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1. Appendix.

1.1. Facts needed in the proof of fast decay of correlations of the ξ-weighted
measures.

LEMMA 1.1. Let f, g be two real valued, symmetric functions defined on (Rd)k
and (Rd)l respectively. Let F := 1

k!

∑
x∈X (k) f(x) and G := 1

l!

∑
x′∈X (l) g(x′) be

the corresponding U-statistics of order k and l respectively, on the input X ⊂ Rd.
Then we have:
(i) The product F G is a sum of U-statistics of order not greater than k + l.
(ii) Let A be a fixed, finite subset of Rd. The statistic FA := 1

k!

∑
x∈(X∪A)(k) f(x)

is a sum of U-statistics of X of order not greater than k.

Proof. The two statements follow from symmetrizing the inner summands in the
below representations

F G =

k+l∑
m=max(k,l)

∑
z∈X (m)

f(z1, . . . , zk)g(zm−l+1, . . . , zm)

(k + l −m)!(m− k)!(m− l)!
,

FA =

min(|A|,k)∑
m=0

∑
a∈A(m)

∑
z∈X (k−m)

f(a1, . . . , am, z1, . . . , zk−m)

m!(k −m)!
,

∗Research supported by DST-INSPIRE faculty award, CPDA from the Indian Statistical Institute
and TOPOSYS grant.

†Research supported in part by NSF grant DMS-1406410

1

http://arxiv.org/abs/arXiv:0000.0000


2 BŁASZCZYSZYN, YOGESHWARAN AND YUKICH.

For a proof of the first representation note that by symmetry of f ,F (Y) = f(y1, . . . , yk)
if Y = {y1, . . . , yk} and similarly for G. Thus, we derive that

F G =
∑

Yi⊂X ,i=1,2

F (Y1)G(Y2)1[|Y1| = k, |Y2| = l]

=
k+l∑

m=max(k,l)

∑
Yi⊂X ,i=1,2

F (Y1)G(Y2)1[|Y1 ∪ Y2| = m, |Y1| = k, |Y2| = l]

=

k+l∑
m=max(k,l)

∑
Y⊂X

1[|Y| = m]
∑

Yi⊂Y,i=1,2

F (Y1)G(Y2)1[Y1 ∪ Y2 = Y, |Y1| = k, |Y2| = l]

=

k+l∑
m=max(k,l)

∑
z∈X (m)

1

m!

∑
Y1,Y2

F (Y1)G(Y2)1[Y1 ∪ Y2 = {z1, . . . , zm}, |Y1| = k, |Y2| = l]

=

k+l∑
m=max(k,l)

∑
z∈X (m)

f(z1, . . . , zk)g(zm−l+1, . . . , zm)

m!

×
∑
Y1,Y2

1[Y1 ∪ Y2 = {z1, . . . , zm}, |Y1| = k, |Y2| = l]

=
k+l∑

m=max(k,l)

∑
z∈X (m)

f(z1, . . . , zk)g(zm−l+1, . . . , zm)

(k + l −m)!(m− k)!(m− l)!
,

thus proving the first representation above. The second representation follows sim-
ilarly. �

LEMMA 1.2. Let ξ be a score function on locally finite input X and Rξ :=
Rξ(x,X ) its radius of stabilization. Given t > 0 consider the score function
ξ̃(x,X ) := ξ(x,X )1[Rξ(x,X ) ≤ t]. Then the radius of stabilization Rξ̃ :=

Rξ̃(x,X ) of ξ̃ is bounded by t, i.e., Rξ̃(x,X ) ≤ t for any x ∈ X .

PROOF. Let X ,A be locally finite subsets of Rd with x ∈ X . We have

ξ̃(x, (X ∩Bt(x)) ∪ (A ∩Bc
t (x)))

= ξ(x, (X ∩Bt(x)) ∪ (A ∩Bc
t (x)))1

[
Rξ(x, (X ∩Bt(x)) ∪ (A ∩Bc

t (x))) ≤ t
]

= ξ(x,X ∩Bt(x))1
[
Rξ(x, (X ∩Bt(x)) ∪ (A ∩Bc

t (x))) ≤ t
]
,

where the last equality follows from the definition of Rξ. Notice

1
[
Rξ(x, (X ∩Bt(x)) ∪ (A ∩Bc

t (x))) ≤ t
]

= 1
[
Rξ(x,X ∩Bt(x)) ≤ t

]
and so ξ̃(x, (X ∩ Bt(x)) ∪ (A ∩ Bc

t (x))) = ξ̃(x,X ∩ Bt(x)), which was to be
shown. �
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1.2. Determinantal and permanental point process lemmas. The follow-
ing facts illustrate the tractability of determinantal and permanental point pro-
cesses and are of independent interest.We are indebted to Manjunath Krishnapur
for sketching the proof of this result.

LEMMA 1.3. Let P be a stationary determinantal point process on Rd with a
kernel satisfyingK(x, y) ≤ ω(|x−y|), where ω is a fast decreasing function. Then
(1.1)
|ρ(n)(x1, . . . , xp+q)−ρ(p)(x1, . . . , xp)ρ(q)(xp+1, . . . , xp+q)| ≤ n1+

n
2 ω(s)‖K‖n−1,

where ‖K‖ := supx,y∈Rd |K(x, y)|, s := s := d({x1, . . . , xp}, {xp+1, . . . , xp+q}) :=
infi∈{1,...,p},j∈{p+1,...,p+q} |xi − xj |, and n = p+ q.

Proof. Define the matrices K0 := (K(xi, xj))1≤i,j≤n,K1 := (K(xi, xj))1≤i,j≤p,
and K2 := (K(xi, xj))p+1≤i,j≤n. Let L be the block diagonal matrix with blocks
K1,K2. We define ‖K0‖ := sup1≤i,j≤n |K0(xi, xj)| and similarly for the other
matrices. Then

|ρ(n)(x1, . . . , xp+q) − ρ(p)(x1, . . . , xp)ρ
(q)(xp+1, . . . , xp+q)|

= |det(K0)− det(K1) det(K2)| = | det(K0)− det(L)|
≤ n1+

n
2 ‖K0 − L‖‖K0‖n−1 ≤ n1+

n
2 ω(s)‖K‖n−1(1.2)

where the inequality follows by [1, (3.4.5)]. This gives (1.1). �

As a first step to prove the analogue of Lemma 1.3 for permanental point pro-
cesses, we prove an analogue of (1.2). We follow verbatim the proof of (1.2) as
given in [1, (3.4.5)]. Instead of using Hadamard’s inequality for determinants as
in [1], we use the following version of Hadamard’s inequality for permanents ([4,
Theorem 1.1]): For any column vectors v1, . . . , vn of length n with complex en-
tries, it holds that

|per([v1, . . . , vn])| ≤ n!

n
n
2

n∏
i=1

√
v̄iT vi ≤ n!

n∏
i=1

‖vi‖,

where ‖vi‖ is the l∞-norm of vi viewed as an n-dimensional complex vector.

LEMMA 1.4. Let n ∈ N. For any two matrices K and L, we have

|per(K)− per(L)| ≤ nn!‖K − L‖max{‖K‖, ‖L‖}n−1.

Now, in the proof of Lemma 1.3, using the above estimate instead of (1.2), we
establish the analogue for permanental point processes with fast-decreasing kernels
K.
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LEMMA 1.5. Let P be a stationary permanental point process on Rd with a
fast-decreasing kernel satisfyingK(x, y) ≤ ω(|x−y|) where ω is a fast decreasing
function. With s as in Lemma 1.3 and n = p+ q, we have

|ρ(n)(x1, . . . , xp+q)− ρ(p)(x1, . . . , xp)ρ(q)(xp+1, . . . , xp+q)| ≤ nn!ω(s)‖K‖n−1.

To bound the radius of stabilization of geometric functionals on determinantal
point processes, we rely on the following exponential decay of Palm void proba-
bilities. Though the proof is inspired by that of a similar estimate in [7, Lemma 2],
we derive a more general and explicit bound.

LEMMA 1.6. Let P be a stationary determinantal point process on Rd. Then
for p, k ∈ N, x ∈ (Rd)p, and any bounded Borel subset B ⊂ Rd, we have

(1.3) P!
x(P(B) ≤ k) ≤ e(2k+p)/8e−K(0,0)Vold(B)/8.

Proof. For any determinantal point process P (even a non-stationary one), let Px
be the reduced Palm point process with respect to x ∈ Rd. From [9, Theorem 6.5],
we have that Px is also a determinantal point process and its kernel L is given by

(1.4) L(y1, y2) = K(y1, y2)−
K(y1, x)K(x, y2)

K(x, x)
.

Next we assert that

(1.5)
∫
Rd

|K(x, y)|2dy ≤ K(x, x), x ∈ Rd.

To see this, write K(x, y) =
∑

j λjφj(x)φ̄j(y), λj ∈ [0, 1], where φj , j ≥ 1, is an
orthonormal basis for L2(Rd, dx) (cf. Lemma 4.2.2 of [2]). In view of K(x, y) =
K(y, x) we get

∫
Rd |K(x, y)|2dy =

∫
Rd K(x, y)K(y, x)dy =

∑
j λ

2
jφj(x)φ̄j(x) ≤∑

j λjφj(x)φ̄j(x) = K(x, x), whence the assertion (1.5). The bound (1.5) shows
for any bounded Borel subset B and x ∈ Rd that

E!
x(P(B)) =

∫
B
L(y, y)dy =

∫
B
K(y, y)dy − 1

K(x, x)

∫
B
|K(x, y)|2dy ≥ E(P(B))− 1.

Re-iterating the above inequality, we get that for all x ∈ Rdp and any bounded
Borel subset B

(1.6) E!
x(P(B)) ≥ E(P(B))− p.
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Since the point count of a determinantal point process in a given set is a sum of in-
dependent Bernoulli random variables [2, Theorem 4.5.3], the Chernoff-Hoeffding
bound [6, Theorem 4.5] yields

(1.7) P!
x(P(B) ≤ E!

x(P(B))/2) ≤ e−E!
x(P(B))/8.

Now we return to our stationary determinantal point processP and note that E(P(B)) =
K(0,0)Vold(B). Suppose first that B is large enough so that K(0,0)Vold(B) ≥
2k + p. Thus combining (1.6) and (1.7), we have

P!
x(P(B) ≤ k) ≤ P!

x(P(B) ≤ E!
x(P(B))/2) ≤ e−(K(0,0)Vold(B)−p)/8.

On the other hand, ifB is small and satisfiesK(0,0)Vold(Br0) < 2k+p, then the
right-hand side of (1.10) is larger than 1 and hence it is a trivial bound. �

Inequality (1.6) can also be deduced from the stronger coupling result of [8,
Prop. 5.10(iv)] for determinantal point processes with a continuous kernel but we
have given an elementary proof. Given Ginibre input, we may improve the expo-
nent in the void probability bound (1.10). We believe this result to be of indepen-
dent interest, as it generalizes [10, Lemma 6.1], which treats the case k = 0.

LEMMA 1.7. Let Br := Br(0) ⊂ R2 and P be the Ginibre point process.
Then for p, k ∈ N and x ∈ R2p,

P!
x(P(Br) ≤ k) ≤ exp{p(k + 1)r2}P(P(Br) ≤ k)(1.8)

≤ kr2k exp{(p(k + 1) + k)r2 − 1

4
r4(1 + o(1))}.

We remark that stationarity shows the above bound holds for any radius r ball.

Proof. We shall prove the result for p = 1 and use induction to deduce the general
case.

Let KBr be the restriction to Br of the integral operator K (generated by kernel
K) corresponding to Ginibre point process and LBr be the restriction to Br of
the integral operator L (generated by kernel L) corresponding to the reduced Palm
point process (also a determinantal point process). Let λi, i = 1, 2, . . . and µi, i =
1, 2, . . . be the eigenvalues of KBr and LBr in decreasing order respectively.

Then from (1.4) we have that the rank of the operator KBr − LBr is one. Sec-
ondly, note that∑
i

µi = Ex(P(Br)) =

∫
Br

L(y, y)dy ≤
∫
Br

K(y, y)dy = E(P(Br)) =
∑
i

λi.
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Hence, by a generalisation of Cauchy’s interlacing theorem [5, Theorem 4] com-
bined with the above inequality, we get the interlacing inequality λi ≥ µi ≥ λi+1

for i = 1, 2, . . ..
Now, fix x = x ∈ R2. Again by [2, Theorem 4.5.3], we have that P (Br)

d
=∑

i Bernoulli(λi) and under Palm measure, P (Br)
d
=
∑

i Bernoulli(µi) where
both the sums involve independent Bernoulli random variables. Independence of
the Bernoulli random variables gives

Px(P(Br) ≤ k) =
∑

J⊂N,|J |≤k

∏
j∈J

µj
∏
j /∈J

(1− µj)

≤
∑

J⊂N,|J |≤k

∏
j∈J

λj
∏
j /∈J

(1− λj+1)

≤
∑

J⊂N,|J |≤k

∏
j∈J

λj
∏
j /∈J

(1− λj)
∏

j−1∈J∪{0},j /∈J

(1− λj)−1

≤ (1− λ1)−k−1
∑

J⊂N,|J |≤k

∏
j∈J

λj
∏
j /∈J

(1− λj)

= (1− λ1)−k−1P[P(Br) ≤ k].

The proof of the first inequality in (1.8) for the case p = 1 is complete by noting
that λ1 = P(EXP (1) ≤ r2) (see [2, Theorems 4.7.1 and 4.7.3]), where EXP (1)
stands for an exponential random variable with mean 1. As said before, iteratively
the first inequality in (1.8) can be proven for an arbitrary p. To complete the proof
of the second inequality, we bound P(P(Br) ≤ k) in a manner similar to the proof
of [2, Proposition 7.2.1].

Let P∗ := {R2
1, R

2
2, . . . , } = {|X|2 : X ∈ P} be the point process of squared

modulii of the Ginibre point process. Then, from [2, Theorem 4.7.3], it is known
that R2

i
d
= Γ(i, 1) (Γ(i, 1) denotes a gamma random variable with parameters i, 1)

and are independently distributed. There is a constant β ∈ (0, 1) such that

P(R2
i ≥ r2) ≤ e−βr

2
E(eβR

2
i ) ≤ e−βr2(1− β)−i, i ≥ 1.

For i < r2, the bound is optimal for β = 1− i
r2

. For r, set r∗ := pr2q, the ceiling
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of r2. Then,

P(P(Br) ≤ k) = P(]{i : R2
i ≤ r2} ≤ k) ≤ P(]{i ≤ r∗ : R2

i ≤ r2} ≤ k)

≤
∑

J⊂[r∗],|J |≤k

∏
i∈J

P(R2
j ≤ r2)

∏
i/∈J

P(R2
j > r2)

≤
∑

J⊂[r∗],|J |≤k

∏
i∈J

er
2
e−βr

2
(1− β)−i

∏
i/∈J

e−βr
2
(1− β)−i

≤ kr2kekr
2
r∗∏
i=1

e−ar
2
(1− β)−i = kr2kekr

2
e−

1
4
r4(1+o(1)),

where equality follows by substituting the optimal β for each i, as in [2, Section
7.2]. �

1.3. Facts about superposition of independent point processes. The follow-
ing facts on superposition of independent point processes were useful in the appli-
cations involving α-determinantal point processes, |α| = 1/m,m ∈ N. First recall
that, for any k ≥ 1 and distinct x1, . . . , xk ∈ Rd the following relation holds

(1.9) ρ
(k)
0 (x1, . . . , xk) =

∑
tmi=1Si=[k]

m∏
i=1

ρ(Si),

where t stands for disjoint union and where we abbreviate ρ(|Si|)(xj : j ∈ Si) by
ρ(Si). Here Si may be empty, in which case we set ρ(∅) = 1. The proof of the next
proposition, which shows that P0 has fast decay of correlations, is very useful for
our purposes.

PROPOSITION 1.8. Let m ∈ N and P1, . . . ,Pm be i.i.d. copies of an admis-
sible point process P having fast decay of correlations with decay function φ and
correlation decay constants Ck and ck. Then P0 := ∪mi=1Pi is an admissible point
process having fast decay of correlations with decay function φ and correlation
decay constants mkm!(κk)

m−1Ck and ck. Further, if P is admissible input of type
(A2) with κk ≤ λk for some λ ∈ (0,∞), then P0 is also admissible input of type
(A2).

Proof of Proposition 1.8. We shall prove the proposition in the case m = 2; the
general case follows in the same fashion albeit with considerably more notation.
Let x1, . . . , xp+q be distinct points in Rd with s at Lemma 1.3 as usual. For a subset
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S ⊂ [p+ q], we abbreviate ρ|S|(xj : j ∈ S) by ρ(S). Using (1.9) we have that

ρ
(p+q)
0 ([p+ q]) =

∑
S1tS2=[p+q]

ρ(S1)ρ(S2) = 2ρ([p+ q]) + 2ρ([p])ρ([q])

+
∑

S1tS2=[p+q],S2∩[p]=∅,Si 6=∅

ρ(S1)ρ(S2) +
∑

S1tS2=[p+q],S1∩[p]=∅,Si 6=∅

ρ(S1)ρ(S2)

+
∑

S1tS2=[p+q],S2∩[q]=∅,Si 6=∅

ρ(S1)ρ(S2) +
∑

S1tS2=[p+q],S1∩[q]=∅,Si 6=∅

ρ(S1)ρ(S2)

+
∑

S1tS2=[p+q],Si∩[p] 6=∅,Si∩[q] 6=∅

ρ(S1)ρ(S2)

= 2ρ([p+ q]) + 2ρ([p])ρ([q])

+
∑

S21tS22=[q],Sij 6=∅

(ρ(S21 ∪ [p])ρ(S22) + ρ(S22 ∪ [p])ρ(S21))

+
∑

S11tS12=[p],Sij 6=∅

(ρ(S11 ∪ [q])ρ(S12) + ρ(S12 ∪ [q])ρ(S11))

+
∑

S21tS22=[q],S11tS12=[p],Sij 6=∅

ρ(S11 ∪ S21)ρ(S12 ∪ S22).

On the other hand the product of correlation functions is

ρ0([p])ρ0([q]) = (
∑

S11tS12=[p]

ρ(S11)ρ(S12))(
∑

S21tS22=[q]

ρ(S21)ρ(S22))

= (2ρ([p]) +
∑

S11tS12=[p],Sij 6=∅

ρ(S11)ρ(S12))× (2ρ([q]) +
∑

S21tS22=[q],Sij 6=∅

ρ(S21)ρ(S22))

= 4ρ([p])ρ([q]) + 2
∑

S21tS22=[q],Sij 6=∅

ρ(S21)ρ([p])ρ(S22)

+2
∑

S11tS12=[p],Sij 6=∅

ρ(S11)ρ([q])ρ(S12)

+
∑

S21tS22=[q],S11tS12=[p],Sij 6=∅

ρ(S11)ρ(S21)ρ(S12)ρ(S22).

Now, we shall match the two summations term-wise and bound the differences
using the bound on correlation functions and fast decay of correlations condition :

|ρ0([p+ q])− ρ0([p])ρ0([q])| ≤ 2|ρ([p+ q])− ρ([p])ρ([q])|
+

∑
S21tS22=[q],Sij 6=∅

|ρ(S21 ∪ [p])ρ(S22)− ρ(S21)ρ([p])ρ(S22)|



SUPPLEMENT A : LIMIT THEORY FOR GEOMETRIC STATISTICS OF POINT PROCESSES9

+
∑

S21tS22=[q],Sij 6=∅

|ρ(S22 ∪ [p])ρ(S21)− ρ(S21)ρ([p])ρ(S22)|

+
∑

S11tS12=[p],Sij 6=∅

|ρ(S11 ∪ [q])ρ(S12)− ρ(S11)ρ([q])ρ(S12)|

+
∑

S11tS12=[p],Sij 6=∅

|ρ(S12 ∪ [q])ρ(S11)− ρ(S11)ρ([q])ρ(S12)|

+
∑

S21tS22=[q],S11tS12=[p],Sij 6=∅

|ρ(S11 ∪ S21)ρ(S12 ∪ S22)− ρ(S11)ρ(S21)ρ(S12)ρ(S22)|

≤ 2κp+qCp+qφ(cp+qs)
∑

S1tS2=[p+q]

1 = 2κp+qCp+qφ(cp+qs)2
p+q. �

We now provide void probability bounds for superposition of independent point
processes.

PROPOSITION 1.9. Let P1, . . . ,Pm,m ∈ N, be independent admissible point
processes. For p, k ∈ N and a bounded Borel set B, set

νp,k(B) := sup
i=1,...,m

sup
0≤p′≤p

sup
x1,...,xp′

Px1,...,xp′ (Pi(B) ≤ k).

Let P := ∪mi=1Pi be the independent superposition. Then, α(k) a.e. x1, . . . , xp, we
have

Px1,...,xp(P(B) ≤ k) ≤ νp,k(B)m.

PROOF. We shall show the proposition for m = 2 and the general case follows
similarly. Further, we use ρ, ρ1, ρ2 to denote the correlation functions of P,P1,P2
respectively. Let A = A1× . . .×Ap where A1, . . . , Ap are disjoint bounded Borel
subsets. By setting f(x1, . . . , xp;P) = 1[P(B) ≤ k] in the refined Campbell
theorem and using the independence of P1,P2, we derive that∫

A
Px1,...,xp(P(B) ≤ k)ρ(p)(x1, . . . , xp)dx1 . . . dxp = E(1[P(B) ≤ k]P(A1) . . .P(Ap))

≤
∑
S⊂[p]

E

(
1[P1(B) ≤ k]

∏
i∈S
P1(Ai)

)
E

(
1[P2(B) ≤ k]

∏
i/∈S

P2(Ai)

)

=

∫
A

∑
S⊂[p]

Pxi;i∈S(P1(B) ≤ k)ρ
(|S|)
1 (xi; i ∈ S)Pxi;i/∈S(P2(B) ≤ k)

× ρ(p−|S|)2 (xi; i /∈ S)dx1 . . . dxp
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Thus, by definition of νp,k(B), we get that for a.e. x1, . . . , xp

Px1,...,xp(P(B) ≤ k)ρ(p)(x1, . . . , xp)

≤
∑
S⊂[p]

Pxi;i∈S(P1(B) ≤ k)ρ
(|S|)
1 (xi; i ∈ S)Pxi;i/∈S(P2(B) ≤ k)ρ

(p−|S|)
2 (xi; i /∈ S)

≤ νp,k(B)2
∑
S⊂[p]

ρ
(|S|)
1 (xi; i ∈ S)ρ

(p−|S|)
2 (xi; i /∈ S) = νp,k(B)2ρ(p)(x1, . . . , xp),

where the last equality follows from (1.9). The proposition now follows from the
above inequality. �

Now, as a trivial corollary of Lemma 1.6 and Proposition 1.9, we obtain the
following useful result.

COROLLARY 1.10. Let P be a stationary α-determinantal point process on
Rd with α = −1/m,m ∈ N. Then for p, k ∈ N, x ∈ (Rd)p, and any bounded
Borel subset B ⊂ Rd, we have

(1.10) P!
x(P(B) ≤ k) ≤ em(2k+p)/8e−K(0,0)Vold(B)/8.

Consider the same assumptions as in Proposition 1.9. For a bounded Borel sub-
set B, set

Mp(B) := sup
i=1,...,m

sup
0≤p′≤p

sup
x1,...,xp′

Ex1,...,xp′ (t
Pi(B)), t ≥ 0, p ≥ 1.

Now setting f(x1, . . . , xp;P) = tP(B) in the proof of the proposition, we may
deduce that

(1.11) sup
0≤p′≤p

sup
x1,...,xp′

Ex1,...,xp′ (t
P(B)) ≤Mp(B)m.
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