use large metal atom clusters which give a realistic treatment of molecular chemisorption.^{3(b),7,8}

4378 (1984); (b) 81, 1966 (1984). ⁴P. S. Bagus, C. J. Nelin, and C. W. Bauschlicher, J. Vac. Sci. Technol. A 2, 905 (1984).

³(a) P. S. Bagus, K. Hermann, and C. W. Bauschlicher, J. Chem. Phys. 80,

⁵J. P. Desclaux, At. Data Nucl. Data Tables 12, 311 (1973).

⁶H. F. Schaefer III, *The Electronic Structure of Atoms and Molecules* (Addison-Wesley, Reading, MA 1972).

⁷P. S. Bagus and W. Müller, Chem. Phys. Lett. 115, 540 (1985).

⁸P. S. Bagus, K. Hermann, Ph. Avouris, and K. Prince, Chem. Phys. Lett (in press).

¹P. S. Bagus, C. W. Bauschlicher, C. J. Nelin, B. C. Laskowski, and M. Seel, J. Chem. Phys. 81, 3594 (1984).
²G. Igel-Mann and H. Stoll, J. Chem. Phys. 83, 913 (1985).

ERRATA

Erratum: Observation of the lowest triplet transitions ${}^{3}\Sigma_{g}^{+} - {}^{3}\Sigma_{u}^{+}$ in Na₂ and K₂ [J. Chem. Phys. 80, 4794 (1984)]

J. Huennekens, S. Schaefer, M. Ligare, and W. Happer Department of Physics, Princeton University, Princeton, New Jersey 08544

The factor 3hc was inadvertently deleted from the denominator of the right-hand side of Eq. (1). The correct expression is

$$k_{\nu}(T) = \frac{4\pi^4 \nu D^2 g^* n^2 [R(\nu)]^2}{3hc |d\nu/dR|} e^{-\nu/kT}.$$
 (1)

The calculations described in the paper were carried out using this correct expression so that the results shown in the figures are valid.

Erratum: The NMR isotope shift in polyatomic molecules. Estimation of the dynamic factors [J. Chem. Phys. 81, 4300 (1984)]

Cynthia J. Jameson and H. Jörg Osten Department of Chemistry, The University of Illinois at Chicago, Chicago, Illinois 60680

In Table I the first line should read ²H HD ^{2/1}H 0.0469 0.2814 - 0.2814. In Table II the first line should read ²H HD ^{2/1}H 0.0469 0.7413 21.37 - 11.5 and for ¹⁹F in HF the theoretical derivative should read - 441 (Ditchfield's value)¹ instead of - 411 (Stevens and Lipscomb's value).² The error arose in attributing the - 0.0469 ppm isotope shift to ¹H in the H₂-HD system rather than to ²H in the HD-D₂ system. With the above correction, our estimate of $(2\sigma^D/\partial\Delta r_{HD})_e = -11.5$ ppm Å⁻¹ comes closer to the more accurate value calculated by Raynes and Panteli (-12.5 ppm Å⁻¹)³ which included the term in the second derivative $(\partial^2 \sigma/\partial\Delta r^2)_e$ in the interpretation of the isotope shift measured by Beckett and Carr.⁴ It is worth noting that if we use $(\partial\sigma^D/\partial\Delta r_{HD})_e = -11.5$ ppm $= (\partial\sigma^H/\partial\Delta r_{HH})_e$ to calculate the ¹H isotope shift in the H₂-HD system using $(\partial \sigma^{\rm H}/\partial \Delta r_{\rm HH})_e [\langle r_{\rm HH} \rangle - \langle r_{\rm HD} \rangle]$, we get -0.038 ppm which is completely consistent with the value -0.036 ± 0.002 ppm reported by Evans⁵ for H₂ and HD dissolved in organic solvents. The difference between Beckett and Carr's -0.0469 ± 0.0005 ppm and the earlier value of -0.036 ± 0.002 ppm is not due to the lower accuracy of the latter experiment, or the intermolecular effects of the organic solvent. It is a real difference which is to be expected from the different dynamic factors involved in the two sets of isotopomers.

¹R. Ditchfield, Chem. Phys. 63, 185 (1981).

- ²R. M. Stevens and W. N. Lipscomb, J. Chem. Phys. 41, 184 (1964).
- ³W. T. Raynes and N. Panteli, Mol. Phys. 48, 439 (1983).
- ⁴J. R. Beckett and H. Y. Carr, Phys. Rev. A 24, 144 (1981).
- ⁵D. F. Evans, Chem. Ind. (London) 1961, 1960.