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LIMIT THEORY FOR POINT PROCESSES IN MANIFOLDS

BY MATHEW D. PENROSE1 AND J. E. YUKICH2

University of Bath and Lehigh University

Let Yi, i ≥ 1, be i.i.d. random variables having values in an m-
dimensional manifold M ⊂ R

d and consider sums
∑n

i=1 ξ(n1/mYi,

{n1/mYj }nj=1), where ξ is a real valued function defined on pairs (y, Y),

with y ∈ R
d and Y ⊂ R

d locally finite. Subject to ξ satisfying a weak spatial
dependence and continuity condition, we show that such sums satisfy weak
laws of large numbers, variance asymptotics and central limit theorems. We
show that the limit behavior is controlled by the value of ξ on homogeneous
Poisson point processes on m-dimensional hyperplanes tangent to M. We
apply the general results to establish the limit theory of dimension and vol-
ume content estimators, Rényi and Shannon entropy estimators and clique
counts in the Vietoris–Rips complex on {Yi}ni=1.

1. Introduction. There has been recent interest in the statistical, topological
and geometric properties of high-dimensional nonlinear data sets. Typically the
data sets may be modeled as realizations of i.i.d. random variables {Yi}ni=1 having
support on an unknown nonlinear manifold M embedded in R

d . Given a sample
{Yi}ni=1, whose pairwise distances are given, but whose coordinate representation
is not, can one determine geometric characteristics of the manifold, including its
intrinsic dimension and volume content? Can one recover global properties of the
distribution of {Yi}ni=1 such as its intrinsic entropy? These properties, as well as
graph theoretic functionals such as clique counts in the Vietoris–Rips complex
may be studied via the statistics of the form

n∑
i=1

ξ
(
Yi, {Yj }nj=1

)
,(1.1)

where ξ(·, ·) is a real-valued measurable function defined on pairs (y, Y), where
y ∈ Y and Y ⊂ R

d is locally finite, with ξ(y, Y) locally determined in some sense.
Our goal is to establish the dependency between the large-n behavior of the

statistics (1.1), the underlying point density κ of the {Yi}ni=1 and the manifold M.

Received April 2011; revised April 2012.
1Supported in part by the Alexander von Humboldt Foundation through a Friedrich Wilhelm Bessel

Research Award.
2Supported in part by NSF Grant DMS-08-05570.
MSC2010 subject classifications. Primary 60F05; secondary 60D05.
Key words and phrases. Manifolds, dimension estimators, entropy estimators, Vietoris–Rips

complex, clique counts.

2161

http://www.imstat.org/aap/
http://dx.doi.org/10.1214/12-AAP897
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


2162 M. D. PENROSE AND J. E. YUKICH

For M = R
d there is a large literature describing limit theorems for (1.1) [5, 35,

36, 38, 39, 45] whereas when M �= R
d , there is a relative dearth of results, al-

though spatial data generated by a curved surface embedded in three dimensional
space are arguably more natural than those involving data generated by flat sur-
faces. This paper partly redresses this situation under reasonably general condi-
tions on κ and M.

In Section 2 we present laws of large numbers and central limit theorems for
(i) the Levina–Bickel dimension estimator for data {Yi}ni=1 supported on a mani-
fold, (ii) Rényi and Shannon entropy estimators for {Yi}ni=1, (iii) volume estima-
tors for the support of {Yi}ni=1 and (iv) the order k clique count in the Vietoris–Rips
complex on {Yi}ni=1. The asymptotic normality results for dimension and entropy
estimators appear to be new even in the setting of linear manifolds. The mean and
variance asymptotics for the Levina–Bickel dimension estimator depend only on
the dimension of M and are invariant with respect to κ , whereas for most of the
other functionals considered here, the mean and variance asymptotics explicitly
depend on κ via the integral

∫
M(κ(y))p dy for some p ∈ R.

We shall derive these results from general theorems governing the limit the-
ory of

∑n
i=1 ξ(n1/mYi, {n1/mYj }nj=1), where m is the intrinsic dimension of M,

n1/m is a dilation factor and ξ belongs to a general class of translation invari-
ant functionals that are determined by the locations of either the k nearest neigh-
bors of y for some fixed k ∈ N, or the points of Y within some fixed distance
of y. For ξ locally determined in this way, then since the manifolds are them-
selves local, one might expect as the number of sample points increases, that
the local contribution of each ξ at y ∈ M converges in distribution to its lin-
earized version on the tangent space to y. In other words, for locally deter-
mined and translation invariant ξ , one might expect that the large n behavior of
ξ(n1/my, {n1/mYj }nj=1) = ξ(0, {n1/m(Yj − y)}nj=1) is controlled by the behavior
of ξ(0, Hκ(y)), with Hκ(y) a homogeneous Poisson point process of intensity κ(y)

on a tangent hyperplane of Euclidean dimension m (here and elsewhere 0 denotes
a point at the origin of R

k). Subject to moment conditions on ξ , this is indeed the
case, as shown by the general results of Section 3. The locally defined behavior
of ξ , quantified in terms of dependency graphs involving radii of stabilization of ξ ,
yields central limit theorems via Stein’s method.

In fact, our methods should work in still greater generality. Most of the exam-
ples considered in [5, 35, 36, 38, 39, 45] have ξ stabilizing, that is, they are locally
determined in some sense, and it should be possible to adapt our methods to most
of these examples. For example, we anticipate that our methods can be extended to
establish the limit theory for the total edge length and other stabilizing functionals
of the Delaunay and Voronoi graphs on random point sets in manifolds. We also
expect that our methods extend to give the limit theory of statistics of germ-grain
models, coverage processes and random sequential adsorption models generated
by data on manifolds. Moreover, we anticipate that the theory presented here can
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be modified to establish limit theorems for generalized spacing statistics based on
k nearest neighbor distances for random points in a manifold, including estimators
of relative entropy such as those considered in [3], although these involve consid-
eration of nontranslation invariant ξ so they do not automatically fall within the
scope of this paper.

In many examples the functional ξ(y, Y) is determined by inter-point distances
in the vicinity of y. For M an arbitrary Riemannian manifold, it may be possible
to derive similar limit results for such ξ using the geodesic distance rather than
the extrinsic distance in R

d (by the Nash embedding theorem, such M can always
be embedded into some R

d ). However, this lies beyond the scope of the present
paper.

2. Stochastic functionals on manifolds.

2.1. Terminology and definitions. For k ∈ N, let ‖ · ‖ be the Euclidean norm
in R

k . Recall that 0 denotes a point at the origin of R
k . For r ∈ (0,∞) and z ∈ R

k ,
let Br(z) := {y ∈ R

k :‖y−z‖ ≤ r}. Given F ⊂ R
k , and y ∈ R

k , a > 0, set y+F :=
{y + z : z ∈ F } and aF := {az : z ∈ F }. If F is locally finite, let card(F ) denote the
cardinality (number of elements) of F . If also y ∈ R

k and j ∈ Z
+ := {0,1,2, . . .},

then let Nj(y,F ) be the Euclidean distance between y and its j th nearest neighbor
in F \ {y}, that is,

Nj(y,F ) := inf
{
r ≥ 0 : card

(
F ∩ Br(y) \ {y})≥ j

}
(2.1)

with the infimum of the empty set taken to be +∞. In particular, N0(y,F ) = 0. Let
� be the distribution function for the standard normal random variable N (0,1),

and let
P−→ denote convergence in probability. For σ > 0, let N (0, σ 2) denote the

random variable σ N (0,1).
Let m ∈ N and d ∈ N with m ≤ d . A nonempty subset M of R

d , endowed
with the subset topology, is called an m-dimensional C1 submanifold of R

d if for
each y ∈ M there exists an open subset U of R

m and a continuously differentiable
injection g from U to R

d , such that (i) y ∈ g(U) ⊆ M, and (ii) g is an open map
from U to M, and (iii) the linear map g′(u) has full rank for all u ∈ U ; see, for
example, Theorem 2.1.2(v) of [7]. The pair (U,g) is called a chart. Let M :=
M(m,d) denote the class of all m-dimensional C1 submanifolds of R

d which are
also closed subsets of R

d .
Given M ∈ M, using a routine compactness argument we can choose an index

set I ⊂ N, and a set {(yi, δi,Ui, gi), i ∈ I} of ordered quadruples with yi ∈ M,
δi ∈ (0,∞) and (Ui, gi) a chart for each i, such that (i) M ∩ B3δi

(yi) ⊂ gyi
(Ui)

for each i, and (ii) M ⊂⋃i∈I Bδi
(yi).

We refer to ((Ui, gi), i ∈ I) as an atlas for M. Given such an atlas, we can find
a partition of unity {ψi} subordinate to the atlas, that is, a collection of functions
(ψi, i ∈ I) from M to [0,1], such that

∑
i∈I ψi(y) = 1 for all y ∈ M, and such
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that for each i, ψi(y) = 0 for y /∈ gi(Ui), and ψi ◦ gi is a measurable function
on Ui . The more common definition of a partition of unity has some extra differ-
entiability conditions on ψi but these are not needed here. With our more relaxed
definition, the existence of a partition of unity is completely elementary to prove.

Given i ∈ I and x ∈ Ui , let Dgi
(x) :=

√
det(Jgi

(x))T (Jgi
(x)), with Jgi

stand-
ing for the Jacobian of gi . For bounded measurable h : M → R, the integral∫

M h(y) dy is defined by∫
M

h(y) dy =∑
i∈I

∫
Ui

h
(
gi(x)
)
ψi

(
gi(x)
)
Dgi

(x) dx,(2.2)

which is well-defined in the sense that it does not depend on the choice of atlas or
the partition of unity. Equation (2.2) is discussed further at (5.18) below.

Given any manifold M ∈ M and nonempty K ⊂ M, the relative interior of K
consists of all those y ∈ K such that y has a neighborhood in M that is contained
in K. The boundary of K is the set of all other y ∈ K (possibly empty). Also, we
set diam(K) := sup{‖x − y‖ :x, y ∈ K} (possibly infinite). We say K is locally
conic if 0 < diam(K) < ∞ and

inf
{
r−m
∫
Br(w)∩K

dy : r ∈ (0,diam(K)
]
,w ∈ K

}
> 0.(2.3)

We say K is an m-dimensional C1 submanifold-with-boundary of M if for all y

in the boundary of K, there exists a choice of chart (U,g) for M such that 0 ∈ U ,
and g(0) = y, and g([0,∞) × R

m−1) = g(U) ∩ K. This includes the possibility
that K has empty boundary. If K is a compact m-dimensional C1 submanifold-
with-boundary of M then it is locally conic; see Remark 4.1.

Given M ∈ M, a probability density function on M is a nonnegative scalar
field κ on M satisfying

∫
M κ(y) dy = 1. Let P(M) denote the class of probability

density functions on M. Given κ ∈ P(M), let K(κ) denote the support of κ , that
is, the smallest closed set K ⊂ M such that

∫
K κ(y) dy = 1. Given also ρ ∈ R,

define the integral

Iρ(κ) :=
∫

K(κ)

(
κ(y)
)ρ

dy :=
∫

M

(
κ(y)
)ρ1
{

K(κ)
}
(y) dy.(2.4)

Let Pb(M) denote the class of bounded probability density functions κ ∈
P(M), such that K(κ) is compact. Let Pc(M) denote those probability density
functions κ ∈ Pb(M) whose support K(κ) is locally conic and which are bounded
away from zero and infinity on their support. The motivation for considering these
classes of probability densities appears in Remark 3 following Theorem 3.2.

Suppose M ∈ M and κ ∈ P(M) are given. Let Y1, Y2, . . . be i.i.d. random vari-
ables with probability density function κ with respect to the Riemannian volume
element dy. Define the binomial point process Yn := {Yi}ni=1. Let Pλ denote the
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Poisson point process on M (and also the associated counting measure) having
intensity density λκ(·), that is,

EPλ(dy) = λκ(y) dy.(2.5)

Recall that ξ(·, ·) denotes a measurable function defined on pairs (y, Y), where
y ∈ Y ⊂ R

d and Y is locally finite. When y /∈ Y , we write ξ(y, Y) instead of
ξ(y, Y ∪ {y}); also, we sometimes write Y y for Y ∪ {y}.

Let H denote a homogeneous Poisson process of unit intensity in R
m with R

m

embedded in R
d (since m ≤ d) so that the random variable ξ(0, H) is well defined.

In keeping with notation from [5, 35], for all such functionals ξ we set

V ξ := Eξ(0, H)2 +
∫

Rm

{
Eξ
(
0, Hu)ξ (u, H0)− (Eξ(0, H)

)2}
du(2.6)

and

δξ := Eξ(0, H) +
∫

Rm
E
[
ξ
(
0, Hu)− ξ(0, H)

]
du,(2.7)

whenever these integrals are defined.

2.2. Estimators of intrinsic dimension, manifold learning. Given data embed-
ded in a high-dimensional vector space, a natural problem in manifold learning,
signal processing and statistics is to discover the low-dimensional structure of the
data, namely the intrinsic dimension of the hypersurface containing the data. Lev-
ina and Bickel [30] propose a dimension estimator making use of nearest neighbor
statistics. Their estimator, which uses distances between a given sample point and
its k nearest neighbors, estimates the dimension of random variables lying on a
manifold M of unknown dimension m embedded in R

d, d ≥ m. Specifically, for
all k = 3,4, . . . , the Levina and Bickel estimator of the dimension of a finite data
cloud Y ⊂ M ∈ M, is given by

m̂k := m̂k(Y) := (card(Y)
)−1∑

y∈Y
ζk(y, Y),(2.8)

where for all y ∈ Y we have

ζk(y, Y) :=

⎧⎪⎪⎨
⎪⎪⎩

(k − 2)

(
k−1∑
j=1

log
Nk(y)

Nj (y)

)−1

, if card(Y) ≥ k + 1,

0, otherwise,

(2.9)

where Nj(y) := Nj(y, Y), as given by (2.1). For all ρ > 0, we also define

ζk,ρ(y, Y) := ζk(y, Y)1
{
Nk(y) ≤ ρ

}
,(2.10)

using the convention 0 × ∞ = 0 if necessary, and we put

m̂k,ρ := m̂k,ρ(Y) := (card(Y)
)−1∑

y∈Y
ζk,ρ(y, Y).(2.11)
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Given Yn := {Yi}ni=1 as in Section 2.1, Levina and Bickel [30] argue that m̂k(Yn)

estimates the intrinsic dimension of M. Our purpose here is to substantiate this
claim and to provide further distributional results. The following shows (i) con-
sistency of the dimension estimator m̂k over Poisson and binomial samples, and
(ii) a central limit theorem for m̂k,ρ(Yn), ρ fixed and small, addressing a question
raised by Peter Bickel. Here δζk is given by taking ξ ≡ ζk in (2.6) and (2.7).

THEOREM 2.1. Let M ∈ M(m,d) and let κ ∈ Pc(M). For all k ≥ 3 and
ρ > 0, we have

lim
n→∞ 1

{
m̂k,ρ(Yn) �= m̂k(Yn)

}= 0 a.s.,(2.12)

and if k ≥ 4, then

m̂k(Yn)
P−→ m as n → ∞,(2.13)

while if k ≥ 11, then (2.13) holds a.s. If κ is a.e. continuous, then there exists
ρ1 > 0 such that if ρ ∈ (0, ρ1) and k ≥ 7, then

lim
n→∞nVar

[
m̂k,ρ(Yn)

]= σ 2(ζk) := m2

k − 3
− (δζk

)2
> 0,(2.14)

and also we have as n → ∞ that

n1/2(m̂k,ρ(Yn) − Em̂k,ρ(Yn)
) D−→ N

(
0, σ 2(ζk)

)
.(2.15)

REMARKS. (i) (Counterexamples.) Without further conditions on M ∈ M, in
general m̂k (as opposed to m̂k,ρ) might not satisfy the variance asymptotics (2.14)
or the central limit theorem (2.15). To see this, suppose m = 1 and d = 3, and
suppose M is a compact 1-manifold which includes a segment S on the z-axis,
say from z = 0 to z = 1, as well as an arc of the unit circle in the (x, y) plane. If
Yi are i.i.d. with the uniform measure on M, then there is a positive probability
that Y1 ∈ S and that its k nearest neighbors are all on the arc. In this case the
Nj(Y1, Yn), j = 1, . . . , k − 1, all coincide and none of the moments of m̂k(Yn)

exist.
For a more general counterexample along similar lines, fix m and put d = 2(m + 1).

Let S be the set of unit vectors in R
d and let S1 be those x ∈ S such that the first

m + 1 coordinates are zero and let S2 be those x ∈ S such that the last m + 1
coordinates are zero. Then M := S1 ∪ S2 is an m-dimensional manifold in M. If
Yi are i.i.d. with the uniform volume measure on M, then there is a positive prob-
ability that Y1 ∈ S1 and that its k nearest neighbors all belong to S2. In this case
Nj(Y1, Yn) = 2 for all j = 1, . . . , k − 1, showing that ζk(Y1, Yn) is infinite with
positive probability, and therefore none of the moments of m̂k(Yn) exist.

(ii) (On the constant ρ1.) The constant ρ1, loosely speaking, reflects the max-
imum amount of curvature of the manifold M. The larger this is, the smaller ρ1
has to be taken. See Lemma 4.3 below.
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(iii) (Relation to previous work.) Levina and Bickel (Section 3.1 of [9]) argue
on heuristic grounds that Var[m̂k(Yn)] = O(n−1) whenever the Yi are the image
under a sufficiently smooth map g of random variables having a smooth density,
but the last counterexample shows that this bound is not true in general.

Chatterjee [13] provides a rate of normal approximation for m̂k(Yn) for all k > 9
whenever M is a “nice” manifold and under minimal assumptions on the distribu-
tion of Yi . His rates are with respect to the Kantorovich–Wasserstein distance and
are of order n(9−k)/(2k−2), subject to the validity of Var[m̂k(Yn)] = �(n−1).

Bickel and Yan (Theorems 1 and 3 of Section 4 of [10]) establish a central limit
theorem for m̂k(Yn) for M = R

d . The methods of Bickel and Breiman [9] or [5,
35, 38] could be used to establish the asymptotic normality of m̂k(Yn) if the Yi

had a density with respect to Lebesgue measure on R
d . These methods do not

appear applicable in the present situation. Under strong assumptions on M, Yu-
kich [46] outlines an approach giving a rate of normal approximation for m̂k(Pλ),
but does not provide consistency results or variance asymptotics for either m̂k(Pλ)

or m̂k(Yn).
(iv) (Limits are dimension dependent only.) The mean and variance asymp-

totics (2.13) and (2.14) are invariant with respect to κ and depend only on dim(M),
and (in the case of variance) the parameter k. These results appear to be new even
for M = R

d .
(v) (Variance asymptotics.) For Poisson samples, a similar result to Theo-

rem 2.1 holds (see Theorem 3.3 below) but with the limiting variance σ 2(ζk) mod-
ified to simply m2/(k −3). Thus at least for Poisson samples, the limiting variance
of the dimension estimator ζk decreases with increasing k.

2.3. Estimators of intrinsic entropy and volume content. Rényi entropies. Let
Y1 be as in Section 2.1. Given ρ > 0 with ρ �= 1, the Rényi ρ-entropy [42] of Y1,
denoted H ∗

ρ (κ), and the closely related Tsallis entropy (or Havrda and Charvát
entropy [23]), denoted Hρ(κ), are given, respectively, by

H ∗
ρ (κ) := (1 − ρ)−1 log Iρ(κ); Hρ(κ) := (ρ − 1)−1(1 − Iρ(κ)

)
,

where Iρ(κ) := ∫K(κ)(κ(y))ρ dy is at (2.4). When ρ tends to 1, H ∗
ρ (κ) and Hρ(κ)

tend to the Shannon differential entropy

H1(κ) := −
∫

M
κ(y) log

(
κ(y)
)
dy.(2.16)

Rényi and Tsallis entropies are used in the study of nonlinear Fokker–Planck equa-
tions, fractal random walks, parameter estimation in semi-parametric modeling,
and data compression; see [16] and the introduction of [29] for details and ref-
erences. The gradient limρ→1(dH ∗/dρ) equals (−1/2)Var[logκ(Y1)], a measure
of the shape of the distribution [29, 43] which also appears in the statement of
Theorem 2.4 below.
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A problem of interest is to estimate the Rényi and Tsallis entropies given only
the sample {Yi}ni=1 and their pairwise distances. Here we show consistency results,
variance asymptotics and central limit theorems for nonparametric estimators of
Iρ(κ). The authors of the papers [16, 24, 29, 41, 44] consider estimators of Iρ(κ)

in terms of the k nearest-neighbor graph; here we restrict to k = 1, but this is
for presentational purposes only. The approach taken here also yields consistent
estimators of volume content.

Recall that N1(y, Y) is the distance between y and its nearest neighbor in Y .
For all α ∈ (−∞,∞) and finite Y ⊂ R

d put

Rα(Y) :=∑
y∈Y

N1(y, Y)α.

For r ∈ (0,∞), define the critical moment rc(κ) ∈ [0,∞] by

rc(κ) := sup
{
r ≥ 0 : E‖Y1‖r < ∞}.(2.17)

The next result spells out conditions under which n−1Rα(n1/mYn) consistently
estimates a scalar multiple of I1−α/m(κ) in the Lq sense. Let ωm := πm/2[�(1 +
m/2)]−1 be the volume of the unit radius m-dimensional ball.

THEOREM 2.2. If κ ∈ Pc(M) and α ∈ (0,∞), then

n−1Rα(n1/mYn

)→ ω−α/m
m �

(
1 + α

m

)
I1−α/m(κ) as n → ∞(2.18)

with both L2 and a.s. convergence. If instead κ ∈ P(M) is bounded, and α ∈
(−m/q,0) for q = 1 or q = 2, then (2.18) holds with Lq convergence.

Putting m = α, we obtain consistent estimators of I0(κ), that is, the m-
dimensional content of the support of κ .

COROLLARY 2.1. If κ ∈ Pc(M), then ωmRm(Yn) → I0(κ) as n → ∞, with
both L2 and a.s. convergence.

We now state variance asymptotics and a central limit theorem for Rα(n1/mYn).
Define V Nα

1 and δNα
1 by taking ξ ≡ Nα

1 in (2.6) and (2.7).

THEOREM 2.3. Suppose κ ∈ Pc(M) is a.e. continuous, and α ∈ (−m/2,0) ∪
(0,∞). Then

lim
n→∞n−1 Var

[
Rα(n1/mYn

)] = σ 2(Nα
1 , κ
)

(2.19)
:= V Nα

1 I1−2α/m(κ) − (δNα
1 I1−α/m(κ)

)2
and, as n → ∞

n−1/2(Rα(n1/mYn

)− ERα(n1/mYn

)) D−→ N
(
0, σ 2(Nα

1 , κ
))

.(2.20)
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Also, σ 2(Nα
1 , κ) > 0 and

δNα
1 = (1 − α/m)ω−α/m

m �

(
1 + α

m

)
.(2.21)

REMARKS. (i) [Comparison of (2.18). with previous work.] Limit (2.18) ex-
tends the law of large numbers limit theory for entropy estimators developed by
Costa and Hero on manifolds [16], who restrict to α ∈ (0,m) and to compact mani-
folds. They extend the consistency results of Leonenko et al. (Theorem 3.2 of [29]),
Theorem 2.1 of Wade [44], Theorems 2.1–2.3 of [41] and Theorem 2.4 of [39], all
of which restrict to M = R

m. In [41] it is shown that if M = R
m, then (2.18)

holds whenever α ∈ (0,m/q), I1−α/m(κ) < ∞ and rc(κ) > qαm/(m − qα).
For M = R

m and κ supported by an m-dimensional submanifold-with-boundary
of M, under a Lipschitz assumption on κ (along with an assumption on its gradi-
ent), Liitiäinen et al. [31] develop a closed form expansion for the moments of Rα ,
α > 0.

(ii) [Comparison of (2.19) and (2.20) with previous work.] Existing central
limit theorems and variance asymptotics for the entropy estimators Rα and the
volume content estimator ωmRm (e.g., Theorem 6.1 of [38]) assume that M =
R

m and α > 0. Theorem 2.3 allows us to relax both assumptions. Subject to
Var[Rα(n1/mYn)] = �(n), [13] yields a rate of convergence in (2.20) with re-
spect to the Kantorovich–Wasserstein distance under minimal assumptions on the
distribution of the Yi .

Shannon entropy. The Shannon entropy H1(κ) defined at (2.16) is an infor-
mation theoretic measure of how the data {Yi}ni=1 is “spread out;” low entropy
implies that the data is confined to a small volume whereas high entropy indicates
the data is widely dispersed. Accurate estimation of differential entropy is widely
used in pattern recognition, source coding, quantization, parameter estimation, and
goodness-of-fit tests; cf. the survey [6].

Shannon differential entropy is commonly estimated by first estimating the den-
sity κ and then evaluating H1(κ0) where κ0 is the estimated density; such methods
involve technical complications involving bin-width selection for histogram meth-
ods and window width for kernel methods and are usually restricted to M = R

d .
We bypass these technical issues and use only inter-point data distances to estimate
entropy; the methods are thus applicable to general nonlinear manifolds. This ex-
tends [28, 29], which restricts to M = R

d , and it lends rigor to the arguments
in [32, 33].

As in [28, 29], we shall consider estimators of H1(κ) in terms of nearest neigh-
bor distances. Put ψ(y, Y) := log(eγ ωmNm

1 (y, Y)) where γ := 0.57721 . . . is Eu-
ler’s constant; see, for example, [22].

For finite Y put S(Y) :=∑y∈Y ψ(y, Y). Define V ψ by taking ξ ≡ ψ in (2.6).
The next result provides the limit theory for the Shannon entropy estimators
S(n1/mYn).
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THEOREM 2.4. Suppose κ ∈ P(M) and that either (i) κ ∈ Pb(M) or
(ii) M = R

m and rc(κ) > 0. Then as n → ∞,

n−1S
(
n1/mYn

)→ H1(κ) in L2.(2.22)

If κ ∈ Pc(M) is a.e. continuous, then

lim
n→∞n−1 Var

[
S
(
n1/mYn

)] = σ 2(ψ, κ)

(2.23)
:= V ψ − m−2 + Var

[
logκ(Y1)

]
> 0

and

n−1/2(S(n1/mYn

)− ES
(
n1/mYn

)) D−→ N
(
0, σ 2(ψ, κ)

)
.(2.24)

REMARKS. The papers [28, 29] show that n−1S(n1/mYn) consistently esti-
mates Shannon entropy when M = R

m, but they do not treat variance asymptotics,
distributional results or general manifolds. Theorem 2.4 redresses this. Subject to
Var[S(n1/mYn)] = �(n), [13] yields (2.24) under minimal assumptions on the dis-
tribution of the Yi .

2.4. Vietoris–Rips clique counts. Let Y ⊂ R
d be locally finite, and let β ∈

(0,∞) be a scale parameter. The Vietoris–Rips complex Rβ(Y), also called the
Vietoris complex or Rips complex, is the simplicial complex whose k-simplices
correspond to unordered (k + 1) tuples of points of Y which are pairwise within
Euclidean distance β of each other. Thus, if there is a subset S of Y of size k + 1
with all points of S distant at most β from each other, then S is a k-simplex in the
complex. The Vietoris–Rips complex has received attention in connection with the
statistical analysis of high-dimensional data sets [14], manifold reconstruction [15]
and gaps in communication coverage and sensor networks [19, 20], because of its
close relation to the Čech complex of a set of balls (which contains a simplex for
every finite subset of balls with nonempty intersection). It has also received atten-
tion amongst topologists [12], who, given a data cloud Y , allow the scale param-
eter β to vary to obtain homological signatures of the Vietoris–Rips complexes,
which when taken together, yield clustering and connectivity information about Y .
The limit theory for the kth Betti number of Vietoris–Rips complexes generated by
random points in R

d is given in [25, 26]. The general methods of this paper may
be useful in extending these results to the setting of manifolds.

Given Y, β and k, let C(β)
k (Y) be the number of k-simplices (i.e., cliques of

order k + 1) in Rβ(Y). For example,

C(β)
1 (Yn) = ∑

1≤i<j≤n

1
{‖Yi − Yj‖ < β

}
,

which is the empirical version of the so-called correlation integral∫ ∫
1
{
(x, y) :‖x − y‖ < β

}
κ(x)κ(y) dx dy.
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The quantity n−1C(β)
1 (Yn), with Yn := {Yi}ni=1 and with Yi having unknown

distribution μ, is the widely used sample correlation integral of Grassberger and
Procaccia [21]. Grassberger and Procaccia use least squares linear regression of
logn−1C(β)

1 (Yn) versus logβ to estimate the “correlation dimension” of μ, that is,
the exponent when the correlation integral is assumed to follow a power law as
β ↓ 0. The quantity n−1C(β)

1 (Yn) also features in estimators of the K function, as
discussed in, for example, Chapter 8.2.6 of Cressie [17].

The next result provides a law of large numbers and central limit theorem
for the clique count n−1C(β)

k (Yn) for any k ∈ N. Define hk : (Rm)k+1 → R by
hk(x1, . . . , xk+1) := ∏1≤i<j≤k+1 1{‖xi − xj‖ ≤ 1}, that is, the indicator of the
event that x1, . . . , xk+1 are all within unit distance of each other. Given β ∈ (0,∞),
put

Jk,j :=
∫

Rm
· · ·
∫

Rm

(
h(0, x1, . . . , xk)h(0, x1, . . . , xj−1, xk+1, . . . , x2k+1−j )

j !(k + 1 − j)!2
)

(2.25)
dx1 · · · dx2k+1−j ,

so in particular Jk,k+1 := ∫ · · · ∫ h(0, x1, . . . , xk) dx1 · · · dxk/(k + 1)!. Set

σ 2
k := σ 2

k (β, κ)
(2.26)

:=
(

k+1∑
j=1

Jk,jβ
m(2k+1−j)I2k+2−j (κ)

)
− ((k + 1)βmkJk,k+1Ik(κ)

)2
.

THEOREM 2.5. Let κ be bounded on M ∈ M. For all k = 1,2, . . . and all
β ∈ (0,∞) we have

lim
n→∞n−1C(β)

k

(
n1/mYn

)= βmkJk,k+1Ik+1(κ) in L2 and a.s.(2.27)

If κ is a.e. continuous and if κ ∈ Pb(M), then

lim
n→∞n−1 Var

[
C(β)

k

(
n1/mYn

)]= σ 2
k (β, κ) > 0,(2.28)

and as n → ∞,

n−1/2(C(β)
k

(
n1/mYn

)− EC(β)
k

(
n1/mYn

)) D−→ N
(
0, σ 2

k (β, κ)
)
.(2.29)

REMARK (Related work). Bhattacharya and Ghosh [8] used the limit theory
of U -statistics to obtain a central limit theorem similar to (2.29) for Poisson input,
in the case where M = R

m and κ is uniform on the unit cube. The limit (2.27)
extends the results in Penrose [34] (Proposition 3.1, Theorem 3.17) to nonlinear
manifolds whereas (2.28) and (2.29) extend Theorem 3.13 of [34] to nonlinear
manifolds.
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3. General limit theorems. As in Section 2.1, ξ(y, Y) is a real-valued func-
tional defined on locally finite Y ⊂ R

d and y ∈ Y , and Yi, i ≥ 1 are i.i.d. with den-
sity κ . We shall say that ξ is translation invariant if ξ(y, Y) = ξ(z + y, z + Y)

for all z ∈ R
d and all (y, Y). We say ξ is rotation invariant if ξ(0, Y) is

invariant under rotations of Y , for all Y . That is, we say ξ is rotation in-
variant if ξ(0, Y) = ξ(0,AY) for all orthogonal m × m matrices A, where
AY := {Az :∈ Y}. In this section we provide a general limit theory for the sums∑n

i=1 ξ(n1/mYi, {n1/mYi}ni=1), namely Theorems 3.1, 3.2 and 3.3. We shall use
these general results to prove the results in Sections 2.2–2.4.

We introduce a scaled version of ξ , dilating the pair (y, Y) by the factor λ1/m;
this scaling is natural when Y ⊂ M has cardinality approximately λ, and M is an
m-dimensional manifold in R

d . Thus, given k ∈ N, for λ,ρ ∈ (0,∞) set

ξλ,k,ρ(y, Y) := ξ
(
λ1/my,λ1/mY

)
1
{
Nk(y, Y) < ρ

};(3.1)

ξλ(y, Y) := ξλ,k,∞(y, Y) := ξ
(
λ1/my,λ1/mY

)
.(3.2)

Here we are allowing for a finite macroscopic cutoff parameter ρ because for some
manifolds ξn(y, Yn) may suffer from nonlocal effects even when n becomes large;
see the counterexamples in remark (i) of Section 2.2.

Given k ∈ Z
+ and r > 0, let �(k, r) be the class of translation and rotation

invariant functionals ξ such that (i) for all y, Y with card(Y \ {y}) ≥ k we have

ξ(y, Y) = ξ
(
y, Y ∩ Bmax(r,Nk(y,Y))(y)

)
and (ii) for all n, Lebesgue-almost every (y1, . . . , yn) ∈ (Rm)n (with R

m embedded
in R

d ) is at a continuity point of the mapping from (Rd)n → R given by

(y1, . . . , yn) �→ ξ
(
0, {y1, . . . , yn}).

For finite Y ⊂ M, and for k ∈ Z
+, λ ∈ (0,∞) and ρ ∈ (0,∞] define

H
ξ
λ,k,ρ(Y) :=∑

y∈Y
ξλ,k,ρ(y, Y); H

ξ
λ (Y) := Hλ,k,∞(Y).(3.3)

Recalling that Yn := {Yi}ni=1 and that Pλ is a Poisson point process on M of
intensity λκ(y) dy defined at (2.5), we now give a general law of large numbers
for scaled versions of the linear statistics (1.1) when ξ ∈ �(k, r). For i ∈ Z

+, let
Si be the collection of all subsets of K(κ) of cardinality at most i (including the
empty set). Consider the following moment conditions on ξ :

sup
n

E
∣∣ξn,k,ρ(Y1, Yn)

∣∣p < ∞,(3.4)

sup
n≥1,y∈K(κ),A∈S3

sup
(n/2)≤�≤(3n/2)

E
∣∣ξn,k,ρ(y, Y� ∪ A)

∣∣p < ∞(3.5)

[noting that (3.5) implies (3.4)], and

sup
λ≥1,y∈K(κ),A∈S1

E
∣∣ξλ,k,ρ(y, Pλ ∪ A)

∣∣p < ∞.(3.6)
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THEOREM 3.1 [Laws of large numbers for ξ ∈ �(k, r)]. Let M ∈ M, κ ∈
P(M), k ∈ Z

+ and ρ ∈ (0,∞], and put q = 1 or q = 2. Let ξ ∈ �(k, r), and
suppose there exists p > q such that (3.4) holds. Then as n → ∞ we have Lq

convergence

n−1H
ξ
n,k,ρ(Yn) →

∫
M

E
[
ξ(0, Hκ(y))

]
κ(y) dy.(3.7)

If also (3.5) holds for some p > 5, and also κ ∈ Pb(M) and moreover either k = 0
or κ ∈ Pc(M), then (3.7) holds a.s.

Given a > 0, let Ha denote a homogeneous Poisson process of intensity a in
R

m (embedded in R
d ). Extending the earlier definitions (2.6) and (2.7), we set

V ξ (a) := Eξ(0, Ha)
2 + a

∫
Rm

{
Eξ
(
0, Hu

a

)
ξ
(
u, H0

a

)− (Eξ(0, Ha)
)2}

du(3.8)

and

δξ (a) := Eξ(0, Ha) + a

∫
Rm

E
[
ξ
(
0, Hu

a

)− ξ(0, Ha)
]
du,(3.9)

so in particular V ξ (1) = V ξ and δξ (1) = δξ . For all κ ∈ P(M) and ξ , we define

σ 2(ξ, κ) :=
∫

M
V ξ (κ(y)

)
κ(y) dy −

(∫
M

δξ (κ(y)
)
κ(y) dy

)2

,(3.10)

provided that both integrals in (3.10) exist and are finite.

THEOREM 3.2 [Variance asymptotics and CLT for ξ ∈ �(k, r)]. Let M ∈ M

and let κ ∈ Pb(M) be a.e. continuous. Let k ∈ Z
+, r ≥ 0, and ρ ∈ (0,∞]. Assume

k = 0 or κ ∈ Pc(M). Let ξ ∈ �(k, r) and suppose that ξ satisfies (3.5) and (3.6)
for some p > 2. Then σ 2(ξ, κ) < ∞ and

lim
n→∞n−1 Var

[
H

ξ
n,k,ρ(Yn)

]= σ 2(ξ, κ)(3.11)

and as n → ∞,

n−1/2(Hξ
n,k,ρ(Yn) − EH

ξ
n,k,ρ(Yn)

) D−→ N
(
0, σ 2(ξ, κ)

)
.(3.12)

REMARKS. (i) (Related work.) Under a slightly different set of assumptions,
Chatterjee [13] provides estimates for the Kantorovich–Wasserstein distance be-
tween the distribution of H

ξ
n (Yn) and the normal, which imply a central limit the-

orem subject to the validity of Var[Hξ
n (Yn)] = �(n). Indeed, if in Theorem 3.2

we take ρ = ∞, r = 0 and p > 8, and if also σ 2(ξ, κ) > 0, then combining (3.11)
with Theorem 3.4 of [13] shows that the convergence (3.12) is at rate O(n4/p−1/2)

with respect to the Kantorovich–Wasserstein distance.
(ii) (Simplification of mean and variance asymptotics for homogeneous ξ .) The

limits (3.7) and (3.11) take a simpler form when there is some β ∈ R such that
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ξ is homogeneous of order β , meaning that for all a ∈ (0,∞) and all y ∈ Y ⊂
R

m, we have ξ(ay, aY) = aβξ(y, Y). In this case ξ(0, Ha)
D= ξ(0, a−1/mH) =

a−β/mξ(0, H), so (3.7) becomes

n−1Hξ
n (Yn) → I1−β/m(κ)Eξ(0, H)(3.13)

and similarly, by definitions (2.6), (2.7), we can show that (3.8) and (3.9) simplify
to V ξ (a) = a−2β/mV ξ and δξ (a) = a−β/mδξ . Hence, in this case (3.10) becomes

σ 2(ξ, κ) = V ξI1−2β/m(κ) − (δξ I1−β/m(κ)
)2

.(3.14)

If ξ is homogeneous of order 0, we say it is scale invariant.
(iii) (Assumptions on κ .) While some of the general results allow for κ ∈

Pb(M), it is often necessary to require κ ∈ Pc(M) in order to guarantee that
functionals ξ ∈ �(k, r) satisfy the spatial localization property termed exponential
stabilization, described in Section 6. Additionally, in Section 2, the requirement
κ ∈ Pc(M) is needed when verifying that the estimators of that section satisfy the
general results given in Theorems 3.1 and 3.2.

(iv) (Limit theory for random measures on manifolds.) Consider the point mea-
sures

μ
ξ
λ,k,ρ :=

n∑
i=1

ξn,k,ρ(Yi, Yn)δYi
,(3.15)

where δy denotes the unit point mass at y. As in [5, 35, 36], Theorem 3.1 admits
an extension to the random measures (3.15) as follows. Let B(M) be the space
of bounded, measurable, real-valued functions on M and for f ∈ B(M), and μ a
measure on M, let 〈f,μ〉 denote the integral of f with respect to μ. Put q = 1 or
q = 2. Let ξ ∈ �(k, r) and suppose that there is a p > q such that (3.4) and (3.6)
are satisfied. It can be shown that for all f ∈ B(M),

lim
n→∞n−1〈f,μ

ξ
n,k,ρ

〉= ∫
M

f (y)E
[
ξ(0, Hκ(y))

]
κ(y) dy in Lq.(3.16)

Similarly, if ξ ∈ �(k, r) satisfies the moment assumptions of Theorem 3.2, it
can be shown that n−1/2(〈f,μ

ξ
n,k,ρ〉 − E〈f,μ

ξ
n,k,ρ〉) converges in distribution to a

mean zero normal random variable with variance∫
M

f (y)2V ξ (κ(y)
)
κ(y) dy −

(∫
M

δξ (κ(y)
)
f (y)κ(y) dy

)2

.

We refer to [5, 35] for details.
(v) (Other functionals.) The approach also works for more general functionals

than ξ ∈ �(k, r). Along with the moment conditions already discussed, the key
properties ξ needs to satisfy are exponential stabilization and continuity, which
we discuss in the proof and which represent ξ being locally determined in some
sense; cf. the remark at the end of Section 6. Also, the approach works for marked
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point processes, where the points carry independent identically distributed marks.
We would expect other functionals to satisfy this, as has been considered for a
variety of functionals in the case M = R

m [5, 35]. Finally, the assumption that ξ

is rotation invariant could be relaxed; one would need to change definition (3.1) to

ξλ(y, Y) = ξ
(
y, y + λ1/m(−y + Y)

)
,

modify (3.1) similarly, and in (3.7)–(3.10) take Hκ(y) to be a homogeneous Poisson
process in the hyperplane tangent to −y + M at 0, and take the integrals in (3.8)
and (3.9) to be over this tangent hyperplane rather than over R

m.
(vi) (Noisy input.) It is arguably more realistic to consider input having a d-

dimensional noise component. Consider the situation where data Yi, i ≥ 1, is cor-
rupted with a noise component n−1/mZi , with Zi, i ≥ 1, being i.i.d. R

d -valued
random variables which are independent of Yi, i ≥ 1, and which are assumed rota-
tion invariant, for example, with i.i.d. mean zero normal components.

For all x ∈ R
d , let Zx denote a copy of Z1. For all u ∈ R

m,a ∈ (0,∞), put
Hu,Z

a := {x + Zx :x ∈ Ha ∪ {u}}, and put H Z
a := {x + Zx :x ∈ Ha}.

Then it can be shown that the law of large numbers (Theorem 3.1) takes the
form

lim
n→∞

n∑
i=1

ξn

(
Yi + n−1/mZi,

{
Yj + n−1/mZj

}n
j=1

)

=
∫

M
E
[
ξ
(
0 + Z0, H Z

κ(y)

)]
κ(y) dy.

Moreover, it can be shown that Theorem 3.2 still holds if in the statement of that
result we replace Yn by {Yj +n−1/mZj }nj=1 and replace definitions (3.8) and (3.9),
respectively, by

V ξ (a) := Eξ
(
0, H Z

a

)2
+ a

∫
Rm

{
Eξ
(
0 + Z0, Hu,Z

a

)
ξ
(
u + Zu, H0,Z

a

)− (Eξ
(
0 + Z0, H Z

a

))2}
du

and

δξ (a) := Eξ
(
0 + Z0, H Z

a

)+ a

∫
Rm

E
[
ξ
(
0, Hu,Z

a

)− ξ
(
0, H Z

a

)]
du.

(vii) (Poisson input.) In (3.7) we have presented the law of large numbers
for binomial samples, but the same Lq limit holds for functionals of the form
λ−1H

ξ
λ,k,ρ(Pλ), with Pλ as in (2.5). Likewise, there is a Poisson analog to (3.16).

We also have variance asymptotics and a central limit theorem for H
ξ
λ,k,ρ(Pλ),

similar to Theorem 3.2 but with a different limiting variance. Moreover, in the
Poisson setting, we have a bound on the rate of convergence to the normal, using
the Kolmogorov distance. The result goes as follows.
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THEOREM 3.3. Let M ∈ M and let κ ∈ Pb(M) be a.e. continuous. Let k ∈
Z

+, r > 0 and ρ ∈ (0,∞], and suppose k = 0 or κ ∈ Pc(M). Let ξ ∈ �(k, r) and
suppose that ξ satisfies (3.6) for some p > 2. Then

lim
λ→∞λ−1 Var

[
H

ξ
λ,k,ρ(Pλ)

]= τ 2(ξ, κ) :=
∫

M
V ξ (y, κ(y)

)
κ(y) dy < ∞,(3.17)

and as λ → ∞,

λ−1/2(Hξ
λ,k,ρ(Pλ) − EH

ξ
λ,k,ρ(Pλ)

) D−→ N
(
0, τ 2(ξ, κ)

)
.(3.18)

Additionally, if ξ satisfies (3.6) for some p > 3 and if σ 2(ξ, κ) > 0, then there
exists a finite constant C depending on d, k, ξ , κ , ρ and p such that for all λ ≥ 2,

sup
t∈R

∣∣∣∣P
[Hξ

λ,k,ρ(Pλ) − EH
ξ
λ,k,ρ(Pλ)√

Var[Hξ
λ,k,ρ(Pλ)]

≤ t

]
− �(t)

∣∣∣∣≤ C(logλ)3mλ−1/2.(3.19)

As well as being of independent interest, Theorem 3.3 is used in our proof
of Theorem 3.2. Equation (3.19) is the counterpoint for manifolds to the rate of
normal convergence result in [40]. Theorem 3.3 could be used to provide Poisson
analogs to the results presented in Sections 2.2–2.4.

4. Geometrical preliminaries. The lemmas in this section, concerned with
properties of manifolds, have no probabilistic content. The first of these relates
distances in the manifold to distances in a chart.

LEMMA 4.1. Suppose (U,g) is a chart for M ∈ M(m,d). Suppose F ⊂ g(U)

is a compact subset of M. Then

0 < inf
y,z∈F : y �=z

‖g−1(z) − g−1(y)‖
‖z − y‖ ≤ sup

y,z∈F : y �=z

‖g−1(z) − g−1(y)‖
‖z − y‖ < ∞.(4.1)

PROOF. Suppose (4.1) fails. Then by compactness, we can find a sequence
(yn, zn), n ∈ N with yn ∈ F , zn ∈ F \ {yn}, and yn → y for some y ∈ F , such that
setting un := g−1(yn) and vn := g−1(zn), we have either

‖vn − un‖/‖zn − yn‖ → ∞ as n → ∞(4.2)

or

‖vn − un‖/‖zn − yn‖ → 0 as n → ∞.(4.3)

Since g is an open map, the set g−1(F ) is compact. Hence ‖vn − un‖ remains
bounded.

Suppose (4.2) holds. Then ‖zn−yn‖ → 0, and hence zn → y as n → ∞. Setting
u := g−1(y), by continuity of g−1 we have un → u and vn → u. Hence, arguing



LIMIT THEORY FOR POINT PROCESSES IN MANIFOLDS 2177

componentwise using the mean value theorem and the continuity of g′, we have
that ∥∥zn − yn − g′(u)(vn − un)

∥∥= o
(‖vn − un‖)(4.4)

and therefore since g′(u) has full rank,

lim inf
n→∞

‖zn − yn‖
‖vn − un‖ = lim inf

n→∞
‖g′(u)(vn − un)‖

‖vn − un‖ > 0,

which contradicts (4.2). On the other hand, if (4.3) holds we can show by a similar
argument that lim supn→∞(‖zn − yn‖/‖vn − un‖) < ∞, again giving a contradic-
tion. �

For w ∈ E ⊆ R
d and r > 0, let BE

r (w) := Br(w) ∩ E. Recall that ωm :=
πm/2[�(1 + m/2)]−1 is the volume of the ball B1(0) in R

m.

LEMMA 4.2. Let M ∈ M. Suppose y∞ ∈ M, and suppose for n ∈ N we are
given yn ∈ M, rn > 0, an > 0 with yn → y∞, rn → 0 and an → 0 as n → ∞. Then

lim sup
n→∞

(
r−m
n

∫
BM

rn
(yn)

dy

)
≤ ωm,(4.5)

and putting sn = rn(1 − an), we have

lim sup
n→∞

((
rm
n − sm

n

)−1
∫
BM

rn
(yn)\BM

sn
(yn)

dy

)
< ∞.(4.6)

PROOF. Let (U,g) be a chart such that 0 ∈ U and g(0) = y∞. Set Un =
g−1(BM

rn
(yn)) ⊆ U , and set Vn = g−1(BM

sn
(yn)). Let L denote Lebesgue mea-

sure, and note that by continuity supu∈Un
|(Dg(u)/Dg(0))−1| vanishes as n → ∞.

Thus there exists n0 such that for n ≥ n0, we have BM
rn

(yn) ⊂ g(U), and by (2.2),∫
BM

rn
(yn)

dy = Dg(0)

∫
Un

(
Dg(u)/Dg(0)

)
du ∼ Dg(0)L(Un)(4.7)

and ∫
BM

rn
(yn)\BM

sn
(yn)

dy

(4.8)
= Dg(0)

∫
Un\Vn

(
Dg(u)/Dg(0)

)
du ∼ Dg(0)L(Un \ Vn)

where the asymptotics are as n → ∞. Given n ≥ n0, set un := g−1(yn) ∈ U . We
claim that

lim sup
n→∞

sup
v∈Un

r−1
n

∥∥g′(0)(v − un)
∥∥≤ 1.(4.9)
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To see (4.9), take vn ∈ Un for n ∈ N. By continuity of g−1, we have vn → 0 as
n → ∞ so by applying the mean value theorem and using continuity of g′, as
in (4.4) we have that ‖g(vn) − yn − g′(0)(vn − un)‖ = o(‖vn − un‖) as n → ∞.

Therefore since g′(0) has full rank,∥∥g(vn) − yn

∥∥∼ g′(0)(vn − un) as n → ∞.(4.10)

Then (4.9) follows because ‖g(vn) − yn‖ ≤ rn and the choice of vn ∈ Un was
arbitrary.

By (4.9), given ε > 0 we have for large enough n that

L(Un) ≤ L
({

v ∈ R
m :
∥∥g′(0)(v − un)

∥∥≤ rn(1 + ε)
})= (1 + ε)mωmrm

n /Dg(0),

and (4.5) follows by (4.7).
Finally we prove (4.6). Since (1 − a)m ≤ 1 − a for all a ∈ [0,1], for large n we

have

rm
n − sm

n = rm
n

(
1 − (1 − an)

m)≥ rm
n an.(4.11)

We claim that if (vn)n∈N is a sequence in U with ‖g(vn) − yn‖ = rn, then setting
wn := un + (1 − 3an)(vn − un), we have ‖g(wn) − yn‖ < sn for large enough n.
Indeed, for any such sequence by the mean value theorem we have rn = ‖g(vn) −
yn‖ ∼ ‖g′(0)(vn − un)‖ as in (4.10), and also∥∥g(wn) − g(vn)

∥∥∼ 3an

∥∥g′(0)(vn − un)
∥∥∼ 3anrn.

Moreover g(wn) − yn and g(vn) − yn are almost in the same direction, so that for
large n, ‖g(wn) − yn‖ ≤ rn(1 − 2an), and the claim follows.

By the preceding claim, there is a constant C such that the thickness of the
deformed annulus Un \Vn in all directions is bounded by Canrn, so by using polar
coordinates we have L(Un \ Vn) = O(rm

n an), and then using (4.8) and (4.11) we
have that ∫

BM
rn

(yn)\BM
sn

(yn)
dy = O

(
rm
n an

)= O
(
rm
n − sm

n

)
,

demonstrating (4.6). �

Recall that K(κ) denotes the support of κ , and if κ ∈ Pc(M), then K(κ) is
locally conic and satisfies (2.3). Given M ∈ M and κ ∈ Pc(M), set �(κ) :=
diam(K(κ)).

LEMMA 4.3. Suppose M ∈ M and κ ∈ Pc(M). Then there is a constant C0 ∈
(0,∞) such that for all r ∈ (0,�(κ)] and w ∈ K(κ), we have

C−1
0 rm ≤

∫
B

K(κ)
r (w)

dy ≤
∫
BM

r (w)
dy ≤ C0r

m.(4.12)



LIMIT THEORY FOR POINT PROCESSES IN MANIFOLDS 2179

There are also positive finite constants C1 and ρ1 such that if 0 < s < r < ρ1 and
w ∈ K(κ), then ∫

BM
r (w)\BM

s (w)
dy ≤ C1

(
rm − sm).(4.13)

PROOF. In the proof, set K := K(κ) and � := �(κ). The first inequality
in (4.12) (for large enough C0) follows from the assumption that K is locally
conic (2.3). Suppose the last inequality of (4.12) fails; then there must be a
(K × (0,�])-valued sequence {(yn, rn), n ∈ N} such that

lim
n→∞ r−m

n

∫
BM

rn
(yn)

dz = ∞.(4.14)

Since K × [0,�] is compact, by taking a subsequence we may assume with-
out loss of generality that yn → y and rn → r for some y ∈ K and r ∈ [0,�].
If r = 0, then (4.14) would contradict (4.5). If r > 0 and (4.14) holds, then since
Brn(yn) ⊂ B2r (y) for large n we have

∫
B2r (y) dz = ∞, which is impossible: indeed

by compactness B2r (y)∩ M is covered by finitely many of the regions gi(Ui), and∫
gi(Ui)

κi(x) dx is finite for all i (we may assume the charts were chosen so all the
regions Ui are bounded). Therefore we have a contradiction so (4.12) must hold.

It remains to prove there exists positive ρ1 such that (4.13) holds for all w ∈
K and 0 < s < r < ρ1. Suppose this is not the case. Then there is a sequence
{(yn, rn, an), n ∈ N} taking values in K × (0,�] × (0,1) such that rn → 0, and
setting sn = rn(1 − an) we have

lim
n→∞
(
rm
n − sm

n

)−1
∫
BM

rn
(yn)\BM

sn
(yn)

dy = ∞.(4.15)

By taking a subsequence, we may assume that yn → y for some y ∈ K, and ei-
ther an is bounded away from zero or an → 0 as n → ∞.

If infn∈N{an} > 0, then (rm
n − sm

n )−1 = O(r−m
n ) so (4.15) would give a contra-

diction of (4.12). If an → 0 and rn → 0, then (4.15) would give a contradiction
of (4.6). �

REMARK 4.1. A sufficient condition for K ⊂ M to be locally conic is that K
be a compact m-dimensional C1 submanifold-with-boundary of M.

This can be proved by similar arguments to the proof of Lemmas 4.2 and 4.3;
for details see the proof of these lemmas in the earlier version of this paper [37]
(where the definition of Pc is different from here).

5. Weak convergence lemmas. For all d ∈ N, we put a topology T := Td on
locally finite point sets in R

d . As in Aldous and Steele ([1], page 250), we adopt
a topology whereby a sequence of locally finite point sets (yn)n≥1 converges to a
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locally finite y, if and only if (i) it is possible to list the elements of y as a possibly
terminating sequence (yi, i ≥ 1) and the elements of yn as a possibly terminating
sequence (yn,i , i ≥ 1) in such a way that

lim
n→∞yn,i = yi ∀i(5.1)

and (ii) for any L with no point of y on the boundary of BL(0), we have

lim
n→∞ card

(
yn ∩ BL(0)

)= card
(
y ∩ BL(0)

)
.(5.2)

We would like to know that whenever point sets yn ⊂ R
d are close to the point

set y in the topology Td , then ξ(y,yn) is close to ξ(y,y), y ∈ R
d . This motivates

Definition 5.1 below. Recall that H denotes a homogeneous Poisson point process
of unit intensity on R

m.

DEFINITION 5.1. ξ is continuous if for any linear F : Rm → R
d of full rank,

for almost all z ∈ R
m both F(H) and F(Hz) lie a.s. at continuity points of ξ(0, ·)

with respect to Td .

If Un and U are simple point processes (i.e., random locally finite point sets
in R

d ), then, following the discussion in [1] page 251, we shall say that Un con-
verges in distribution to U if the law of Un converges weakly to that of U under the
(metrisable) topology Td , which is the same as the notion of weak convergence of
point processes discussed in Daley and Vere-Jones [18], Section 11.1.

Given the atlas ((Ui, gi), i ∈ I), for i ∈ I define the function κ̃i :Ui → [0,∞)

by

κ̃i(x) = κ
(
gi(x)
)
Dgi

(x), x ∈ Ui.(5.3)

By using (2.2) with a partition of unity for which ψi ≡ 1 on gi(Ui), we see that for
Borel B ⊆ Ui ,∫

gi(B)
κ(y) dy =

∫
B

κ
(
gi(x)
)
Dgi

(x) dx =
∫
B

κ̃i(x) dx.(5.4)

Given a > 0 and x ∈ Ui , by g′
i(x)(Ha) we mean the point process in R

d ob-
tained by applying to Ha the linear map g′

i (x). Similarly, g′
i (x)(z) is the im-

age of z under the map g′
i (x). If M ∈ M(m,d) or M is an open subset of R

m,
and f : M → R is measurable, then we say w ∈ M is a Lebesgue point of f if
ε−m
∫
Bε(w)∩M |f (y) − f (w)|dy tends to zero as ε ↓ 0.

LEMMA 5.1. Suppose i ∈ I , Ui is bounded, and u ∈ Ui is a Lebesgue point
of κ̃i . Suppose �(n), n ∈ N is a sequence of integers with �(n) ∼ n as n → ∞. Set
y0 = gi(u). Then as n → ∞ we have (in the above sense of convergence of point
processes in R

d )

n1/m(−y0 + Y�(n))
D−→ g′

i(u)(Hκ̃i (u)).(5.5)
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PROOF. By taking B = Ui in (5.4), we see that
∫
Ui

κ̃i(x) dx ≤ 1, so that κ̃i is
a (possibly) defective density function on Ui . Extend κ̃i in an arbitrary manner to
a probability density function on R

m.
Let Xn be a point process in R

m consisting of �(n) independent identically
distributed random m-vectors Xi,1, . . . ,Xi,�(n) with density κ̃i . Then

g−1
i

(
Y�(n) ∩ gi(Ui)

) D= Xn ∩ Ui(5.6)

because for Borel B ⊆ Ui , (5.4) shows that P [Y1 ∈ gi(B)] = P [Xi,1 ∈ B].
By Lemma 3.2 of [36] (restated as Lemma 3.2 of [35]), the distribution of the

point process n1/m(−u + Xi,n) converges weakly to that of Hκ̃i (u), in the metric
of [36], which is not the same as the one we are using here (as discussed in [36],
the metric in [36] is complete but not separable). We claim that if f : Rm → R is
measurable with bounded support, then

lim
n→∞ E exp

(√−1
∑

x∈n1/m(−u+Xi,n)

f (x)

)
= E exp

(√−1
∑

x∈Hκ̃i (u)

f (x)

)
.(5.7)

Indeed, by the proof of Lemma 3.2 of [36] there is a coupling in which the random
variables under the expectations on the left and right-hand sides of (5.7) are equal
with probability tending to 1.

It follows from (5.7) that for any finite collection of bounded Borel sets Aj

(1 ≤ j ≤ k) in R
m, the joint distributions of the variables card(n1/m(−u + Xn) ∩

Aj), 1 ≤ j ≤ k, converge to those of the variables card(Hκ̃i (u) ∩ Aj), 1 ≤ j ≤ k.
Hence, since Ui is a neighborhood of u, the joint distributions of the variables
card(n1/m(−u + (Xn ∩ Ui)) ∩ Aj), 1 ≤ j ≤ k, converge to those of the variables
card(Hκ̃(u) ∩ Aj), 1 ≤ j ≤ k.

Therefore the point processes n1/m(−u+ (Xn ∩Ui)) converge weakly to Hκ̃i (u),
in the sense discussed at the start of this section; see Theorem 9.1.VI of [18].

Now we argue as in [1], page 251. By the Skorohod representation theorem,
we can choose coupled point processes X̃n and H̃κ̃i (u), all on the same probability
space, such that X̃n has the same distribution as Xn ∩ Ui , and H̃κ̃i (u) has the same
distribution as Hκ̃i (u), and such that n1/m(−u + X̃n) converges almost surely to
H̃κ̃i (u). That is [see (5.1) and (5.2)], we can list the points of H̃κ̃i (u) as x1, x2, . . .

and the points of X̃n as xn,1, xn,2, . . . , xn,Nn , in such a way that for each j we have
almost surely

n1/m(xn,j − u) → xj ,(5.8)

and for any L > 0 with no point of H̃κ̃i (u) in BL(0), we have almost surely

card
(
n1/m(−u + X̃n) ∩ BL(0)

)→ card
(

H̃κ̃i (u) ∩ BL(0)
)
.(5.9)

By (5.8), xn,j → u as n → ∞, so by the differentiability of gi , we can write

gi(xn,j ) − gi(u) = g′
i (u)(xn,j − u) + wn,j ,(5.10)
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with ‖wn,j‖ = o(‖xn,j − u‖) so n1/mwn,j → 0 as n → ∞. By (5.8) and (5.10),

n1/m(gi(xn,j ) − gi(u)
)→ g′

i(u)(xj ) as n → ∞.(5.11)

We claim that the point process n1/m(−gi(u) + gi(X̃n)) converges a.s. to
g′

i(u)(H̃κ̃i (u)). The condition corresponding to (5.1) follows from (5.11). To
demonstrate the condition corresponding to (5.2), set y := gi(u), and let L be
such that no point g′

i(u)(xj ) lies on the boundary of BL(0). We need to show that

lim
n→∞ card

[
n1/m(−y + gi(X̃n)

)∩ BL(0)
]= card

[
g′

i(u)(H̃κ̃i (u)) ∩ BL(0)
]
.(5.12)

Choose δ > 0 such that B2δ(y) ⊂ gi(Ui). By Lemma 4.1 we may define finite K

by

K := sup
z,z′∈Bδ(y),z �=z′

∥∥g−1
i

(
z′)− g−1

i (z)
∥∥/∥∥z′ − z

∥∥.
Let K ′ > K , and suppose x ∈ Ui with ‖x−u‖ > n−1/mK ′L. By definition of K ,

if g(x) ∈ Bδ(y), then n1/m‖g(x) − y‖ > L, and this also holds if g(x) /∈ Bδ(y),
provided δn1/m > L.

Hence, for n large the contribution to the left-hand side of (5.12) comes only
from x ∈ X̃n ∩ Bn−1/mK ′L(u). For large enough n, the set of such x consists pre-
cisely of those xn,j such that xj ∈ BK ′L(0), provided K ′ is chosen so that no point
of H̃κ̃i (u) lies on the boundary of BK ′L(0).

By (5.11), for large enough n the set of j such that xn,j contributes to the
left-hand side of (5.7) is precisely those j such that g′(u)(xj ) ∈ BL(0). Thus
we have (5.12), and therefore n1/m(−y + gi(X̃n)) converges almost surely to
g′

i(u)(H̃κ̃i (u)) as claimed. Hence n1/m(−y +gi(Xn ∩Ui)) converges in distribution
to g′

i (u)(Hκ̃i (u)). Together with (5.6) this yields

n1/m(−y + (Y�(n) ∩ gi(Ui)
)) D−→ g′

i(u)
(

H′
κ̃i (u)

)
.(5.13)

By again using Lemma 9.1.VI of [18] (equivalence of weak convergence and con-
vergence of fidi distributions) and the fact that gi(Ui) is a neighborhood of y in M,
we can deduce that (5.13) still holds with Y�(n) ∩ gi(Ui), replaced by Y�(n) on the
left-hand side, so that (5.5) holds as asserted. �

The next lemma is a two-dimensional version of Lemma 5.1.

LEMMA 5.2. Suppose 1 ∈ I and 2 ∈ I , and g1(U1) ∩ g2(U2) = ∅ and also
U1 ∩ U2 = ∅ and U1 ∪ U2 is bounded. Suppose that for i = 1,2, xi ∈ Ui is a
Lebesgue point of κ̃i , and set yi = gi(xi). Suppose (�(n), n ∈ N) is a sequence of
positive integers such that �(n) ∼ n as n → ∞. Then as n → ∞,[

n1/m(−y1 + Y�(n)), n
1/m(−y2 + Y�(n))

]
(5.14)

D−→ [g′
1(x1)(Hκ̃1(x1)), g

′
2(x2)(H̃κ̃2(x2))

]
,

where H̃a here is an independent copy of Ha .
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PROOF. By (5.4) we have
∫
U1

κ̃1(x) dx + ∫U2
κ̃2(x) dx ≤ 1. Since we assume

U1 ∩ U2 = ∅ and U1 ∪ U2 is bounded, we can therefore find a probability density
function κ̃ on R

m which is an extension of both κ̃1 and κ̃2, that is, with κ̃(x) =
κ̃i(x) for x ∈ Ui , i ∈ {1,2}.

Let Xn be a point process in R
m consisting of n independent identically dis-

tributed random m-vectors X1, . . . ,Xn with density κ . Then

(
g−1

1

(
Y�(n) ∩ g1(U1)

)
, g−1

2

(
Yn ∩ g2(U2)

)) D= (X�(n) ∩ U1, X�(n) ∩ U2)(5.15)

because for i = 1,2 and Borel B ⊆ Ui , (5.4) shows that P [Y1 ∈ gi(B)] =
P [X1 ∈ B].

By Lemma 3.2 of [36] (restated as Lemma 3.2 of [35]), the joint distribution
of the point processes n1/m(−x1 + X�(n)), n1/m(−x2 + X�(n)), converges weakly
to that of Hκ̃1(x1), H̃κ̃2(x2), in the metric of [36]. We can then follow the proof of
Lemma 5.1 with straightforward modifications to deduce (5.2). �

Before proceeding we shall re-express the Poisson processes appearing in the
limits (5.5) and (5.14) in a manner that is intrinsic to M, that is, not dependent
on the choice of atlas. Recalling that Grm(d) is the Grassmannian, given M ∈ M

and y ∈ M, let Ty M ∈ Grm(d) be the hyperplane tangent to −y + M at 0, that
is, the image of R

m under the linear map g′
i(x) when x ∈ R

m and (Ui, gi) is any
chart such that x ∈ Ui and y = gi(x). We normalize the Lebesgue measure on
Ty M (with volume element denoted du) in such a way that for any orthonormal
basis (fi)

m
i=1 of the subspace, the set {∑m

i=1 aifi : 0 ≤ ai ≤ 1} has unit Lebesgue
measure. For y, z ∈ M, let H′

y,κ(y) denote a homogeneous Poisson point process

on Ty M with intensity κ(y), and let H̃′
z,κ(z) denote a homogeneous Poisson point

process on TzM with intensity κ(z), independent of H′
y,κ(y).

LEMMA 5.3. Suppose z1 ∈ M and z2 ∈ M are distinct Lebesgue points for κ .
Suppose (�(n), n ≥ 1) is a sequence of positive integers with �(n) ∼ n as n → ∞.
Then [

n1/m(−z1 + Y�(n)), n
1/m(−z2 + Y�(n))

] D−→ (H′
z1,κ(z1)

, H̃′
z2,κ(z2)

)
.(5.16)

PROOF. It is easy to see that we can choose our atlas (Ui, gi)i∈I such that zi ∈
gi(Ui) for i = 1,2, and such that moreover g1(U1) ∩ g2(U2) = ∅, and U1 ∩ U2 =
∅, and U1 ∪ U2 is bounded. Let xi := g−1

i (zi) for i = 1,2. Then by Lemma 5.2,
to prove (5.16), it suffices to demonstrate for i = 1,2 the distributional equality

g′
i(xi)(Hκ̃i (xi ))

D= H′
zi ,κ(zi )

.(5.17)

Let i = 1 or i = 2. By the mapping theorem on page 18 of [27], g′
i (xi)(Hκ̃i (xi ))

is a Poisson process on the linear space g′
i(xi)(R

m) with intensity measure μ



2184 M. D. PENROSE AND J. E. YUKICH

where μ(B) is κ̃i(xi) times |(g′
i (xi))

−1(B)|, where | · | denotes the m-dimensional
Lebesgue measure.

Recall from Section 2.1 the definition of Dgi
(x). For bounded measurable A ⊂

R
m, it is a fact from linear algebra that∣∣g′

i (xi)(A)
∣∣= Dgi

(xi)|A|.(5.18)

Indeed, the columns of the Jacobian matrix Jgi
(xi) are the images under g′(xi) of

the standard basis vectors of R
m, so (5.18) clearly holds when the standard basis

vectors map to an orthonormal system, but then it can be deduced in the general
case using standard properties of determinants. Equation (5.18) is the basis of the
formula (2.2) given earlier.

By (5.18), if A = (g′
i (xi))

−1(B), then |B| = Dgi
(xi)|A| so that μ(B) =

κ̃i(xi)|B|/Dgi
(xi) so by (5.3), μ(B) = κ(zi)|B| and (5.17) follows. �

Next we give weak convergence results for ξ . Recall that 0 is the origin of R
m.

The next lemma is an analog of Lemma 3.6 of [35] and Lemma 3.6 of [36].

LEMMA 5.4. Suppose ξ is continuous in the sense of Definition 5.1, and ro-
tation invariant. Let y ∈ M and z ∈ M be a pair of distinct Lebesgue points for κ

with κ(y) > 0 and κ(z) > 0. Suppose (�(n), n ≥ 1) is a sequence of positive inte-
gers such that �(n) ∼ n as n → ∞. Let k ∈ Z

+ and ρ ∈ (0,∞]. Then as n → ∞
we have [

ξn,k,ρ(y, Y�(n)), ξn,k,ρ(z, Y�(n))
] D−→ [ξ(0, Hκ(y)), ξ(0, H̃κ(z))

]
.(5.19)

Also, if we choose a chart (U,g) and u ∈ U such that y = g(u), then for almost
all (fixed) x ∈ R

m, setting vn := u + n−1/mx, we have as n → ∞ that

ξn,k,ρ

(
y, Y g(vn)

�(n)

)
ξn,k,ρ

(
g(vn), Y y

�(n)

)
(5.20)

D−→ ξ
(
0, H

′g′(u)(x)
y,κ(y)

)
ξ
(
g′(u)(x), H′0

y,κ(y)

)
.

PROOF. First suppose ρ = ∞. Then the left-hand side of (5.19) is equal to[
ξ
(
0, n1/m(−y + Y�(n))

)
, ξ
(
0, n1/m(−z + Y�(n))

)]
.

Also, by rotation invariance, the right-hand side of (5.19) has the same distri-
bution as [ξ(0, H′

y,κ(y)), ξ(0, H̃′
z,κ(z))]. Therefore, under the assumptions given,

(5.19) is immediate from Lemma 5.3 and the continuous mapping theorem ([11],
Chapter 1, Theorem 5.1).

Next we prove (5.20) in the case ρ = ∞. By (3.1) and translation invariance
of ξ ,

ξn

(
y, Y g(vn)

�(n)

)
ξn

(
g(vn), Y y

�(n)

)
= ξ
(
0, n1/m(−y + Y�(n)) ∪ {n1/m(−y + g(vn)

)})
(5.21)
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× ξ
(
n1/m(−y + g(vn)

)
, n1/m(−y + Y�(n)) ∪ {0})

= F
(
n1/m(−y + g(vn)

)
, n1/m(−y + Y�(n))

)
,

where for any y ∈ R
d and any locally finite y ⊂ R

d , we set

F(y,y) := ξ
(
0,y ∪ {y})ξ (y,y ∪ {0})= ξ

(
0,y ∪ {y})ξ (0,−y + (y ∪ {0})).

By definition, n1/m(vn − u) = x, and by the same argument as for (5.11) ear-
lier on, n1/m(g(vn) − y) converges to g′(u)(x) as n → ∞. Combining this with
Lemma 5.1, we have by (5.17) the convergence in distribution

(
n1/m(g(vn) − y

)
, n1/m[−y + Y�(n)]) D−→ (g′(u)(x), H′

y,κ(y)

)
.

By the continuity assumption, for almost every x the point set H′
y,κ(y) ∪{g′(u)(x)}

is a.s. a continuity point of ξ(0, ·), and so is the point set −g′(u)(x) + (H′
y,κ(y) ∪

{0}). Thus (g′(u)(x), H′
y,κ(y)) is a.s. at a continuity point of F , for almost all x.

Hence we have the desired convergence in distribution (5.20) (when ρ = ∞)
by (5.21) and the continuous mapping theorem.

Finally, we consider the case with 0 < ρ < ∞. It is easy to see that

lim
n→∞P

[
ξn,k,ρ(y, Y�(n))ξn,k,ρ(z, Y�(n)) �= ξn(y, Y�(n))ξn(z, Y�(n))

]= 0,

so the general case of (5.19) follows from the special case with ρ = ∞ (already
proved) along with Slutsky’s theorem. The proof of the general case of (5.20) is
similar. �

6. Proofs of Theorems 3.1–3.3. We first give some definitions. Assume M ∈
M and κ ∈ P(M) are given, and set K := K(κ). We adapt to the manifold setting
the definition of exponentially stabilizing functionals [5, 35]. Suppose k ∈ Z

+, r ∈
[0,∞) are given, along with the density κ . For y ∈ K and locally finite Y ⊂ K,
define

Rλ(y, Y) :=
{

max
[
r,Nk

(
λ1/my,λ1/mY

)]
, if card

(
Y \ {y})≥ k,

λ1/m diam(K), otherwise.

Thus if k = 0, then Rλ(y, Y) = r .
It is easy to see that R := Rλ(y, Y) serves as a radius of stabilization for any

ξ ∈ �(k, r), in the following sense: for all finite A ⊂ (K \ Bλ−1/mR(y)), we have

ξλ

(
y,
(

Y ∩ Bλ−1/mR(y)
)∪ A
)= ξλ

(
y, Y ∩ Bλ−1/mR(y)

)
.(6.1)

For all k ∈ Z
+, ρ ∈ (0,∞), note that R also serves as a radius of stabilization for

ξλ,k,ρ in the sense that (6.1) holds if ξλ is replaced by ξλ,k,ρ . Recall the definition
of point processes Yn and Pλ in Section 2.1, and recall that S2 is the collection
of all subsets of K(κ) of cardinality at most 2, including the empty set. Given
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ε > 0 and t > 0, we define the tail probabilities for Rλ denoted τ(t) and τε(t), for
Poisson and binomial input, respectively, as follows:

τ(t) := sup
λ≥1

ess sup
y∈K

P
[
Rλ(y, Pλ) > t

];
τε(t) := sup

λ≥1,n∈N∩((1−ε)λ,(1+ε)λ),A∈S2

ess sup
y∈K

P
[
Rλ(y, Yn ∪ A) > t

]
,

where the ess sup denotes essential supremum with respect to the measure κ(y) dy.

DEFINITION 6.1. Given k and r , we say that every ξ ∈ �(k, r) is expo-
nentially stabilizing for κ if lim supt→∞ t−1 log τ(t) < 0. We say that every ξ ∈
�(k, r) is binomially exponentially stabilizing for κ if there exists ε > 0 such that
lim supt→∞ t−1 log τε(t) < 0.

We next show that functionals in �(k, r) have the continuity property of Defi-
nition 5.1 as well as the binomial and exponential stabilization properties.

LEMMA 6.1. Let k ∈ Z
+ and r ≥ 0. Then every ξ ∈ �(k, r) is continuous. If

either k = 0 or κ ∈ Pc(M), then every ξ ∈ �(k, r) is exponentially stabilizing and
binomially exponentially stabilizing for κ .

PROOF. To prove continuity, let ξ ∈ �(k, r), let z ∈ R
m, and let F : Rm → R

d

be linear and of full rank. Assume that the points of F(Hz) have distinct Euclidean
norms, and that for all n ∈ N there are no points of F(H) on the boundary of the
ball Bn(0). List the elements of F(H) in order of increasing Euclidean norm as as
x1, x2, . . . . Suppose (yn)n∈N is a sequence of locally finite point sets in R

d con-
verging in T to F(H), and list the elements of yn in order of increasing Euclidean
norm as yn,1, yn,2, yn,3, . . . (possibly a terminating sequence).

Given the realization of H, we pick the smallest K ∈ N such that

K > max
(
r,Nk

(
0,F (H)

)
,
∥∥F(z)

∥∥).
Let N denote the number of points of F(H) in BK , and assume (y1, . . . , yN) lies
at a continuity point of the mapping (x1, . . . , xN) �→ ξ(0, {x1, . . . , xN }). By the
convergence of yn to Ha , for all large enough n we have yn,N ∈ BK and yn,N+1 /∈
BK , and moreover yn,j → yj as n → ∞ for all j ≤ N . Therefore by the continuity
assumption we have

ξ
(
0,F (Ha)

)= ξ
(
0, {y1, . . . , yN })= lim

n→∞ ξ
(
0, {yn,1, . . . , yn,N })

= lim
n→∞ ξ

(
0,F (yn)

)
.

Similarly, if (F (z), y1, . . . , yN) lies at a continuity point of the mapping (x0, x1,

. . . , xN) �→ ξ(0, {x0, x1, . . . , xN }) and if (vn)n∈N is any sequence of locally finite
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point sets in R
d converging in T to F(Hz), then ξ(0,F (Hz

a)) = limn→∞ ξ(0,vn).

Thus, ξ is continuous.
We prove the exponential stabilization of ξ ∈ �(k, r), that is, the uniform ex-

ponential tail bound for Rλ(y, Pλ), as follows. Suppose y ∈ K, λ ∈ [1,∞) and
r < t ≤ λ1/d diam(K). Then

P
[
Rλ(y, Pλ) > t

]= P
[
Nk

(
λ1/my,λ1/mPλ

)
> t
]
,

and the last event occurs if and only if the number of points from Pλ in Btλ−1/m(y)\
{y} is less than k. The number of such points is Poisson distributed with parameter
α(t) := α(t, y, λ) equal to the λκ measure of Btλ−1/m(y)∩ M. By Lemma 4.3 there
is a constant C2 > 0 such that we have uniformly in λ ∈ [1,∞), y ∈ K and t ∈
(0, λ1/m diam(K)) that α(t) ≥ C−1

2 tm. Thus by a Chernoff bound for the Poisson
distribution (see, e.g., Lemma 1.2 of [34]), there is a constant C3 such that for
max(r, (2kC2)

1/m) < t < λ1/m diam(K) we have

P
[
Rλ(y, Pλ) > t

]≤ k exp
(−C−1

3 tm
)
,

and moreover this also holds for t ≥ λ1/m diam(K) since P [Rλ(y, Pλ) > t] = 0
in this case. This gives the desired exponential stabilization of ξ for Poisson in-
put. Modifications of this argument yields the exponential stabilization of ξ with
respect to binomial input. �

For finite Y ⊂ R
d and y ∈ Y , and k ∈ Z

+, n ∈ N, ρ ∈ (0,∞], define

ξ∗
n,k,ρ(y, Y) := ξn,k,ρ(y, Y)1

{∣∣ξn,k,ρ(y, Y)
∣∣≤ n5/12};

(6.2)
H ∗

n,k,ρ(Y) :=∑
y∈Y

ξ∗
n,k,ρ(y, Y).

Recall the (similar) definition of H
ξ
n,k,ρ(Y) at (3.3). Given n, i, ν ∈ N with i ≤ ν,

define

Gi,ν,n := H
ξ
n,k,ρ(Yν) − H

ξ
n,k,ρ

(
Yν \ {Yi}),(6.3)

G∗
i,ν,n := H ∗

n,k,ρ(Yν) − H ∗
n,k,ρ

(
Yν \ {Yi}).(6.4)

LEMMA 6.2. Suppose ξ is binomially exponentially stabilizing, and κ ∈
Pb(M). Suppose h(n)/n → 0 as n → ∞ and suppose for some p ∈ N that (3.5)
holds. Then

lim sup
n→∞

sup
n−h(n)≤ν≤n+h(n)

E|Gν,ν,n|p < ∞(6.5)

and

lim sup
n→∞

sup
n−h(n)≤ν≤n+h(n)

E|G∗
ν,ν,n|p < ∞.(6.6)



2188 M. D. PENROSE AND J. E. YUKICH

PROOF. We prove only (6.5); the proof of (6.6) is virtually the same. Write ξn

for ξn,k,ρ , and define �xξn(y, Y) := ξn(y, Y ∪ {x}) − ξn(y, Y). Putting Y = Yν ,
observe that

|Gν,ν,n| ≤
∣∣ξn(Y, Yν−1)

∣∣+ ν−1∑
i=1

∣∣�Y ξn(Yi, Yν−1)
∣∣.(6.7)

The pth moment of the first term in the right-hand side of (6.7) is uniformly
bounded by (3.5). The pth moment of the sum in the right-hand side of (6.7) is
given by

(ν − 1)E
∣∣�Y ξn(Y1, Yν)

∣∣p
+ (ν − 1)(ν − 2)E

∣∣�Y ξn(Y1, Yν)
∣∣p−1∣∣�Y ξn(Y2, Yν)

∣∣+ · · ·(6.8)

+
(

(ν − 1)!
(ν − 1 − p)!

)
E

p∏
i=1

∣∣�Y ξn(Yi, Yν)
∣∣.

Let I, yi, δi,Ui be as in Section 2.1. Using compactness, let I0 ⊂ I be a finite set
such that K ⊂⋃i∈I0

Bδi
(yi), and set δ := mini∈I0(δi). Then

νE
∣∣�Y ξn(Y1, Yν−1)

∣∣p
(6.9)

=
∫

M

∫
g�(U�)

E
∣∣�yξn(z, Yν−2)

∣∣pνκ(z) dzκ(y) dy.

For z, y ∈ K with ‖z − y‖ ≥ δ, by binomial exponential stabilization we have
P [�yξn(z, Y z

ν−2) �= 0] decaying exponentially in n1/m, uniformly over such (z, y)

and over ν ∈ [n − h(n), n + h(n)]. By this, bound (3.5) and Hölder’s inequality,
the contribution to (6.9) from such (z, y) tends to zero as n → ∞ and is uniformly
bounded.

Now take y ∈ M, and choose i ∈ I0 such that y ∈ Bδi
(yi). Then B2δ(y) ⊂

gi(Ui). Assume without loss of generality that g�(0) = y, and let U ′
i :=

g−1
i (Bδ(y)). Then the contribution to the inner integral in the right-hand side

of (6.9) from z ∈ Bδ(y) can be rewritten as the expression

ν

∫
U ′

i

E
∣∣�yξn

(
g�(u), Yν−2

)∣∣pκ̃�(u) du

=
∫
ν1/mU ′

i

E
∣∣�yξn

(
g�

(
ν−1/mv

)
, Yν−2

)∣∣pκ̃i

(
ν−1/mv

)
dv,

and by binomial exponential stabilization, and (3.5), and Hölder’s inequality and
comparability of norms in Ui and in gi(Ui) (see Lemma 4.1), there is a constant C,
independent of y, such that the integrand is bounded by C exp(−C−1‖v‖1/m),
which is integrable in v. This shows that (6.9) is uniformly bounded.
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Turning to the second term in (6.8), we condition on Y = y with i ∈ I0 again
chosen so that y ∈ Bδi

(yi). By Hölder’s inequality we have

ν2
E
∣∣�yξn(Y1, Yν)

∣∣p−1∣∣�yξn(Y2, Yν)
∣∣

= ν2
∫

K

∫
K

E
∣∣�yξn

(
w, Y z

ν−2

)∣∣p−1∣∣�yξn

(
w, Y z

ν−2

)∣∣κ(w)κ(z) dz dw

≤ ν2
∫

K

∫
K

(
E
∣∣�yξn

(
w, Y z

ν−2

)∣∣p)(p−1)/p

× (E∣∣�yξn

(
z, Y w

ν−2
)∣∣p)1/p

κ(w)κ(z) dz dw.

The contribution to the last expression from (w, z) /∈ Bδ(y) × Bδ(y) is uniformly
bounded (and in fact tending to zero as n → ∞) by a similar argument to the one
given above for the contribution to (6.9) from w /∈ Bδ(y). Assuming g�(0) = y,
the contribution to the last integral from (w, z) ∈ Bδ(y) × Bδ(y) is given by∫

ν1/mU ′
i

∫
ν1/mU ′

i

(
E
∣∣�yξn

(
g�

(
ν−1/mv

)
, Yν−2 ∪ {g�

(
ν−1/mv

)})∣∣p)(p−1)/p

× (E∣∣�yξn

(
g�

(
ν−1/mv

)
, Yν−2 ∪ {g�

(
ν−1/mu

)})∣∣p)1/p

× κ̃�

(
ν−1/mu

)
duκ̃�

(
ν−1/mv

)
dv.

By binomial exponential stabilization, Hölder’s inequality and comparability of
norms in U� and in g�(U�) (see Lemma 4.1), there is a constant C such that the
integrand is bounded by C exp(−C−1(‖u‖1/m + ‖v‖1/m)), which is integrable in
(u, v). This shows that the integral is uniformly bounded, and hence the second
term in (6.8) is bounded. The remaining terms in (6.8) are handled similarly, show-
ing that all terms in (6.8) are uniformly bounded, and hence by (6.7), we have (6.5).

�

PROOF OF THEOREM 3.1. We first sketch the proof for q = 2. Using (5.19)
we obtain, as in the proof of equations (4.3) and (4.4) of [36], the distributional
convergence

ξn,k,ρ(Y1, Yn)
D−→ ξ(0, Hκ(Y1)),

where Hκ(Y1) is a Cox process in R
d whose distribution, conditional on the value y

of Y1, is that of Hκ(y), and also,

ξn,k,ρ(Y1, Yn)ξn,k,ρ(Y2, Yn)
D−→ ξ(0, Hκ(Y1))ξ(0, H̃κ(Y2)),

where H̃κ(Y2) is an independent copy of the Cox process Hκ(Y1).
Put μ := Eξ(0, Hκ(Y1)). Under the assumed moment condition it follows that

lim
n→∞Eξn,k,ρ(Y1, Yn)ξn,k,ρ(Y2, Yn) = Eξ(0, Hκ(Y1))ξ(0, H̃κ(Y2)) = μ2,(6.10)
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where the last equality follows by independence. Recalling definition (3.3) of
H

ξ
n,kρ(·), we have that

n−2
EH

ξ
n,k,ρ(Yn)

2 = n−1
Eξn,k,ρ(Y1, Yn)

2 + (1 − n−1)
Eξn,k,ρ(Y1, Yn)ξn(Y2, Yn),

so we obtain from (6.10) that n−2
EH

ξ
n,k,ρ(Yn)

2 → μ2 as n → ∞. Since

n−1
EH

ξ
n,k,ρ(Yn) → μ as n → ∞ it follows that n−1H

ξ
n,k,ρ(Yn) converges in L2

to μ.
Since μ equals the right-hand side of (3.7), we have (3.7) with L2 convergence

when q = 2. To obtain L1 convergence when q = 1, we use a truncation argument
and follow the proof of Proposition 3.2 in [39]. We leave the details to the reader.

It remains to prove that if we assume (3.5) holds for some p > 5 and
κ ∈ Pb(M), and that either κ ∈ Pc(M) or k = 0, then (3.7) holds with a.s.
convergence. Under these extra assumptions, Lemmas 6.1 and 6.2 show that
E|H ∗

n,k,ρ(Yn) − H ∗
n,k,ρ(Yn−1)|5 is bounded by a constant that is independent of n.

Then (2.11) of [36] holds with β = 4/3 and p′ = 5 (and f ≡ 1 in the notation
of [36]). By following the proof of Theorem 2.2 of [36] we obtain for all ε > 0
that

∞∑
n=1

P
[∣∣H ∗

n,k,ρ(Yn) − EH ∗
n,k,ρ(Yn)

∣∣> εn
]
< ∞.(6.11)

Also, by (3.4) [i.e., by taking A = ∅ in (3.5)] and (6.2) and Markov’s inequality,

∞∑
n=1

P
[
H

ξ
n,k,ρ(Yn) �= H ∗

n,k,ρ(Yn)
]

≤
∞∑

n=1

nP
[
ξn,k,ρ(Y1, Yn) �= ξ∗

n,k,ρ(Y1, Yn)
]

(6.12)

≤
∞∑

n=1

n1−25/12
E
[∣∣ξn,k,ρ(Y1, Yn)

∣∣5]< ∞.

By (6.11), (6.12) and the Borel–Cantelli lemma,

lim
n→∞n−1(Hξ

n,k,ρ(Yn) − EH ∗
n,k,ρ(Yn)

)= 0 a.s.(6.13)

Also, {ξn,k,ρ(Y1, Yn), n ≥ 1} are uniformly integrable by (3.4), so

n−1∣∣EH
ξ
n,k,ρ(Yn) − EH ∗

n,k,ρ(Yn)
∣∣

≤ E
∣∣ξn,k,ρ(Y1, Yn) − ξ∗

n,k,ρ(Y1, Yn)
∣∣(6.14)

= E
[∣∣ξn,k,ρ(Y1, Yn)

∣∣1{∣∣ξn,k,ρ(Y1, Yn)
∣∣> n5/12}]→ 0 as n → ∞.
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Finally, by (3.7) we have that

E
[
n−1H

ξ
n,k,ρ(Yn)

]→ ∫
M

E
[
ξ(0, Hκ(y))

]
κ(y) dy,

and by (6.13) and (6.14) we have (3.7) with a.s. convergence. �

The following lemma will be used in the proof of Theorem 3.2. It can be proved
by following verbatim the proof of Lemma 4.2 of [35], so we omit details here.
Again we write Y y for Y ∪ {y}.

LEMMA 6.3. Suppose that M ∈ M(m,d) and κ ∈ Pb(M), and ξ is expo-
nentially stabilizing. Let k ∈ Z

+, ρ ∈ (0,∞] and suppose for some p > 2 that
ξ satisfies (3.6). Then there is a constant C > 0 such that for all λ ≥ 1 and all
y, z ∈ K, ∣∣Eξλ,k,ρ

(
y, P z

λ

)
ξλ,k,ρ

(
z, P y

λ

)− Eξλ,k,ρ(y, Pλ)Eξλ,k,ρ(z, Pλ)
∣∣

≤ C exp
(−C−1λ1/m‖z − y‖).

PROOF OF THEOREM 3.3. We show first the asymptotic variance conver-
gence (3.17). Recalling from (2.5) that Pλ is the Poisson point process on M
having intensity measure λκ(y) dy, we have (cf. the proof of Lemma 4.1 of [35])

λ−1 Var
[
H

ξ
λ,k,ρ

]
=
∫

M
E
[
ξλ,k,ρ(y, Pλ)

2]κ(y) dy

(6.15)
+
∫

M

∫
M

{
Eξλ,k,ρ

(
z, P y

λ

)
ξλ

(
y, P z

λ

)
− Eξλ,k,ρ(z, Pλ)Eξλ,k,ρ(y, Pλ)

}
λκ(z)κ(y) dz dy.

Since we assume κ ∈ Pb(M), we can choose an index set I ⊂ N, and a set
of quadruples (yi, δi,Ui, gi)i∈I as in Section 2.1, such that the support κ of K is
contained in finitely many Bδi

(yi), i ∈ I0 := {1, . . . ,m} ⊂ I . Also, we define our
partition of unity here by ψi = 1{Bδi

(yi) \⋃j<i Bδj
(yj )}. Let δ := mini∈I0 δi .

Suppose y, z ∈ K with ‖z − y‖ > δ. Then by Lemma 6.3, the integrand inside
the braces in the double integral in (6.15) is bounded by Cλ exp(−C−1(δλ)1/m),
where the constant C does not depend on λ,y or z. Hence the contribution to the
double integral from such y, z tends to zero.

To estimate the remaining contribution to the double integral, given y take
i = i(y) such that ψi(y) = 1 [so in particular Bδ(y) ⊂ gi(Ui)], and let U ′

i :=
g−1

i (Bδ(y)) and u := g−1
i (y). Then the contribution to inner integral in the double
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integral from z ∈ Bδ(y) is given by∫
U ′

i

{
Eξλ,k,ρ

(
y, P gi(x)

λ

)
ξλ,k,ρ

(
gi(x), P y

λ

)
− Eξλ,k,ρ

(
gi(x), Pλ

)
Eξλ,k,ρ(y, Pλ)

}
λκ̃i(x) dx

=
∫
λ1/m(−u+U ′

i )
Fλ(v, y)κ̃i

(
u + λ−1/mv

)
dv,

where we set

Fλ(v, y) := Eξλ,k,ρ

(
y, P gi(u+λ−1/mv)

λ

)
ξλ,k,ρ

(
gi

(
u + λ−1/mv

)
, P y

λ

)
− Eξλ,k,ρ(y, Pλ)Eξλ

(
gi

(
u + λ−1/mv

)
, Pλ

)
.

By the Poisson analog of Lemma 5.4, together with the moment condition (3.6),
provided y ∈ gi(Ui) is a Lebesgue point of κi , for almost all v ∈ R

m we have as
λ → ∞ that Fλ(v, y) → F(g′

i (u)(v), y), where for x ∈ Ty M we set

F(x, y) := Eξ
(
0, Hx

κ(y)

)
ξ
(
x, H0

κ(y)

)− (Eξ(0, Hκ(y))
)2

.

Also, by (5.3) and the assumed a.e. continuity of κ , almost every y ∈ gi(Ui) is a
Lebesgue point of κ̃i . Moreover, by Lemmas 6.1, 6.3 and 4.1, we have for some
constant C, independent of (λ, y), that |Fλ(v, y)| ≤ C exp(−C−1‖v‖). Hence, us-
ing the representation (2.2) with our chosen partition of unity, by dominated con-
vergence the double integral in (6.15) converges as λ → ∞ to∑

i∈I

∫
g(Ui)

κ(y)ψi(y) dy

∫
Rm

F
(
g′

i(u)(v), y
)
κ̃i(u) dv.(6.16)

We can simplify this limit by the change of variable w = g′
i (u)(v). Then dw =

Dg(u)dv and by (5.3) and then (2.2) the expression (6.16) equals
∑
i∈I

∫
g(Ui)

κ(y)2ψi(y) dy

∫
Ty0 M

F(w,y)dw

(6.17)
=
∫

M

∫
TyM

F(w,y)dwκ(y)2 dy,

so that the double integral at (6.15) tends to this.
On the other hand, by the Poisson analog of Lemma 5.4, the moment

bound (3.6), and dominated convergence, the single integral at (6.15) tends to

lim
λ→∞

∫
M

E
[
ξλ(y, Pλ)

2]κ(y) dy =
∫

M
E
[
ξ(0, Hκ(y))

2]κ(y) dy.(6.18)

Combining the right-hand sides of (6.17) and (6.18), recalling the definition of V ξ

at (3.8), we get from (6.15) that λ−1 Var[Hξ
λ,k,ρ] tends to

∫
M V ξ (y, κ(y))κ(y) dy,

which is (3.17) as desired.
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Now assume (3.6) holds for some p > 3. To prove the normal approximation
result (3.19), we adapt the proof of Corollary 2.4 of [40] (Corollary 2.1 in the arXiv
version), putting f ≡ 1. Recall that the partition of unity has been chosen in such
a way that ψi(y) ∈ {0,1} for all y ∈ M and all i ∈ I . For i ∈ I let

Ki := {y ∈ K :ψi(y) = 1
}
.

As in Sections 4.2 and 4.3 of [40], let ρλ := α logλ for λ > 0, where α is a suitably
chosen large constant; see right after (4.9) of [40]. For each � ∈ I0, cover the
bounded set g−1

� (K�) by a (minimal) collection of cubes of side λ−1/mρλ, denoted
Qi,�,1 ≤ i ≤ V�(λ), where V� = O(λρ−m

λ ).
Fix λ for now. For � ∈ I0 and 1 ≤ i ≤ V�(λ), let Ni,� be the number of points of

Pλ in K� ∩ g�(Qi,�), a Poisson variable with parameter νi,� given by

νi,� := λ

∫
K�∩g�(Qi,�)

κ(y) dy = λ

∫
g−1
� (K�)∩Qi,�

κ̃�(x) dx.

Note that the densities κ̃� are uniformly bounded because Dg�
(·) is uniformly

bounded on g−1
� (K�) by compactness.

Let Xi,�,j denote the j th point of Pλ ∩ K� ∩ g�(Qi,�), when these points are
listed in a randomized order; cf. Section 4.2 of [40]. Then with obvious modifica-
tions, Lemmas 4.2 and 4.3 of [40] still hold in the present setting.

Now follow Section 4.3 of [40], but now defining the graph Gλ := (Vλ, Eλ) as
follows. The set Vλ consists of pairs (i, �),1 ≤ i ≤ V�(λ), � ∈ I0, and the adjacency
Eλ is given by {(i, �), (j, �′)} ∈ Eλ if and only if the distance between g�(Qi,�)∩ K
and g�′(Qj,�′)∩ K is at most 2αλ−1/mρλ. With Si,� defined similarly to Si in [40],
the variables (Si,�, (i, �) ∈ Vλ) have Gλ as a dependency graph.

Next we show that the degrees of the graphs Gλ to be bounded by a constant,
uniformly in λ. By Lemma 4.1, there exists a constant K such that for all (large
enough) λ,

sup
�∈I0

sup
y,z∈Bδ�

(y�)

‖g−1
� (y) − g−1

� (z)‖
‖y − z‖ ≤ K(6.19)

and also

sup
�∈I0

sup
1≤i≤V�(λ)

diam(g�(Qi,�))

λ−1/mρλ

≤ K.(6.20)

If {(i, �), (j, �)} ∈ E , then dist(Qi,�,Qj,�) ≤ 2αKλ−1/mρλ, and for any i the num-
ber of such j is bounded by a constant. Here, for subsets E and F of R

d we put
dist(E,F ) := inf{‖x − y‖ :x ∈ E,y ∈ F }.

Now suppose � �= �′, and fix i ≤ V�(λ). Set B ′ := Bδ�′ (y
′
�). Suppose dist(B ′,

g�(Qi,�) ∩ K) > (3α + K)λ−1/mρλ. Then for each j ≤ V�′(λ), since g�′(Qj,�′) ∩
B ′ �= ∅, using (6.20) we have dist(g�(Qi,�), g�′(Qj,�′) ≥ 3αλ−1/mρλ, so there are
no (j, �′) adjacent to (i, �).
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Suppose instead that dist(B ′, g�(Qi,�) ∩ K) ≤ (3α + K)λ−1/mρλ. Choose w ∈
B ′ such that dist(w,g�(Qi,�) ∩ K) ≤ (3α + K)λ−1/mρλ. Suppose j is such that
{(i, �), (j, �′)} ∈ E . Then by the triangle inequality and (6.20),

dist
(
g�′(Qj,�′),w

)≤ dist
(
g�′(Qj,�′), g�(Qi,�)

)
+ diam

(
g�(Qi,�)

)+ (3α + K)λ−1/mρλ

≤ (5α + 2K)λ−1/mρλ

so by (6.19), dist(Qj,�′, g−1
� (w)) ≤ K(5α + 2K)λ−1/mρλ. Hence the number of

such j is bounded by a constant.
Thus the graphs Gλ have degrees bounded uniformly by a constant independent

of λ, and we can follow the argument in [40] to complete the proof of (3.19).
Finally, if the condition that (3.6) holds for some p > 3 is weakened to (3.6)

holding for some p > 2, then we may similarly adapt the proof of Theorem 2.3
of [40] and show that when σ 2(ξ, κ) > 0, the left-hand side of (3.19) goes to zero,
albeit at a slower rate. That is, in this case (3.18) holds. �

PROOF OF THEOREM 3.2. We now prove the variance asymptotics (3.12).
Recall the definition of V ξ (y, a) at (3.8), and note that the definition (3.10) gives

σ 2(ξ, κ) :=
∫

M
V ξ (y, κ(y)

)
κ(y) dy −

(∫
M

δξ (y, κ(y)
)
κ(y) dy

)2

.(6.21)

The idea here is to follow the de-Poissonization argument in Section 5 of [35]
(with f ≡ 1). To ease notation we write ξλ for ξλ,k,ρ and also �xξλ(y, Y) for
ξλ(y, Y x) − ξλ(y, Y). First we seek an analog of Lemma 5.1 of [35]. Set

γ1 :=
∫

M
Eξ(0, Hκ(y))κ(y) dy;

γ2 :=
∫

M
κ(y)2 dy

∫
Ty M

dv E
[
�vξ
(
0, H′

y,κ(y)

)]
.

We can show by a similar argument to that used already in the proof of Theorem 3.1
that the analog of equation (5.6) of [35] holds; namely if � ∼ λ and m̃ ∼ λ with
� < m̃, then

Eξλ(Y�+1, Y�+1)ξλ(Ym̃+1, Ym̃+1) → γ 2
1 .

Taking the same partition of unity {ψi} as in the proof of (3.17) above, analogously
to (5.7) of [35] we have

�E
[
ξλ(Ym̃+1, Ym̃)�Y�+1ξλ(Y1, Y�)

]
= �
∑
i∈I

∫
M

κ(y) dy

∫
gi(Ui)

ψi(x)κ(x) dx(6.22)

×
∫

M
κ(z) dzE

[
ξλ

(
y, Ym̃−2 ∪ {x, z})�zξλ(x, Y�−1)

]
.
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Using the binomial exponential stabilization and moment conditions, the contri-
bution to (6.22) from z /∈ gi(Ui) can be shown to vanish as λ → ∞. By (5.3),
the remaining contribution to (6.22) can be written, using the change of variable
u = g−1

i (x) and v = g−1
i (z), as

�
∑
i∈I

∫
M

κ(y) dy

∫
Ui

ψi

(
gi(u)
)
κ̃i(u) du

∫
Ui

κ̃i(v) dv

× Eξλ

(
y, Ym̃−2 ∪ {gi(u), gi(v)

})
�gi(v)ξλ

(
gi(u), Y�−1

)
.

By the change of variables w = λ1/m(v − u), this equals

�

λ

∑
i∈I

∫
M

κ(y) dy

∫
Ui

ψi

(
gi(u)
)
κ̃i(u) du

∫
λ1/m(Ui−u)

κ̃i

(
u + λ−1/mw

)
dw

× E
[
ξλ

(
y, Ym−2 ∪ {gi(u), gi

(
u + λ−1/mw

)})
�gi(u+λ−1/mw)(6.23)

× ξλ

(
gi(u), Y�−1

)]
,

and by the analog of Lemma 3.7 of [35] [see also (5.19) and (5.20) of the present
paper], along with the moments conditions and the binomial exponential stabiliza-
tion to provide a dominating function, as λ → ∞ with � ∼ λ and m̃ ∼ λ and � < m̃,
expression (6.23), and hence expression (6.22), tend to the expression∑

i∈I

∫
M

κ(y) dy

∫
Ui

ψi

(
gi(u)
)
κ̃i(u)2 duEξ(0, Hκ(y))

×
∫

Rm
dw E�g′

i (u)(w)ξ
(
0, H′

gi(u),κ(gi(u))

)

= γ1
∑
i∈I

∫
Ui

ψi

(
gi(u)
)
κ̃i(u)2 du(6.24)

×
∫

Tgi (u)M
E�vξ

(
0, H′

gi(u),κ(gi(u))

)(
Dgi

(u)
)−1

dv

= γ1γ2,

which is analogous to (5.13) of [35]. Similarly, �Eξλ(Y�+1, Y�)�
Ym̃+1ξλ(Y1, Ym̃)

converges to γ1γ2, analogously to equation (5.16) in [35]. Moreover, as in (5.17)
of [35], E�Y�+1ξ(Y1, Y�)�

Ym̃+1ξ(Y2, Ym̃) is here equal to

λ−2
∑
i∈I0

∑
j∈I0

∫
Ui

∫
Uj

ψi

(
gi(x)
)
κ̃i(x) dxψj

(
gj (w)

)
κ̃j (w)dw

×
∫
λ−1/d (−x+Ui)

κ̃i

(
x + λ−1/du

)
λdu

×
∫
λ−1/d (−w+Ui)

κ̃j

(
w + λ−1/dv

)
λdv
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× E�gi(x+λ−1/du)ξλ

(
gi(x), Y gj (w)

�−2

)
�gj (w+λ−1/dv)ξλ

(
gj (w),

Y gi(x)

m̃−3 ∪ {gi

(
x + λ−1/du

)})+ o(1)

and by the analog of Lemma 3.7 of [35] [see also (5.19) of the present paper],
along with the moments conditions and the binomial exponential stabilization to
provide a dominating function, as λ → ∞ with � ∼ λ and m̃ ∼ λ, this tends to the
expression

∑
i∈I0

∑
j∈I0

∫
Ui

∫
Uj

ψi

(
gi(x)
)
κ̃i(x)2 dx ψj

(
gj (w)

)
κ̃j (w)2 dw

×
∫

Rm
E�g′

i (x)(u)ξ(0, Hκ(gi(x))) du ×
∫

Rm
E�

g′
j (w)(v)

ξ
(
0, H′

gi(w),κ(gi(w))

)
dv

=
(∑

i∈I0

∫
gi(Ui)

ψi(y)κ(y)2 dy

∫
Ty M

E�zξ
(
0, H′

y,κ(y)

)
dz

)2

=
(∫

M
κ(y)2 dy

∫
Ty M

E�zξ
(
0, H′

y,κ(y)

)
dz

)2

= γ 2
2 .

Then by arguments similar to those in the proof of Lemma 5.1 of [35], we have a
similar result here with the squared integral in equation (5.2) of [35] replaced here
by

(γ1 + γ2)
2 =
(∫

M
δξ (y, κ(y)

)
dy

)2

,

and so we obtain limn→∞ n−1 Var[Hξ
n ] = σ 2(ξ, κ). Given this, by using Theo-

rem 3.3, following verbatim the proof of Theorem 2.3 of [35], using the case
p = 2 of (6.5) (in place of Lemma 5.2 of [35]), we can obtain the desired (3.11)
and (3.12). �

REMARK. The method of proof given in this section shows that our general
results can be extended to a broader class of ξ , potentially providing the limit the-
ory for some of the statistics mentioned in the penultimate paragraph of Section 1.
This goes as follows. Consider the class Fc of functionals ξ which are continuous
in the sense of Definition 5.1 and which stabilize over homogeneous Poisson point
processes in the sense that (6.1) holds when Y is a homogeneous Poisson point
process and Rλ(y, Y) < ∞ a.s. Then the above proof of Theorem 3.1 shows that
the conclusion of Theorem 3.1 holds when �(k, r) is replaced by Fc. Likewise, if
Fc(κ) ⊂ Fc consists of ξ ∈ Fc which are exponentially stabilizing and binomially
exponentially stabilizing for κ , then Theorems 3.2 and 3.3 hold when �(k, r) is
replaced by Fc(κ).
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7. Proofs of Theorems 2.1–2.5.

7.1. Proof of Theorem 2.1. We require some additional lemmas. Observe
that the functional ζk(y, Y), defined at (2.9), is scale invariant, namely satisfies
ζk(y, Y) = ζk(ay, aY) for all a > 0; cf. remark (ii) in Section 3. Recall that for all
a ∈ (0,∞), Ha is a homogeneous Poisson point process of intensity a in R

m.

LEMMA 7.1. Let k > 3. For all a > 0 we have Eζk(0, Ha) = m and
Var[ζk(0, Ha)] = m2/(k − 3).

PROOF. If Nj := Nj(0, Ha), then conditionally on Nk , the random variables
(Nj/Nk)

m,1 ≤ j ≤ k − 1, are distributed as the order statistics of a sample of size
k − 1 from the uniform distribution on [0,1], and therefore −m log(Nj/Nk),1 ≤
j ≤ k − 1, are distributed as the order statistics of a sample of size k − 1 from
a standard exponential distribution. Thus the sum U := m

∑k−1
j=1 log(Nk/Nj ) has

a Gamma(k − 1,1) distribution and ζk(0, Ha) = (k − 2)mU−1. Since E[U−1] =
(k − 2)−1 and since E[U−2] = ((k − 2)(k − 3))−1, we have Eζk(0, Ha) = m and
Eζ 2

k (0, Ha) = m2(k − 2)/(k − 3), which gives the result. �

For all k ∈ Z
+, λ > 0, ρ > 0 we put ζλ,k,ρ(y, Y) := ζk(λ

1/my,λ1/mY) ×
1{Nk(y, Y) ≤ ρ}; by scale invariance ζλ,k,ρ(y, Y) = ζλ,k,ρ(y, Y). The next lemma
shows that ζλ,k,ρ satisfies the moment bounds in the hypotheses of Theorems 3.1–
3.2. Recall that for i ∈ Z

+, Si denotes all subsets of K(κ) of cardinality at most i.

LEMMA 7.2. Let M ∈ M and κ ∈ Pc(M). With ρ1 as in Lemma 4.3, we have
for ρ ∈ (0, ρ1), p > 1, k ∈ Z

+ and i ∈ Z
+ that

sup
y∈K,n∈N,A∈Si

E
[
ζk,ρ(y, Yn ∪ A)p

]
< ∞ if k > p + 1 + i;(7.1)

sup
y∈K,λ≥1,A∈Si

E
[
ζk,ρ(y, Pλ ∪ A)p

]
< ∞ if k > p + 1 + i.(7.2)

PROOF. We first show (7.1). Fix p > 1. Let t0 ∈ (2p,∞) be such that
exp(t−1/p) < 1 + 2t−1/p for all t ∈ (t0,∞). Let x ∈ K, n ∈ N, A ∈ Si . For
j ∈ {1, . . . , k − 1}, let Nj := Nj(y; Yn ∪ A). Then ζk,ρ(y, Yn ∪ A) = (k −
2)(
∑k−1

j=1 log(Nk/Nj ))
−11{Nk < ρ}, and

(k − 2)−p
Eξk,ρ(y, Yn ∪ A)p = E

[(
k−1∑
j=1

log
Nk

Nj

)−p

1{Nk < ρ}
]

≤ t0 +
∫ ∞
t0

P

[(
k−1∑
j=1

log
Nk

Nj

)−p

1{Nk < ρ} > t

]
dt.
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Let PNk
denote the probability distribution of Nk . Conditioning on Nk we obtain

(k − 2)−p
Eξk,ρ(y, Yn ∪ A)p

≤ t0 +
∫ ∞
t0

∫ ρ

0
P

[
k−1∑
j=1

log
Nk

Nj

< t−1/p|Nk = u

]
dPNk

(u) dt(7.3)

≤ t0 +
∫ ∞
t0

∫ ρ

0
P

[
log

Nk

N1
< t−1/p|Nk = u

]
dPNk

(u) dt,

and by choice of t0, for all t ∈ (t0,∞), we have

P
[
log(Nk/N1) < t−1/p|Nk = u

] ≤ P
[
(Nk/N1) < 1 + 2t−1/p|Nk = u

]
= P
[
N1 > Nk/

(
1 + 2t−1/p)|Nk = u

]
(7.4)

≤ P
[
N1 > Nk

(
1 − 2t−1/p)|Nk = u

]
.

Given Nk = u, there are k − 1 − card(A ∩ Bu) points of Yn in the interior of
Bu(y), and to have N1 > u(1 − 2t−1/p) it is necessary for these points to all lie
in At,u(y), where we set At,u(y) := Bu(y) \ Bu(1−2t−1/p)(y). For u ∈ (0, ρ] and
ρ < ρ1, Lemma 4.3 gives∫

At,u(y)∩M
dy ≤ C1

(
um − (u(1 − 2t−1/p))m)≤ 2mC1mt−1/pum,

and
∫
BK

u (y1)
dy ≥ C−1

0 um. Thus by the boundedness assumptions on κ , for all u ∈
(0, ρ],

P
[
N1 > Nk

(
1 − 2t−1/p)|Nk = u

]≤ (
∫
At,u(y)∩M κ(z) dz∫
Bu(y)∩M κ(z) dz

)k−1−i

(7.5)
≤ C
(
t−1/p)k−1−i

.

Combining this with (7.3) and (7.4) yields

(k − 2)−p
Eζk,ρ(y, Yn ∪ A)p ≤ t0 +

∫ ∞
t0

C
(
t−1/p)k−1−i

dt,

which is finite and independent of n if k > p + 1 + i. This gives us (7.1), and the
proof of (7.2) is just the same. �

PROOF OF THEOREM 2.1. First we prove (2.12). Given ρ > 0, we have

P
[
m̂k,ρ(Yn) �= m̂k(Yn)

]≤ P

[⋃
i≤n

{
Nk(Yi, Yn) ≥ ρ

}]
(7.6)

≤ nP
[
Nk(Yn, Yn) ≥ ρ

]
.
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Now Nk(Yn, Yn) ≥ ρ if and only if there are at most k − 1 points of Yn−1 in
Bρ(Yn). By Lemma 4.3 there exists p > 0 such that P [Y1 ∈ Bρ(y)] ≥ p for all
y ∈ K. Hence by a Chernoff-type large deviations estimate for the binomial distri-
bution (see, e.g., Lemma 1.1 of [34]), provided (n − 1)p ≥ 2(k − 1) we have for
some constant C independent of n that

nP
[
Nk(Yn, Yn) ≥ ρ

]≤ n exp
(−C−1(n − 1)p

)
,

which is summable in n, so that assertion in (2.12) follows by (7.6) and the Borel–
Cantelli lemma.

We now prove the remaining assertions of Theorem 2.1 with ρ1 as in
Lemma 4.3. It suffices to show that ζk,ρ, k ∈ N, as defined at (2.10), satisfy the
conditions of Theorems 3.1–3.2. Since ζk is a continuous function of the k nearest
neighbor distances, it belongs to the class �(k, r). Lemma 7.2 establishes that ζk,ρ

satisfies the moment condition (3.4) when k > p + 1. It follows by Theorem 3.1
with q = 2 there, and Lemma 7.1 that limn→∞ m̂k,ρ(Yn) = m in L2. Combined
with (2.12), this implies the stated convergence in probability (2.13) for m̂k(Yn).

If also k ≥ 10, then by taking i = 3 in (7.1), ξk,ρ satisfies (3.5) for p = 5.5.
Hence by Theorem 3.1 we have limn→∞ m̂k,ρ(Yn) = m almost surely. Combined
with (2.12) this gives (2.13) with a.s. convergence.

To obtain the limits (2.14) and (2.15), observe that for k ≥ 7, the moment
bound (7.1) (with i = 3) is satisfied for p = 2.5, so taking ξ ≡ ζk we have con-
ditions (3.5) and (3.6) with p = 2.5. Therefore we can apply Theorem 3.2 for
this ξ , and since it is scale invariant, by (3.14) and Lemma 7.1 the limiting vari-
ance σ 2(ζk, κ) appearing in Theorem 3.2 equals the right-hand side of (2.14), so
(2.14) and (2.15) follow. Finally, Lemma 7.3 completes the proof of Theorem 2.1.

�

LEMMA 7.3. With σ 2
k given by (2.14), it is the case that σ 2

k > 0.

PROOF. Since they are given by (2.6) and (2.7), the expressions V ζk and
δζk in (2.14) depend only on m and not on d or κ . Hence by using the part
of Theorem 2.1 that we have already proved, in the special case where d =
m and κ is a uniform distribution on the unit cube in R

m, we have σ 2
k =

limn→∞ nVar[m̂k,ρ(Xn)], where Xn is a point process consisting of n indepen-
dent uniformly random vectors in a unit cube in R

m. By the definition (2.8) and
scale invariance of ζk , we have

σ 2
k = lim

n→∞n−1 Var
∑

X∈Xn

ζk

(
n1/mX,n1/mXn

)
,

and so it is enough to show that

lim inf
n→∞ n−1 Var

∑
X∈Xn

ζk

(
n1/mX,n1/mXn

)
> 0.



2200 M. D. PENROSE AND J. E. YUKICH

This can be done, either by the method of Penrose and Yukich (Section 5 of [38]),
or by the method of Avram and Bertsimas (Proposition 5 of [2], which can be
adapted to binomial input). The particular functional under consideration here is
not considered in those references, but the general approaches are well known so
we omit further details. �

7.2. Proof of Theorems 2.2–2.5. Recall that Yi are i.i.d. with density κ and
that N1(y, Y) is the Euclidean distance between y and its nearest neighbor in Y ,
or +∞ if Y \ y is empty. To help deal with the possibility that a Poisson process
Pλ has no elements, define

Ñ1(y, Y) :=
{

N1(y, Y), Y \ y �= ∅,
0, Y \ y = ∅.

The proofs of Theorems 2.2–2.4 depend in part on the following lemmas.

LEMMA 7.4. Suppose κ ∈ Pc(M). There is a constant C such that for all
n ≥ 3, λ ≥ 1, n ≥ 4 and � ∈ [n/2,3n/2], y ∈ K, A ∈ S3 and t ∈ (0,∞) we have

P
[
N1
(
n1/my,n1/m(Y� ∪ A)

)
> t
]≤ exp

(−C−1tm
);(7.7)

P
[
Ñ1
(
λ1/my,λ1/mPλ

)
> t
]≤ exp

(−C−1tm
)
.(7.8)

PROOF. These bounds can be deduced from the proof of Lemma 6.1, but
we prefer to argue directly, as follows. Letting α(t, y, n) be the nκ measure of
BM

tn−1/m(y), we have

P
[
N1
(
n1/my,n1/m(Y� ∪ A)

)
> t
]= (1 − α(t, y, n)

)�
(7.9)

≤ exp
(−�α(t, y, n)/n

)
.

By Lemma 4.3, there is a constant C such that uniformly in n ≥ 3, y ∈ K, and t ∈
(0,�), we have α(t, y, n) ≥ C−1tm, which gives (7.7) for t < �, and clearly (7.7)
holds for t ≥ �. The second bound (7.8) is proved similarly. �

LEMMA 7.5. If κ is bounded and δ ∈ (0,m), then supn E[N1(n
1/mY1,

n1/mYn)
−δ] < ∞.

PROOF. Set Fn,y(t) := P [N1(n
1/my,n1/mYn−1) ≤ t]. Then

E
[
N1
(
n1/mY1, n

1/mYn

)−δ]= ∫
M

∫ ∞
0

t−δ dFn,y(t)κ(y) dy.

As in (7.9), we have for n large and all y ∈ K, t ∈ (0,1) that

P
[
N1
(
n1/my,n1/mYn−1

)
> t
]= (1 − α(t, y, n)

)n−1 ≥ exp
(−2(n − 1)α(t, y, n)

)
,
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where α(t, y, n) ≤ Ctm/n by Lemma 4.3. Thus for t ∈ (0,1) we obtain that

Fn,y(t) = 1 − P
[
N1
(
n1/my,n1/mYn−1

)
> t
]

(7.10)
≤ 1 − exp

(−3Ctm
)≤ 3Ctm.

Hence by Fubini’s theorem we have for all y ∈ K that∫ ∞
0

t−δ dFn,y(t) = δ

∫ ∞
0

t−δ−1Fn,y(t) dt ≤ δC

∫ 1

0
tm−δ−1 dt + δ

∫ ∞
1

t−δ−1 dt,

which is finite if δ ∈ (0,m). Integrating over y ∈ K gives the result. �

PROOF OF THEOREM 2.2. Let q = 1 or q = 2. If α > 0 and κ ∈ Pc(M), then
Lemma 7.4 shows that supn E[N1(n

1/mY1, n
1/mYn)

αp] < ∞ for all p > 0. If α ∈
(−m/q,0) and κ is bounded, and if then p > q is chosen so that −m < αp < 0,
then Lemma 7.5 gives E[N1(n

1/mY1, n
1/mYn)

αp] < ∞.
Thus, in all these cases the moment condition (3.4) holds for ξ = Nα

1 and
some p > q . Since Nα

1 belongs to the class �(k, r), limit (2.18) (with Lq conver-
gence) thus follows from Theorem 3.1, the fact that Nα

1 is homogeneous of order
α [see (3.13)], and the identity E[Nα

1 (0, H)] = mωm

∫∞
0 uα+m−1 exp(−ωmum)du

which yields

E
[
Nα

1 (0, H)
]= π−α/2

(
�

(
1 + m

2

))α/m

�

(
1 + α

m

)
;(7.11)

see also (15) of Wade [44]. Moreover, in the first case [α > 0 and κ ∈ Pc(M)],
Lemma 7.4 shows that the moment condition (3.5) holds for p > 6, and so by
Theorem 3.1 we obtain the a.s. convergence at (2.18). This completes the proof of
Theorem 2.2. �

PROOF OF THEOREM 2.3. First assume α > 0. To prove variance asymptotics
and (2.20) it suffices to show that the functional Ñα

1 satisfies the conditions of The-
orem 3.2. Since we assume κ ∈ Pc(M), Lemma 7.4 is applicable, showing that
the moment conditions (3.5) and (3.6) hold when ξ ≡ Ñα

1 . The conditions of The-
orem 3.2 are all satisfied, so that result gives variance asymptotics (3.11) and the
central limit theorem (3.12) for ξ ≡ Ñα

1 . Also, this choice of ξ is homogeneous of
order α, so that (3.14) is applicable with β = α, and applying this identity to (3.11)
and (3.12) gives the results (2.19) and (2.20) for α > 0, subject to showing that
σ 2 > 0 in (2.19).

Now assume α ∈ (−m/2,0). We cannot directly apply Theorem 3.2 because the
moment bound (3.6) fails since if A = {z}, the distance between y and z can be
made arbitrarily small, and thus Ñα

1,λ(y, Pλ ∪ {z}) can be made arbitrarily large.
Instead we use a truncation argument and follow the approach of [3]. Put φ(x) =
xα for x > 0 with φ(0) = 0. Given ε > 0 define the functions

φ(ε)(x) :=
{

φ(x), if x ≥ ε,
0, otherwise
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and φ(ε)(x) := φ(x) − φ(ε)(x). Let Ñ
α,ε
1 (y, Y) := φ(ε)(Ñ1(y, Y)).

Let ε > 0. Then the moment bounds (3.6) and (3.5) (with ρ = ∞) hold for
ξ ≡ Ñ

α,ε
1 for p = 3 (say), because φ(ε)(y, Y) ≤ εα for all y, Y . Thus we may

apply Theorem 3.2 to deduce that as n → ∞, n−1 Var[HÑ
α,ε
1

n (Yn)] converges to
σ 2(Ñ

α,ε
1 , κ) and

n−1/2(HÑ
α,ε
1

n (Yn) − EH
Ñ

α,ε
1

n (Yn)
) D−→ N

(
0, σ 2(Ñα,ε

1 , κ
))

.(7.12)

To complete the proof, we adapt arguments in [4], given in detail in [3], as follows.
To make the link with [3], for 1 ≤ i ≤ m we set Ni,m := N1(Yi, Ym), giving the
identification Ñα

1,n(Yi, Yn) = φ(nNm
i,n).

The equivalent of Lemma 5.1 of [3] is given by Lemma 7.6 below. Let us assume
this for now. Lemma 5.2 of [3] remains valid here modulo some small notational
modifications; the H featuring in that result should be considered now as a ho-
mogeneous Poisson process in R

m. Likewise, Lemma 5.3 of [3] carries over with
straightforward modifications. By the proof of Lemma 5.5 of [3], we can show that

lim
ε→0

σ 2(Ñα,ε
1 , κ
)= σ 2(Ñα

1 , κ
)
.(7.13)

With (7.13) established, the variance asymptotics (2.19) and central limit theo-
rem (2.20) follow along the lines of the proof of Theorem 2.1 of [3].

Now assume either α > 0 or α ∈ (−m/2,0). To show positivity of the limiting
variance in (2.19), we would like to follow the approach used to show positivity
of σ 2

k in Lemma 7.3. In this case we do not have scale invariance. However, since
κ is a probability density function, for any ξ ∈ �(k, r) we have from (3.10) and
Jensen’s inequality that

σ 2(ξ, κ) ≥
∫

M

{
V ξ (κ(y)

)− δξ (κ(y)
)2}

κ(y) dy,(7.14)

so it suffices to show that when we take ξ ≡ Nα
1 , the integrand in the braces in the

right-hand side of (7.14) is strictly positive. By what we have already proved,

V Nα
1 (a) − (δNα

1 (a)
)2 = lim

n→∞n−1 VarRα(n1/mXn

)
,

where now Xn is a point process consisting of n independent, uniformly distributed
random vectors in a cube of volume a−1 in R

m. This limit can be shown to be
strictly positive by using the methods of [2] or [38].

Finally we prove (2.21). By (2.7) and (7.11) we have

δNα
1 = π−α/2

(
�

(
1 + m

2

))1/m

�

(
1 + α

m

)
+
∫

Rm
f (x) dx,(7.15)

where for x ∈ R
m we here set f (x) := ENα

1 (0, Hx) − ENα
1 (0, H), so that

f (x) =
∫

Rm\B‖x‖(0)

(‖x‖α − ‖y‖α) exp
(−ωm‖y‖m)dy
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and hence by Fubini’s theorem,∫
Rm

f (x) dx =
∫

Rm
dy exp

(−ωm‖y‖m) ∫
B‖y‖(0)

(‖x‖α − ‖y‖α)dx

=
(−αω2

mm

α + m

)∫ ∞
0

rα+2m−1 exp
(−ωmrm)dr

= −
(

αω
−α/m
m

α + m

)
�(2 + α/m) = −(α/m)ω−α/m

m �(1 + α/m).

Substituting back into (7.15) gives us (2.21), completing the proof of Theorem 2.3.
�

We state the equivalent of Lemma 5.1 of [3]. Recall Ni,m := N1(Yi, Ym).

LEMMA 7.6. Suppose K ∈ Pc(M). Let φ(ε)(·) be as in the proof of Theo-
rem 2.3. Given δ > 0 there exists ε0 > 0 and n0 > 0 such that for ε ∈ (0, ε0) and
n ≥ n0 we have Var

∑n
i=1 φ(ε)(nNm

i,n) ≤ δ.

PROOF. We may proceed as in [3] with only minor modifications as far
as (5.4) of [3], but more effort is required to adapt the proof of (5.19) of [3]. To do
this, set Y = Yn+1 (corresponding to X in [3]), and for 1 ≤ j ≤ J define the open
cones Wj with vertex Y , just as in [3] (these cones cover R

d , not just the tangent
hyperplane at Y ).

Let Ij,n := 1{Yn ∩ Wj(Y ) �= ∅}. If Ij,n = 1, then set Zj,n to be the nearest
neighbor of Y in Yn ∩ Wj(Y ); otherwise set Zj,n := Y . Set Rj,n := ‖Zj,n − Y‖.
Noting that |φ(ε)(·)| is nonincreasing on (0, ε), we have as in (5.5) of [3] that∣∣∣∣∣

n∑
i=1

(
φ(ε)

(
nNm

i,n+1
)− φ(ε)

(
nNm

i,n

))∣∣∣∣∣≤ 2
J∑

j=1

Ij,n

∣∣φ(ε)

(
nRm

j,n

)∣∣.(7.16)

Using the last inequality in (4.12) of the current paper, we have, similarly
to (5.6) of [3], that there is a constant K6 such that P [Rm

j,n > r] ≥ (1 − K6r)
n,

and therefore there is a constant K7 such that for 0 < t ≤ 1 and large enough n we
have

P
[
nRm

j,n > t
]≥ (1 − K6t/n)n ≥ exp(−K7t).

We may follow the argument given after (5.7) of [3] to obtain the analog to (5.9)
of [3] (with Nm

i,n instead of the D
g
i,n,k of [3]). We can then continue as in the proof

of the case K = R
d of Lemma 5.1 of [3], to complete the proof. �

Before proving Theorem 2.4 we need some preliminary results. Recall that
ψ(y, Y) := log(eγ ωmNm

1 (y, Y)). If Y \ {y} = ∅, let us set ψ(y, Y) := 0. For all
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a ∈ (0,∞) we claim that

Eψ(0, Ha) = γ + a

∫ ∞
0

(logu)e−au du = − loga.(7.17)

The first equality of (7.17) follows since the probability that the volume of the
nearest neighbor ball around 0 exceeds u is e−au, and the second equality fol-
lows since

∫∞
0 log(w)e−w dw = −γ ; see, for example, [22], page 107. Also, since∫∞

0 (logw)2e−w dw = γ 2 + π2/6, we have

Eψ(0, Ha)
2 =
∫ ∞

0
(γ + logu)2ae−au du

= γ 2 + 2(−γ − loga)γ + a

∫ ∞
0

(logu)2e−au du(7.18)

= π2/6 + (loga)2.

Let V ψ and V ψ(a) be given by setting ξ ≡ ψ in (2.6) and (3.8), respectively.

LEMMA 7.7. It is the case that σ 2(ψ, κ) = V ψ − m−2 + Var[log(κ(Y1))].

PROOF. Using (3.8), (7.17) and (7.18), and setting v = a1/mu, we have that

V ψ(a) − (loga)2 − π2/6

=
∫

Rm

{
Eψ
(
0, Ha−1/mv

a

)
ψ
(
a−1/mv, H0

a

)− (Eψ(0, Ha)
)2}

dv

and since Ha = a−1/mH in distribution, the last displayed expression is

=
∫

Rm

{
Eψ
(
0, a−1/mHv)ψ(a−1/mv, a−1/mH0)− (Eψ

(
0, a−1/mH

))2}
dv.

By definition we always have ψ(ty, t Y) = ψ(y, Y) + m log t , so the preceding
display is

=
∫

Rm

{
E
[(

ψ
(
0, Hv)− loga

)(
ψ
(
v, H0)− loga

)]− (Eψ(0, H) − loga
)2}

dv

= V ψ − π2/6 − 2(loga)δψ,

so

V ψ(a) = (loga)2 + V ψ − 2δψ loga.(7.19)

Using (3.9) and (7.17), and setting v = a1/mu, we have that

δψ(a) + loga =
∫

Rm
E
[
ψ
(
0, Ha−1/mv

a

)− ψ(0, Ha)
]
dv

=
∫

Rm
E
[
ψ
(
0, a−1/mHv)− ψ

(
0, a−1/mH

)]
dv = δψ .
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Setting I1,j (κ) := ∫M(logκ(y))j κ(y) dy for j = 1,2, we may use (3.10)
and (7.19) to deduce that

σ 2(ψ, κ) = V ψ + I1,2(κ) − 2δψI1,1(κ) − (δψ − I1,1(κ)
)2

(7.20)
= V ψ − (δψ )2 + I1,2(κ) − I 2

1,1(κ).

Moreover, by (2.7) and (7.17) we have δψ = ∫
Rd f (x) dx, where here we set

f (x) := −mE
[
log
(
N1(0, H)/N1

(
0, Hx))]

= −
∫ ∞

0
P
[
N1(0, H) > ‖x‖et ]dt = −

∫ ∞
0

exp
(−ωm‖x‖metm)dt

so that setting v = ωm‖x‖m we have

−δψ =
∫ ∞

0

∫ ∞
0

exp
(−vetm)dt dv =

∫ ∞
0

e−tm dt = m−1.

Substituting this into (7.20) gives the result claimed. �

LEMMA 7.8. Suppose either (i) that κ ∈ Pb(M), or (ii) that m = d and
M = R

d and rc(κ) > 0. Then there exists δ > 0 such that supn E[N1(n
1/mY1,

n1/mYn)
δ] < ∞.

PROOF. First consider case (ii). Choose δ small enough so that rc(κ) >

δd/(d − δ). Then by the proof of Theorem 13.3 of [41] (Theorem 2.3 in the arXiv
version) (with δ corresponding to αp in that proof), E[N1(n

1/mY1, n
1/mYn)

δ] is
bounded as asserted.

Now assume case (i) instead. We adapt the proof of Theorem 13.3 of [41] to
manifolds. Let ((yi, δi,Ui, gi), i ∈ I0) be as in Section 2.1, and take a finite I0 ⊂ I
such that K ⊂⋃i∈I0

Bδi
(yi). Assume I0 = {1, . . . , i0} for some i0, and write Ai

for Bδi
(yi) \⋃j<i Bδj

(yj ). For any finite Y write Lδ(Y) for
∑

y∈Y N1(y, Y)δ with
Lδ(Y) = 0 if card(Y) ≤ 1. Similarly to (3.4) of [41], we have

E
[
N1
(
n1/mY1, n

1/mYn

)δ]= nδ/m−1
E
[
Lδ(Yn)

]
,(7.21)

and using the boundedness of K we have, similarly to (3.6) of [41],

Lδ(Yn) ≤
i0∑

i=1

Lδ(Yn ∩ Ai) + C.(7.22)

Similarly to (3.7) of [41], by combining (7.21) and (7.22) we have

E
[
N1
(
n1/mY1, n

1/mYn

)δ]= nδ/m−1
E

[
i0∑

i=1

Lδ(Yn ∩ Ai) + C

]
,
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and by Jensen’s inequality this remains bounded, provided we can establish the
deterministic bound, for all finite Y ⊂ Ai ,

Lδ(Y) ≤ C
(
card(Y)

)1−δ/m
.(7.23)

By Lemma 4.1, there is a constant C such that for all finite Y ⊂ Ai and x ∈ Y ,
taking y to be a nearest neighbor of x in Y , and also taking g−1

i (z) to be a nearest
neighbor of g−1

i (x) in g−1
i (Y), we have that

N1(x, Y) = ‖y − x‖ ≤ ‖z − x‖ ≤ C
∥∥g−1

i (z) − g−1
i (x)

∥∥= CN1
(
g−1

i (x), g−1
i (Y)

)
.

Hence, Lδ(Y) ≤ CLδ(g−1
i Y), and using Lemma 3.3 of [45], we have (7.23) as

asserted. �

PROOF OF THEOREM 2.4. To prove the L2 convergence at (2.22) we shall
apply Theorem 3.1. Note that ψ belongs to �(k, r), and thus it suffices to verify
under either of the hypotheses of Theorem 2.4 that ξ ≡ ψ satisfies the moment
condition (3.4) for p = 3. Set N1 := N1(n

1/mY1, n
1/mYn). It will suffice to show

that supn E| logNm
1 |p < ∞. Given δ ∈ (0,1), we can choose a constant C such that

| log t |p ≤ Ct−δ for t ∈ [0,1] and | log t |p ≤ Ctδ for t ∈ [1,∞). Then

E
∣∣logNm

1

∣∣p ≤ CE
[
N−δ

1 + Nδ
1
]
.(7.24)

By Lemmas 7.5 and 7.8, the right-hand side of (7.24) is bounded, provided δ is
chosen small enough. Hence we can apply Theorem 3.1, yielding

lim
n→∞n−1S

(
n1/mYn

)= ∫
M

E
[
ψ(0, Hκ(y))

]
κ(y) dy = −

∫
M

log
(
κ(y)
)
κ(y) dy

in L2,

by (7.17). Thus (2.22) holds.
Now we suppose κ ∈ Pc(M) and prove the variance asymptotics (2.23) and

central limit theorem (2.24). We cannot directly apply Theorem 3.2 because the
moment bound (3.6) fails since if A = {z}, the distance between y and z can be
made arbitrarily small. As in the proof of the case α < 0 of Theorem 2.3 we use a
truncation argument, defining for all ε > 0 the function

log(ε)(x) :=
{

log(x), if x ≥ ε,
0, otherwise.

Let ψε be defined as ψ , with log replaced by log(ε).
As in the proof of Theorem 2.3 we may show that the moment bounds (3.6)

and (3.5) hold (with ρ = ∞) for ψε for some p > 2. The case A = ∅ of (3.6)
follows from the bound

sup
λ≥1,y∈K

E
∣∣ψ(λ1/dy, λ1/d Pλ

)∣∣p < ∞,(7.25)
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which is proved similar to (3.4) which we have already established. For the case
A = {z}, observe that

ψε(λ1/my,λ1/m(Pλ ∪ {z}))
= ψε(λ1/my,λ1/mPλ

)
1
{
N1(y, Pλ) ≤ ‖y − z‖}(7.26)

+ log(ε)(eγ ωmλ‖y − z‖m)1{N1(y, Pλ) > ‖y − z‖}.
The first term on the right-hand side of (7.26) has bounded pth moment, which
may be proved similarly to the proof of (3.4). Since the function | log(·)| is de-
creasing on (0,1) and increasing on (1,∞), provided ε < 1 the absolute value of
the last term in (7.26) is bounded by | log(ε)| if eγ ωmλ‖y − z‖m < 1, and oth-
erwise is bounded by |ψε(λ1/my,λ1/mPλ)|, which has bounded pth moment, as
noted already. This gives us (3.6), and the argument for (3.5) is similar.

By Theorem 3.2, as n → ∞, we deduce that n−1 Var[Hψε

n (Yn)] converges to
σ 2(ψε, κ) and

n−1/2(Hψε

n (Yn) − EHψε

n (Yn)
) D−→ N

(
0, σ 2(ψε, κ

))
.(7.27)

To complete the proof, we adapt arguments in [4], given in detail in [3], as fol-
lows. To make the link with [3], put φ(x) := log(eγ ωmx) in Section 5 of [3], and
also for 1 ≤ i ≤ m, set Ni,m := N1(Yi, Ym), giving the identification ψn(Yi, Yn) =
φ(nNm

i,n). Set log(ε)(x) = log(x) − log(ε)(x) and φε(x) := log(ε)(e
γ x). It is eas-

ily seen with this choice of φ that Lemma 7.6 holds [follow that proof verbatim,
choosing ε small enough so that |φε(·)| is nonincreasing on (0, ε)]. It now suffices
to follow the proof of Theorem 2.3 for the case α ∈ (−m/2,0).

It remains only to show σ 2(ψ, κ) > 0. We again follow the approach used in
the proof of positivity in Theorem 2.3. By (2.23), it is enough to show that the
expression V ψ − (δψ)2, is strictly positive. This can be shown to be nonnegative
as in the proof of positivity in Theorem 2.3, and we leave the details to the reader.

�

PROOF OF THEOREM 2.5. Let β ∈ (0,∞). Let ϕk(y, Y) := ϕ
(β)
k (y, Y) be

(k + 1)−1 times the number of k-simplices containing y in Rβ(Y), that is,
(k +1)−1 times the number of unordered (k +1)-tuples of points in Y , all pairwise
within β of each other, and including y. Then

C(β)
k (Y) =∑

y∈Y
ϕk(y, Y).(7.28)

We want to show that ϕk satisfies the conditions of Theorems 3.1 and 3.2. Note that
ϕk ∈ �(0, r) if r > β . For any y ∈ K, A ∈ S3 and k, � ∈ N, ϕk(n

1/my,n1/m(Y� ∪
A)) is bounded by (3 + Cβ(n))k , where we set Cβ(n) := ∑�

i=1 1{‖Yi − Y1‖ <

βn−1/m}, which is binomially distributed with parameters � and the κ measure
of Bβn−1/m(y). Assuming κ is bounded, there is a constant C such that the latter
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parameter is at most C�−1, uniformly in y. Hence Cβ(n) is stochastically bounded
by a binomial random variable with parameters � and C�−1, and thus for any
p ≥ 1, ϕk satisfies the moment condition (3.5), and hence also (3.4). Therefore by
using Theorem 3.1 and (7.28), we have

lim
n→∞n−1Cβ

k

(
n1/mYn

)= lim
n→∞n−1Hϕk

n (Yn)

(7.29)
=
∫

M
Eϕ

(β)
k (0, Hκ(y))κ(y) dy,

with both L2 and a.s. convergence.
Define h

(β)
k : (Rm)k+1 → R by h

(β)
k (x1, . . . , xk+1) := ∏1≤i<j≤k+1 1{‖xi −

xj‖ ≤ β}, that is, the indicator of the event that x1, . . . , xk+1 are all within dis-
tance β of each other. By the Palm theory of Poisson processes (e.g., Theorem 1.6
of [34]) we have

Eϕ
(β)
k

(
0, H′

λ

)= λk

(k + 1)!
∫

Rm
· · ·
∫

Rm
h

(β)
k (0, x1, . . . , xk) dx1 · · · dxk

= (λβm)k

(k + 1)!
∫

Rm
· · ·
∫

Rm
h

(1)
k (0, x1, . . . , xk) dx1 · · · dxk

= (λβm)k

(k + 1)!Jk,k+1,

where the last equality comes from (2.25). Combined with (7.29), this gives
us (2.27).

A slight modification of the above argument shows that ϕk satisfies the Pois-
son moment condition (3.6) for any p ≥ 1. By Theorem 3.2, the variance asymp-
totics (2.28) and central limit theorem (2.29) follow, with σ 2

k (β, κ) := σ 2(ϕ
(β)
k , κ)

given by (3.10). We need to show that this is consistent with (2.26).
The expression δϕk (a), given by (3.9), simplifies further as

δϕk (a) = (aβm)kJk,k+1 + a

∫
Rm

E
[
�uϕk(0, Ha)

]
du.(7.30)

Using the Palm theory of the Poisson process again, we have for all u ∈ R
m that

E
[
�uϕk

(
0, H′

a

)]
= ak−1

(k + 1)(k − 1)!
∫

Rm
· · ·
∫

Rm
h

(β)
k (0, u, x1, . . . , xk) dx1 · · · dxk−1.

Together with (7.30), this gives

δϕk (a) = (aβm)kJk,k+1 + akk

(k + 1)!
∫

· · ·
∫

h(β)(0, x1, . . . , xk) dx1 · · · dxk

(7.31)
= (k + 1)

(
aβm)kJk,k+1.
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For the first term in (3.10) we simplify the expression V ϕk (a) as follows. Consider
the special case where m = d and M is a smoothly bounded region of volume a−1,
and let P ′

λ be a homogeneous Poisson point process in this region with expected
total number of points equal to λ. By applying (3.17) in this case, recalling notation
C(β)

k from Section 2.4 we get that

V ϕk (a) = lim
λ→∞λ−1 Var

∑
y∈P ′

λ

ϕk

(
λ1/my,λ1/mP ′

λ

)= lim
λ→∞λ−1 Var

[
C(β)

k

(
λ1/mP ′

λ

)]

= lim
λ→∞λ−1 Var

[
C(β(a/λ)1/m)

k

(
a1/mP ′

λ

)]
.

Hence by Proposition 3.7 of [34], setting k′ = k + 1 we have

V ϕk(a) =
k′∑

j=1

Jk,j

(
aβm)2k′−j−1

.

Using this identity in the first term of (3.10), and using (7.31) for the second term
of (3.10) enables us to establish the identity (2.26).

It remains to show that σ 2(ϕ
(β)
k , κ) > 0. This can be done as in the proof of

Lemma 2.3, that is, using (7.14) to reduce the problem to showing positivity in
the case where d = m and κ is a uniform distribution on a cube, and using the
methods of [2] or [38] to demonstrate positivity in this case. This completes the
proof of Theorem 2.5. �
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