
results were similar." Although this statement is not corroborated by the sodium cell data presented 
in their Figs. 5 and 6, which do not show any significant deviation from the ~ n  -I dependence 
predicted by Holstein (here n is the atom density), the statement is justified by other less accurate 
data not reported in their paper. 7 Unfortunately, the authors did not take further data at higher 
densities. 
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On the other hand, Huennekens and Gallagher 3 have reported measurements of escape factors 
in a sodium cell experiment over the opacity range 8 < kol < 800. Their results are in excellent 
agreement with the Holstein theory predictions over the full range. In particular, over the density 
range between 4 x 1012 and 7 x 10 '3 cm -3, they observed that go~ oc {kol[ln(kol)]~n) -~, as predicted 
by Holstein (the log term is so slowly varying that this relation roughly yields g~er oc n-~). This 
dependence is also identical to that seen by Romberg and Kunze for all of their cell data between 
2 x 10 II and 2 × 1012 c m  -3  and by all of their atomic beam data for which kol >/4, with the 
exception of the last two points. We therefore suspect that these two data points may represent 
an experimental artifact. 

On the theoretical side, it is true that the Holstein theory assumes complete frequency 
redistribution, which is not justified under all conditions. The Holstein-theory calculations 
assume either a purely Doppler-broadened or a purely pressure-broadened line. While complete 
redistribution is a very good approximation in both of these cases, every spectral line is a 
convolution of Doppler, pressure and natural broadening. The Holstein theory is unable to 
handle natural broadening because in that case complete redistribution is a very poor 
approximation. 

Despite the fact that all three broadening mechanisms are always present, it has been shown that, 
in most situations, one or another of the mechanisms will dominate the trapping problem. In 
particular, the important mechanism is the one which dominates the line profile in the region near 
the unity optical depth point (i.e., near kd = I). The reason is that, closer to the line center, the 
optical density is so high that the photon is reabsorbed after travelling a very short distance 
regardless of the details of the lineshape, while the emission probability is small farther from the 
line center. This is the same reason that the emission from a self-reversed line peaks strongly near 
the unity optical depth points. 

To quantify these arguments, Payne et al s developed the following criteria for determining when 
complete redistribution is not a good approximation: 

Pc = AVc/(Avc + AvN) < 0.7, (1) 

/Co I[(Av• + Av c)/AvD] (In 2) 1/2 > 1. (2) 

Here, Arc, AvN, and AvD represent the Lorentzian collisional-broadening half-width, the Lorentzian 
natural-broadening half-width, and the Gaussian Doppler half-width, respectively. These criteria 
can be interpreted as follows: inequality (1) shows that complete redistribution is a good 
approximation when the Lorentzian wings are dominated by collision broadening, i.e., when 
Pc > 0.7. According to inequality (2), complete redistribution is a good approximation when 
Doppler broadening dominates the unity depth part of the line profile, regardless of the type of 
broadening that dominates the Lorentzian wings of the line. 

Romberg and Kunze justify their conclusion that incomplete redistribution is important at 
kol .,, 50 in their experiments by appealing to these criteria and pointing out that the inequality (1) 
is satisfied in their case. However, both criteria must be satisfied for incomplete redistribution to 
be important (see, e.g., Payne et alS). It should be noted, for instance, that the inequality (1) is 
always satisfied at low densities since Arc is proportional to density. Thus, if inequality (1) alone 
invalidated the complete redistribution approximation, one would expect that the Holstein theory 
would break down at lower and not at higher densities. 

Payne et al s argue that, even if complete redistribution is not valid [i.e., even if both inequalities 
(1) and (2) are satisfied], the Holstein theory, where all effects associated with natural broadening 
are ignored, will still be valid unless 

XL > Xc -- 0.5. (3) 

Here, XL is the frequency at which kv(xL)l = 1 {which is given by XL = [In(k01)] "2 } and Xc is 
the point on the wings where the Gaussian component equals the natural Lorentzian 
component {i.e., e x p ( - x  2) = (Avr~/AVo)[ln(2)/rc]"2x~:}. Frequencies are given here in terms of 
x = (m/2kT)~/~(v-  v0)2. The inequality (3) shows that natural broadening effects on radiation 
trapping are insignificant provided that the natural wing is small compared to the Doppler wing 
at the critical frequency, XL. Because there is no frequency redistribution in the case of pure natural 
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line-broadening and because the scattering is effectively instantaneous, it is more accurate simply 
to ignore AvN than to add it to Arc in the Holstein pressure-broadening formulae (see also Ref. 9). 
Inequality (3) is roughly equivalent to (2) but is slightly more restrictive. 

Applying the criteria of  Payne et al to the cell experiment of  Romberg and Kunze, where 
l - - 2 . 6 c m ,  we find that inequality (1) is satisfied for n <3.1  x 1014cm-3, inequality (2) for 
n > 1.2 x 1013 cm -3, and inequality (3) for n > 1.3 x 1013 cm -3. Thus, one would expect to see 
significant deviations from the Holstein theory results only in the range 1.3 x 1013< 
n <3.1 x 1014cm -3. 

The data of  Huennekens and Gallagher, or more recently the mercury data of  Post et al, I°'tm 
show clearly the transition from trapping dominated by the Doppler  core to trapping dominated 
by the Lorentzian wings. According to the Holstein theory, the former region will show roughly 
an n - 1 dependence, while the latter will be independent of  density for self-broadening. The effects 
of  incomplete redistribution are expected to manifest themselves, if at all, in just this transition 
region, where the unity optical depth point has just entered the Lorentzian wings, but where the 
density is still low enough so that Av~ > Arc (see Figs. 1 and 2). While Huennekens and Gallagher 
did not see any effects of  incomplete redistribution in the sodium case where the density range 
of validity of  b o t h  inequalities (1) and (2) is small and where hyperfine effects tend to also 
redistribute frequency, Post and coworkers did see such an effect in the transition region in 
mercury. I°'ll It is somewhat misleading that Romberg and Kunze translated Post 's  data by two 
orders of  magnitude in density, since the minimum in the escape factor vs density curve seen by 
Romberg and Kunze n e a r  l012 c m  -3  is nowhere near the Doppler  to Lorentzian transition region 
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Fig. I. The escape factor g,~ vs the sodium density and optical depth kol for the sodium D 2 line. The 
experimental points are from Ref. 1; [] represents data taken in a cylindrical cell of radius 2.6 cm (plotted 
against both density and opacity) while • represents data taken from an atomic beam (plotted against 
opacity only). The solid line represents Post-theory calculations. The long dashed line represents 
Holstein-theory calculations, where the natural-broadening contribution to the lineshape is ignored (curve 

12 2 A is based on ko/n = 9.65 x 10- cm, which ignores hyperfine structure, while curve B is based on the 
actual peak absorption cross section km,x/n = 6.2 x 10-~2cm2). The short dashed line represents the 
Holstein results if Av N is simply added to Avc in the Holstein pressure-broadening formula. All theoretical 

calculations were carried out for an infinite cylinder of radius 2.6 cm. 
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Fig. 2. The same as in Fig. I, except that the experimental data are those of ReE 3 which were measured 
in a slab geometry of thickness L = 0.635 cm. Al l  theoretical calculations were carried out for an infinite 

slab of thickness 0.635 cm. 

(~  1.5 x 1 0  I3 c m  - 3  in their sodium experiment and ~ 1014 c m  - 3  in the mercury experiment) where 
Post et al I°'ll found the minimum in the &er vs density curves. 

In the argument above, geometry effects can also be important (i.e., incomplete redistribution 
will become important at lower densities as the cell size increases). However, for small cells such 
as those used in Refs. 1-3, such effects will not significantly alter these conclusions. 

To further investigate the effects of incomplete redistribution in the sodium case, we have carried 
out calculations of the escape factor ge~ for the sodium D: line as a function of density and opacity 
using three different methods. The results of these calculations are shown in Figs. 1 and 2, where 
they are compared to the measurements of Romberg and Kunze I and Huennekens and Gallagher, 3 
respectively. In both figures, the escape factor is plotted against opacity (k0 R for the cylinder and 
koL/2 for the slab) as well as against sodium density. In Fig. 1, however, the density scale refers 
only to the cell data of Ref. 1. The beam data of Ref. 1 are plotted against opacity alone, since 
the effective escape distance was different in the beam and cell experiments. Due to collisional 
mixing between t h e  zPI/2 and 2P3/2 states at the higher densities of Ref. 3, the measured radiative 
decay rate m_ is actually a linear combination of the decay rates for the two states. This was 
deconvolved using the ratio of escape factors for the two states taken from the Holstein theory 5'6 
and the collisional mixing rate from Ref. 12. The ~P3/2 escape factor is smaller than the measured 
total decay rate by an amount ranging from 0 to 20%. 

The three methods of calculating the escape factor in Figs. 1 and 2 are described in the following 
paragraphs. The calculations of Fig. 1 were carried out for a cylinder of radius 2.6 cm appropriate 
to the cell measurements of Ref. 1. The calculations of Fig. 2 were carried out for a slab of thickness 
0.635 cm, as was used for the measurements of Ref. 3. The self-broadening rate for the sodium D2 
line was taken from Ref. 12. 

Method 1, shown as a short dashed line, is based on the Holstein theory, 5'6 but includes the 
effects of natural broadening by simply adding AvN to Arc in the pressure broadening formula. 
The escape factor is taken to be the larger of the two values calculated from the Doppler and 
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pressure-broadening formulae. This method is therefore based on an assumption of complete 
frequency redistribution for the natural as well as the Doppler and collisional-broadening 
contributions. It has been well established that this method fails to accurately predict the escape 
factor in the region where the natural wings are important (see Ref. 8 for example). The present 
comparisons also support this conclusion. 

In the second method (long dashed line), we calculate the escape factor using either the 
Holstein Doppler or pressure-broadening formula (whichever yields the larger value), and ignore 
all effects of natural broadening on the lineshape. This empirical approach was found to give good 
agreement between calculated and measured escape factors in Refs. 3 and 9. However, some 
ambiguity exists over the correct method for incorporating hyperfine structure into the Holstein 
theory calculations. If the hyperfine splitting is small compared to the line width, the hyperfine 
structure can be ignored. In that case, the line center optical depth can be calculated from the 
standard formula 

kol = (2/Avo )[(ln 2)/n]t/2(A 2/8n )(g2/gl )nlA21, (4) 

which can be found in Mitchell and Zemansky t3 (p. 100). This formula, which yields 
ko/n ~ 1 x 10 -lj cm 2 for the sodium D2 line, was used in Refs. 1 and 2 to calculate Holstein 
theory escape factors. Calculations based on this value of kol are plotted as dashed curves 
labeled A in Figs. 1 and 2 of the present work. However, these calculations overestimate the 
actual trapping which is reduced by the hyperfine structure. For two hyperfine components 
split by a distance which is large compared to their line widths, the Holstein theory predicts 
that, for kol = 15 (appropriate to the 0.635 cm slab geometry and a density of 5 x 10J2cm-3), 
gofr will be ,-,2.35 times larger than for a single component line. This ratio shifts to ~ 2.2 when 
kol = 50. When the hyperfine splitting is comparable to 1 Doppler width, as in the case of the 
sodium ground state, the situation is complicated. In Ref. 3, we found that a good match between 
theory and experiment could be obtained in the sodium case if we replaced the line-center 
absorption cross-section ko/n by the peak absorption cross-section of the hyperfine doublet, 
kmax/n "" 6.2 x 10 -~2 cm 2, in the Holstein expressions. Calculations based on this approximation 
are plotted as dashed lines labeled B in Figs. 1 and 2. More will be said about the hyperfine structure 
later. 

Finally, we used the Post theory ~° to calculate sodium escape factors, including the effects of 
incomplete redistribution and hyperfine structure (solid curves in the figures). The Post theory 
calculations take account of the full Voigt lineshape rather than approximating the lineshape 
as either a pure Gaussian or a pure Lorentzian. At first, we carried out the Post theory 
calculations of Fig. 1 using an approximate expression for the escape function r/(x) = (0.7T 2+ 1)- 
[where z(x) is the optical depth at frequency x], which was mentioned in Ref. 10 as being in 
agreement with the exact values of ~/ to within 30% at all z. Unfortunately, the largest errors 
in this approximate r/ occur in the most critical region near z = 1. Therefore, we read values 
of the exact cylinder r/ function from Fig. 6 of Ref. 10 and fit them to an analytic expression 
r/ = 1 -- 0.0684z °'2 + 0.8332z °4 -- 1.4728z °6 - 0.4829z °'s + 0.6369z for z < 3. For ~ >1 3, we used 
~/= (0.7z2 + 1) -l as above. These functions reproduce r/to within 10% everywhere and to within 
5% over the critical region 0.5 ~< T ~< 2.0. 

For Fig. 2, it was necessary to carry out Post theory calculations for an infinite slab geometry 
in order to compare to the experimental results of Huennekens and Gallagher. Post showed 
that besides replacing the cylinder radius R by half the slab thickness L/2, the only required 
geometry-dependent modification to his Eq. (20) for the escape factor occurs in the escape function 
~/, which is given in the general case by 

fv exp(-- T I P' -- P 
r/(p, r) = 1 - o, dO'Z 4n I o ' - ~ ' ]  3 I ) f ( o ' ) '  (5) 

where the integral is over the slab volume. Here f ( p )  is the spatial distribution of excited atoms 
normalized to unity at the midplane. For an infinite slab, f ( p )  is only a function of the distance 
z from the midplane. Following Post's treatment of the cylinder, we used the fundamental mode 
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Table 1. Coefficients of the expansion 

fD(z)----- ~, Anz  2" 
n=0 

for van Trigt's ~4 excited-atom fundamental-mode spatial distribution function appro- 
priate to an infinite slab geometry and a Doppler lineshape. The function is normalized 

to f o ( O )  = 1. 

An A 0 A1 A2 A 3 A a  

-0.7398 -0.4988 1.1416 -0.8326 
Numerical 

v a l u e  1.0 

spatial distribution fD(z)  appropriate for a pure Doppler lineshape (see Ref. 10). This function 
was taken from van Trigt, ~a who tabulated coefficients of the expansion 

fD(z)  = N (1 - z2) 1/2 Y' am U,,(z) (6) 
m 

for the slab geometry. Here U,,(z) are Tschebyscheff polynomials of the second kind, ~5 and N is 
the normalization factor required to make fD(0)= 1. We fit the first five terms of this expansion 
to a more convenient power series 

4 

f ( z )  = ~ A, z 2,. (7) 
n = 0  

The coefficients A, are given in Table 1. Finally, following Post, we made the approximation that 
q(z, ~) could be evaluated at the midplane, q(z, ~) ~ r/(0, ~) - q(T). This function was computed 
numerically and is plotted in Fig. 3. For r t> 2 the function is well approximated by r /=  (2T 2 + I) -l, 
while for T < 2 we used the approximate expression r /=  1 + 0.0315T ~/3- 1.638T2/3 + 0.840~. These 
analytic expressions reproduce q to within 7% everywhere. The escape factor, which was then 
calculated using Eq. (20) of Post, is plotted in Fig. 2. 

From these plots, it can first of all be seen that the upturn in g,er vs opacity observed by Romberg 
and Kunze does not appear to be the effect of incomplete redistribution predicted by Post, which 
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Fig. 3. Plot of Post's escape function q(~) vs optical density z for an infinite slab geometry; see Ref. 10 
for definitions. 
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is manifested by a dip in the escape factor curve for koR ~ 103. A hint of this predicted dip may, 
however, be evident in the data of Ref. 3 (see Fig. 2). However, the error bars in the latter 
experiment do not permit a conclusive statement on this point. In fact, it can be seen in Fig. 2 that 
in the region where the effects of incomplete redistribution are expected to be manifested, the data 
of Huennekens and Gallagher are more accurately reproduced by the Holstein theory (ignoring 
the contributions of natural broadening to the lineshape) than by the more complete theory of 
Post. However, we must note that whereas the effects of incomplete redistribution are small in 
the present case where the range of validity of both inequalities (1) and (3) is small (i.e., 
1.1 x 10 ~4 < n < 3.1 x 10 ~4 cm -3 for the conditions of Ref. 3), these effects can be quite significant 
under slightly different conditions (as has been demonstrated in mercury vapor by Post and 
coworkers l°,l~). In the latter case, use of a more complete theory is essential. 

One would expect to see agreement between the Post and Holstein theories at both low and high 
densities for which complete redistribution is a good approximation. This appears to be true at 
high densities where the detuning of the unity optical depth point from line center is large compared 
to the hyperfine splitting. At low densities the agreement is not good due to the ad hoc manor in 
which we have incorporated the hyperfine structure into the Holstein theory (i.e., by ignoring it 
as in curve A or by replacing the line center absorption coefficient k0 by the peak absorption 
coefficient kma x as in curve B). It can be shown that the Post and Holstein theories do agree in the 
Doppler limit for a line without hyperfine structure (i.e., see Fig. 4 below). 

To further investigate the approximations used to incorporate the sodium ground state hyperfine 
structure into the Holstein theory, we carried out Post theory calculations of gofr for different 
hyperfine splittings at a sodium density of 5 x 10 ~2 cm -3. These calculations, which were carried 
out for the slab of thickness 0.635 cm, are presented in Fig. 4. It can be seen that the transition 
in the escape factor from the case of a single unresolved line to that of two isolated lines occurs 
when the components are split by ~ 1-2 Doppler widths. Under these conditions, the unity optical 
depth point occurs at ~ 1.2 Doppler widths. Three Holstein theory results are also given in the 
figure. The first is for the case of two isolated lines. The second is for a single unresolved line 
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Fig. 4. Plot of  the Post-theory escape factor g=~ for the sodium D 2 line, where the ground state hypcrfine 
splitting was allowed to vary (solid line). The actual hyperfine splitting is shown by an arrow. Hyperfine 
splitting is plotted in units of  the Doppler width. The calculations were carried out for a slab of  thickness 
0.635 cm at a sodium density of  5 x 10t;cm -3. The dashed horizontal lines represent Holstein theory 
results based upon the following (from top to bottom): (i) two isolated lines, (ii) a single line with peak 
absorption cross section 6.2 x 10 -~  cm 2 (corresponding to curves B in Figs. 1 and 2), and (iii) a single 
line with a line-center absorption cross-section of  9.65 x 10 -~2 cm 2 (corresponding to curves A in Figs. 1 

and 2). 
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(as used to calculate the curves labeled A in Figs. 1 and 2). The third is obtained by the replacement 
of  k0 by km~x in the Holstein Doppler-broadening formula (curve B in Figs. 1 and 2). For  the actual 
sodium ground state hyperfine splitting of  ~- 1.1 Doppler widths at these temperatures, we can see 
that the Post result lies between approximations A and B. 

It can be seen in Fig. 1 that the results of  Ref. 1 display the n -  m density dependence predicted 
by theory over most of  their range. The absolute escape factors agree well with the Holstein theory 
ignoring hyperfine structure (curve A). The data of  Ref. 3 are more closely described by curve B. 
Although part of  this discrepancy might be explained by the difference in geometry of  the two 
experiments, it is clear that an unaccounted discrepancy still remains between the absolute escape 
factors of  Refs. 1 and 3. At present, the origin of  this discrepancy between the results of the two 
experiments is not understood, and must be attributed to some unrealized systematic error in one 
of  the experiments. 

In conclusion, we do not believe that the upturn in the escape factor vs opacity data in the 
sodium atomic beam experiment of  Romberg a n d  Kunze is indicative of  a breakdown in 
the complete frequency redistribution approximation. This conclusion is based on the absence 
of  similar observations in the cell experiments of  Huennekens and Gallagher, 3 and on a theoretical 
discussion which indicates that such effects would manifest themselves at much higher densities, 
if at all. In particular, the data of  Huennekens and Gallagher show little, if any, indication of the 
effects of incomplete redistribution in this sodium case, although such effects have unambiguously 
been observed in mercury, t° Finally we note that under conditions where complete redistribution 
is not a good approximation, the recent theoretical treatments of  either Post 1° or Streater et al ~6 
can be used to accurately determine radiative escape factors. In addition, as an aid to those who 
wish to use the Post theory to calculate escape factors, we have provided a plot in Fig. 3 of  the 
escape function r/ appropriate to the infinite slab geometry. 
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