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SURFACE ORDER SCALING IN STOCHASTIC GEOMETRY1

BY J. E. YUKICH

Lehigh University

Let Pλ := Pλκ denote a Poisson point process of intensity λκ on
[0,1]d , d ≥ 2, with κ a bounded density on [0,1]d and λ ∈ (0,∞). Given a
closed subset M⊂ [0,1]d of Hausdorff dimension (d −1), we consider gen-
eral statistics

∑
x∈Pλ

ξ(x,Pλ,M), where the score function ξ vanishes un-
less the input x is close to M and where ξ satisfies a weak spatial dependency
condition. We give a rate of normal convergence for the rescaled statistics∑

x∈Pλ
ξ(λ1/dx,λ1/dPλ,λ1/dM) as λ → ∞. When M is of class C2, we

obtain weak laws of large numbers and variance asymptotics for these statis-
tics, showing that growth is surface order, that is, of order Vol(λ1/dM). We
use the general results to deduce variance asymptotics and central limit theo-
rems for statistics arising in stochastic geometry, including Poisson–Voronoi
volume and surface area estimators, answering questions in Heveling and Re-
itzner [Ann. Appl. Probab. 19 (2009) 719–736] and Reitzner, Spodarev and
Zaporozhets [Adv. in Appl. Probab. 44 (2012) 938–953]. The general results
also yield the limit theory for the number of maximal points in a sample.

1. Main results.

1.1. Introduction. Let Pλ := Pλκ denote a Poisson point process of intensity
λκ on [0,1]d, d ≥ 2, with κ a bounded density on [0,1]d and λ ∈ (0,∞). Let-
ting ξ(·, ·) be a Borel measurable R-valued function defined on pairs (x,X ), with
X ⊂ R

d finite and x ∈ X , functionals in stochastic geometry may often be repre-
sented as linear statistics

∑
x∈Pλ

ξ(x,Pλ). Here, ξ(x,Pλ) represents the contribu-
tion from x, which in general, depends on Pλ. It is often more natural to consider
rescaled statistics

Hξ(Pλ) := ∑
x∈Pλ

ξ
(
λ1/dx, λ1/dPλ

)
.(1.1)

Laws of large numbers, variance asymptotics and asymptotic normality as
λ → ∞ for such statistics are established in [6, 18–20, 22] with limits governed by
the behavior of ξ at a point inserted into the origin of a homogeneous Poisson point
process. The sums Hξ(Pλ) exhibit growth of order Vold((λ1/d [0,1])d) = λ, the
d-dimensional volume measure of the set carrying the scaled input λ1/dPλ. This
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gives the limit theory for score functions of nearest neighbor distances, Voronoi
tessellations, percolation and germ grain models [6, 18, 20]. Problems of inter-
est sometimes involve R-valued score functions ξ of three arguments, with the
third being a set M ⊂ R

d of Hausdorff dimension (d − 1), and where scores
ξ(λ1/dx, λ1/dPλ, λ

1/dM) vanish unless x is close to M. This gives rise to

Hξ(Pλ,M) := ∑
x∈Pλ

ξ
(
λ1/dx, λ1/dPλ, λ

1/dM
)
.(1.2)

Here, M might represent the boundary of the support of κ or more generally,
the boundary of a fixed body, as would be the case in volume and surface inte-
gral estimators. We show that modifications of the methods used to study (1.1)
yield the limit theory of (1.2), showing that the scaling is surface order, that is,
Hξ(Pλ,M) is order Vold−1(λ

1/d(M∩ [0,1]d)) = �(λ(d−1)/d). The general limit
theory for (1.2), as given in Section 1.2, yields variance asymptotics and central
limit theorems for the Poisson–Voronoi volume estimator, answering questions
posed in [12, 26]. We introduce a surface area estimator induced by Poisson–
Voronoi tessellations and we use the general theory to obtain its consistency and
variance asymptotics. Finally, the general theory yields the limit theory for the
number of maximal points in random sample, including variance asymptotics and
rates of normal convergence, extending [2]–[5]. See Section 2 for details. We an-
ticipate further applications to germ-grain and continuum percolation models, but
postpone treatment of this.

1.2. General results. We first introduce terminology, cf. [6, 18–20, 22]. Let
M(d) denote the collection of closed sets M ⊂ [0,1]d having finite (d − 1)-
dimensional Hausdorff measure. Elements of M(d) may or may not have boundary
and are endowed with the subset topology of Rd . Let M2(d) ⊂M(d) denote those
M ∈ M(d) which are C2, orientable submanifolds. Given M ∈ M(d), almost all
points x ∈ [0,1]d are uniquely represented as

x := y + tuy,(1.3)

where y := yx ∈ M is the closest point in M to x, t := tx ∈ R and uy is a fixed
direction (see, e.g., Theorem 1G of [11], [13]); uy coincides with the unit out-
ward normal to M at y when M ∈ M2(d). We write x = (yx, tx) := (y, t) and
shorthand (y,0) as y when the context is clear. To avoid pathologies, we assume
Hd−1(M ∩ ∂([0,1]d)) = 0. Here, Hd−1 denotes (d − 1)-dimensional Hausdorff
measure, normalized to coincide with Vold−1 on hyperplanes.

Let ξ(x,X ,M) be a Borel measurable R-valued function defined on triples
(x,X ,M), where X ⊂ R

d is finite, x ∈ X , and M ∈ M(d). If x /∈ X , we short-
hand ξ(x,X ∪ {x},M) as ξ(x,X ,M). Let S := S(M) ⊂ [0,1]d be the set of
points admitting the unique representation (1.3) and put S′ := {(yx, tx)}x∈S . If
(y, t) ∈ S′, then we put ξ((y, t),X ,M) = ξ(x,X ,M) where x = y + tuy , oth-
erwise we put ξ((y, t),X ,M) = 0.
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We assume ξ is translation invariant, that is, for all z ∈ R
d and input (x,X ,M)

we have ξ(x,X ,M) = ξ(x + z,X + z,M+ z). Given λ ∈ [1,∞), define dilated
scores ξλ by

ξλ(x,X ,M) := ξ
(
λ1/dx, λ1/dX , λ1/dM

)
,(1.4)

so that (1.2) becomes

Hξ(Pλ,M) := ∑
x∈Pλ

ξλ(x,Pλ,M).(1.5)

We recall two weak spatial dependence conditions for ξ . For τ ∈ (0,∞), Hτ de-
notes the homogeneous Poisson point process of intensity τ on R

d . For all x ∈ R
d ,

r ∈ (0,∞), let Br(x) := {w ∈ R
d :‖x − w‖ ≤ r}, where ‖ · ‖ denotes Euclidean

norm. Let 0 denote a point at the origin of Rd . Say that ξ is homogeneously sta-
bilizing if for all τ ∈ (0,∞) and all (d − 1)-dimensional hyperplanes H, there is
R := Rξ(Hτ ,H) ∈ (0,∞) a.s. (a radius of stabilization) such that

ξ
(
0,Hτ ∩ BR(0),H

)= ξ
(
0,
(
Hτ ∩ BR(0)

)∪A,H
)

(1.6)

for all locally finite A ⊂ BR(0)c. Given (1.6), the definition of ξ extends to infinite
Poisson input, that is, ξ(0,Hτ ,H) = limr→∞ ξ(0,Hτ ∩ Br(0),H).

Given M ∈ M(d), say that ξ is exponentially stabilizing with respect to the pair
(Pλ,M) if for all x ∈ R

d there is a radius of stabilization R := Rξ(x,Pλ,M) ∈
(0,∞) a.s. such that

ξλ

(
x,Pλ ∩ Bλ−1/dR(x),M

)= ξλ

(
x,
(
Pλ ∩ Bλ−1/dR(x)

)∪A,M
)

(1.7)

for all locally finite A ⊂ R
d \ Bλ−1/dR(x), and the tail probability τ(t) :=

τ(t,M) := supλ>0,x∈Rd P [R(x,Pλ,M) > t] satisfies lim supt→∞ t−1 log τ(t) <

0.
Surface order growth for the sums at (1.5) should involve finiteness of the in-

tegrated score ξλ((y, t),Pλ,M) over t ∈ R. Thus, it is natural to require the fol-
lowing condition. Given M ∈ M(d) and p ∈ [1,∞), say that ξ satisfies the p

moment condition with respect to M if there is a bounded integrable function
Gξ,p := Gξ,p,M :R→R

+ such that for all u ∈R

sup
z∈Rd∪∅

sup
y∈M

sup
λ>0

E
∣∣ξλ

((
y,λ−1/du

)
,Pλ ∪ z,M

)∣∣p ≤ Gξ,p(|u|).(1.8)

Say that ξ decays exponentially fast with respect to the distance to M if for all
p ∈ [1,∞)

lim sup
|u|→∞

|u|−1 logGξ,p(|u|)< 0.(1.9)

Next, given M ∈ M2(d) and y ∈ M, let H(y,M) be the (d − 1)-dimensional
hyperplane tangent to M at y. Put Hy := H(0,M − y). The score ξ is well-
approximated by Pλ input on half-spaces if for all M ∈ M2(d), all y ∈ M, and all
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w ∈ R
d , we have

lim
λ→∞E

∣∣ξ (w,λ1/d(Pλ − y), λ1/d(M− y)
)

(1.10)
− ξ

(
w,λ1/d(Pλ − y),Hy

)∣∣= 0.

We now give three general limit theorems, proved in Sections 4 and 5. In Sec-
tion 2, we use these results to deduce the limit theory for statistics arising in
stochastic geometry. Let C(M) denote the set of functions on [0,1]d which are
continuous at all points y ∈ M. Let 0y be a point at the origin of Hy .

THEOREM 1.1 (Weak law of large numbers). Assume M ∈ M2(d) and κ ∈
C(M). If ξ is homogeneously stabilizing (1.6), satisfies the moment condition (1.8)
for some p > 1, and is well-approximated by Pλ input on half-spaces (1.10), then

lim
λ→∞λ−(d−1)/dHξ (Pλ,M)

= μ(ξ,M)(1.11)

:=
∫
M

∫ ∞
−∞

Eξ
(
(0y, u),Hκ(y),Hy

)
κ(y) dudy in Lp.

Next, for x, x′ ∈ R
d , τ ∈ (0,∞), and all (d −1)-dimensional hyperplanes H we

put

cξ (x, x′;Hτ ,H
)

:= Eξ
(
x,Hτ ∪ x′,H

)
ξ
(
x′,Hτ ∪ x,H

)−Eξ(x,Hτ ,H)Eξ
(
x′,Hτ ,H

)
.

Put for all M ∈ M2(d)

σ 2(ξ,M) := μ
(
ξ2,M

)
+
∫
M

∫
Rd−1

∫ ∞
−∞

∫ ∞
−∞

cξ ((0y, u), (z, s);Hκ(y),Hy

)
(1.12)

× κ(y)2 duds dz dy.

THEOREM 1.2 (Variance asymptotics). Assume M ∈ M2(d) and κ ∈ C(M).
If ξ is homogeneously stabilizing (1.6), exponentially stabilizing (1.7), satisfies the
moment condition (1.8) for some p > 2, and is well-approximated by Pλ input on
half-spaces (1.10), then

lim
λ→∞λ−(d−1)/d Var

[
Hξ(Pλ,M)

]= σ 2(ξ,M) ∈ [0,∞).(1.13)

Let N(0, σ 2) denote a mean zero normal random variable with variance σ 2

and let 	(t) := P [N(0,1) ≤ t], t ∈ R, be the distribution function of the standard
normal.
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THEOREM 1.3 (Rate of convergence to the normal). Assume M ∈ M(d). If
ξ is exponentially stabilizing (1.7) and satisfies exponential decay (1.9) for some
p > q , q ∈ (2,3], then there is a finite constant c := c(d, ξ,p, q) such that for all
λ ≥ 2

sup
t∈R

∣∣∣∣P
[
Hξ(Pλ,M) −E[Hξ(Pλ,M)]√

Var[Hξ(Pλ,M)] ≤ t

]
− 	(t)

∣∣∣∣
(1.14)

≤ c(logλ)dq+1λ(d−1)/d(Var
[
Hξ(Pλ,M)

])−q/2
.

In particular, if σ 2(ξ,M) > 0, then putting q = 3 yields a rate of convergence
O((logλ)3d+1λ−(d−1)/2d) to the normal distribution.

REMARKS. (i) (Simplification of limits.) If ξ(x,X ,M) is invariant under ro-
tations of (x,X ,M), then the limit μ(ξ,M) at (1.11) simplifies to

μ(ξ,M) :=
∫
M

∫ ∞
−∞

Eξ
(
(0, u),Hκ(y),R

d−1)duκ(y) dy,(1.15)

where (0, u) ∈ R
d−1 ×R. The limit (1.12) simplifies to

σ 2(ξ,M) := μ
(
ξ2,M

)
+
∫
M

∫
Rd−1

∫ ∞
−∞

∫ ∞
−∞

cξ ((0, u), (z, s);Hκ(y),R
d−1)(1.16)

× κ(y)2 duds dz dy.

If, in addition, ξ is homogeneous of order γ in the sense that for all a ∈ (0,∞) we
have

ξ
(
ax, aX ,Rd−1)= aγ ξ

(
x,X ,Rd−1),

then putting

μ(ξ, d) :=
∫ ∞
−∞

Eξ
(
(0, u),H1,R

d)du(1.17)

we get that μ(ξ,M) further simplifies to

μ(ξ,M) := μ(ξ, d − 1)

∫
M

κ(y)(d−γ−1)/d dy.(1.18)

Similarly, the variance limit σ 2(ξ,M) simplifies to

σ 2(ξ,M) := μ
(
ξ2, d − 1

) ∫
M

κ(y)(d−γ−1)/d dy

+
∫
Rd−1

∫ ∞
−∞

∫ ∞
−∞

cξ ((0, u), (z, s);H1,R
d−1)duds dz

×
∫
M

κ(y)(d−2γ−2)/d dy.
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If κ ≡ 1, then putting

ν(ξ, d) :=
∫
Rd

∫ ∞
−∞

∫ ∞
−∞

cξ ((0, u), (z, s);H1,R
d)duds dz(1.19)

we get that (1.11) and (1.13), respectively, reduce to

lim
λ→∞λ−(d−1)/dHξ (Pλ,M) = μ(ξ, d − 1)Hd−1(M) in Lp(1.20)

and

lim
λ→∞λ−(d−1)/d Var

[
Hξ(Pλ,M)

]
(1.21)

= [μ(ξ2, d − 1
)+ ν(ξ, d − 1)

]
Hd−1(M).

(ii) (A scalar central limit theorem.) Under the hypotheses of Theorems 1.2
and 1.3, we obtain as λ → ∞,

λ−(d−1)/2d(Hξ(Pλ,M) −EHξ(Pλ,M)
) D−→ N

(
0, σ 2(ξ,M)

)
.(1.22)

In general, separate arguments are needed to show strict positivity of σ 2(ξ,M).
(iii) (Extensions to binomial input.) By coupling Pλ and binomial input {Xi}ni=1,

where Xi, i ≥ 1, are i.i.d. with density κ , it may be shown that Theorems 1.1
and 1.2 hold for input {Xi}ni=1 under additional assumptions on ξ . See Lemma 6.1.

(iv) (Extensions to random measures.) Consider the random measure

μ
ξ
λ := ∑

x∈Pλ

ξλ(x,Pλ,M)δx,

where δx denotes the Dirac point mass at x. For f ∈ B([0,1]d), the class of
bounded functions on [0,1]d , we put 〈f,μ

ξ
λ〉 := ∫

f dμ
ξ
λ. Modifications of the

proof of Theorem 1.1 show that when f ∈ C([0,1]d), we have Lp , p ∈ {1,2},
convergence

lim
λ→∞λ−(d−1)/d 〈f,μ

ξ
λ

〉
= μ(ξ,M, f )(1.23)

:=
∫
M

∫ ∞
−∞

Eξ
(
(0y, u),Hκ(y),Hy

)
κ(y)f (y) dudy.

Using that a.e. x ∈ [0,1]d is a Lebesgue point for f , it may be shown this limit
extends to f ∈ B([0,1]d) (Lemma 3.5 of [18] and Lemma 3.5 of [19]). The
limit (1.23) shows up in surface integral approximation as seen in Theorem 2.4
in Section 2.2.

Likewise, under the assumptions of Theorem 1.2, it may be shown for all f ∈
B([0,1]d) that

lim
λ→∞λ−(d−1)/d Var

[〈
f,μ

ξ
λ

〉]= σ 2(ξ,M, f ),
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where

σ 2(ξ,M, f ) := μ
(
ξ2,M, f 2)

+
∫
M

∫
Rd−1

∫ ∞
−∞

∫ ∞
−∞

cξ ((0y, u), (z, s);Hκ(y),Hy

)
× κ(y)2f (y)2 duds dz dy.

Finally, under the assumptions of Theorem 1.3, we get the rate of convergence
(1.14) with Hξ(Pλ,M) replaced by 〈f,μ

ξ
λ〉.

(v) (Comparison with [22].) Theorem 1.3 is the surface order analog of Theo-
rem 2.1 of [22]. Were one to directly apply the latter result to Hξ(Pλ,M), one
would get

sup
t∈R

∣∣∣∣P
[
Hξ(Pλ,M) −EHξ(Pλ,M)√

Var[Hξ(Pλ,M)] ≤ t

]
− 	(t)

∣∣∣∣
(1.24)

= O
(
(logλ)3d+1λ

(
Var
[
Hξ(Pλ,M)

])−3/2)
.

However, when Var[Hξ(Pλ,M)] = (λ(d−1)/d), as is the case in Theorem 1.2,
the right-hand side of (1.24) is O((logλ)3d+1λ−(d+1)/2d). The reason for this
suboptimal rate is that [22] considers sums of �(λ) nonnegligible contributions
ξ(x,Pλ), whereas here, due to condition (1.9), the number of nonnegligible con-
tributions is surface order, that is, of order �(λ(d−1)/d).

(vi) (Comparison with [23].) Let M ∈ M2(d). In contrast with the present pa-
per, [23] considers statistics Hξ(Yn) :=∑n

i=1 ξ(n1/(d−1)Yi, n
1/(d−1)Yn), with in-

put Yn := {Yj }nj=1 carried by M rather than [0,1]d . In this set-up, Hξ(Yn) exhibits
growth �(n).

2. Applications.

2.1. Poisson–Voronoi volume estimators. Given Pλ as in Section 1 and an un-
known Borel set A ⊂ [0,1]d , suppose one can determine which points in the real-
ization of Pλ belong to A and which belong to Ac := [0,1]d \A. How can one use
this information to establish consistent statistical estimators of geometric proper-
ties of A, including Vol(A) and Hd−1(∂A)? Here and henceforth, we shorthand
Vold by Vol. In this section, we use our general results to give the limit theory for
a well-known estimator of Vol(A); the next section proposes a new estimator of
Hd−1(∂A) and gives its limit theory as well.

For X ⊂ R
d locally finite and x ∈ X , let C(x,X ) denote the Voronoi cell gen-

erated by X and with center x. Given Pλ and a Borel set A ⊂ [0,1]d , the Poisson–
Voronoi approximation of A is the union of Voronoi cells with centers inside A,
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namely

Aλ := ⋃
x∈Pλ∩A

C(x,Pλ).

The set Aλ was introduced by Khmaladze and Toronjadze [16], who antic-
ipated that Aλ should well-approximate the target A in the sense that a.s.
limλ→∞ Vol(A�Aλ) = 0. This conjectured limit holds; as shown by [16] when
d = 1 and by Penrose [18] for all d = 1,2, . . . . Additionally, if Pλ is replaced
by a homogeneous Poisson point process on R

d of intensity λ, then Vol(Aλ) is an
unbiased estimator of Vol(A) (cf. [26]), rendering Aλ of interest in image analysis,
nonparametric statistics and quantization, as discussed in Section 1 of [16] as well
as Section 1 of Heveling and Reitzner [12].

Heuristically, Vol(Aλ) − EVol(Aλ) involves cell volumes Vol(C(x,Pλ)), x ∈
Pλ, within O(λ−1/d) of ∂A. The number of such terms is of surface order, that
is there are roughly O(λ(d−1)/d) such terms, each contributing roughly O(λ−2)

toward the total variance. Were the terms spatially independent, one might expect
that as λ → ∞,

λ(d+1)/2d(Vol(Aλ) −EVol(Aλ)
) D−→ N

(
0, σ 2),(2.1)

as conjectured in Remark 2.2 of [26]. We use Theorems 1.2–1.3 to prove this
conjecture and to obtain a closed form expression for σ 2 when ∂A ∈ M2(d); we
find rates of normal convergence for (Vol(Aλ) − EVol(Aλ))/

√
Var Vol(Aλ) as-

suming only ∂A ∈ M(d). This adds to Schulte [27], who for κ ≡ 1 and A com-
pact, convex, shows that (Var Vol(Aλ))

−1/2(Vol(Aλ) − EVol(Aλ)) is asymptoti-
cally normal, λ → ∞. We obtain analogous limits for Vol(A�Aλ). In addition to
the standing assumption ‖κ‖∞ < ∞, we assume everywhere in this section that κ

is bounded away from zero on [0,1]d .

THEOREM 2.1. If ∂A ∈ M(d), then

sup
t∈R

∣∣∣∣P
[

Vol(Aλ) −EVol(Aλ)√
Var Vol(Aλ)

≤ t

]
− 	(t)

∣∣∣∣
= O

(
(logλ)3d+1λ−2−1/d(Var Vol(Aλ)

)−3/2)
and

sup
t∈R

∣∣∣∣P
[

Vol(A�Aλ) −EVol(A�Aλ)√
Var Vol(A�Aλ)

≤ t

]
− 	(t)

∣∣∣∣
= O

(
(logλ)3d+1λ−2−1/d(Var Vol(A�Aλ)

)−3/2)
.

The rate of convergence is uninformative without lower bounds on Var Vol(Aλ)

and Var Vol(A�Aλ). Schulte [27] shows Var Vol(Aλ) = (λ−(d+1)/d) when A is
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compact and convex. The next result provides lower bounds when ∂A contains a
smooth subset. For locally finite X ⊂ R

d , x ∈X , define the volume scores

ν±(x,X , ∂A)
(2.2)

:=
⎧⎪⎨
⎪⎩

Vol
(
C(x,X ) ∩ Ac

)
, if C(x,X ) ∩ ∂A �= ∅, x ∈ A,

±Vol
(
C(x,X ) ∩ A

)
, if C(x,X ) ∩ ∂A �= ∅, x ∈ Ac,

0, if C(x,X ) ∩ ∂A = ∅.

In view of limits such as (1.16), we need to define scores on hyperplanes R
d−1.

We thus put

ν±(x,X ,Rd−1)
(2.3)

:=
⎧⎪⎨
⎪⎩

Vol
(
C(x,X ) ∩R

d−1+
)
, if C(x,X ) ∩R

d−1 �=∅, x ∈R
d−1− ,

±Vol
(
C(x,X ) ∩R

d−1−
)
, if C(x,X ) ∩R

d−1 �=∅, x ∈R
d−1+ ,

0, if C(x,X ) ∩R
d−1 =∅,

where Rd−1+ := R
d−1 ×[0,∞) and R

d−1− := R
d−1 × (−∞,0]. Define σ 2(ν−, ∂A)

by putting ξ and M to be ν− and ∂A, respectively, in (1.16). Similarly, define
σ 2(ν+, ∂A). When κ ≡ 1, these expressions further simplify as at (1.21).

THEOREM 2.2. If κ ∈ C(∂A) and if ∂A contains a C1 open subset, then

Var Vol(Aλ) = 
(
λ−(d+1)/d) and Var Vol(A�Aλ) = 

(
λ−(d+1)/d).

Additionally, if ∂A ∈M2(d), then

lim
λ→∞λ(d+1)/d Var Vol(Aλ) = σ 2(ν−, ∂A

)
and

lim
λ→∞λ(d+1)/d Var Vol(A�Aλ) = σ 2(ν+, ∂A

)
.

Combining the above results gives the following central limit theorem for
Vol(Aλ) − Vol(A); identical results hold for Vol(A�Aλ) −EVol(A�Aλ).

COROLLARY 2.1. If κ ∈ C(∂A) and if either ∂A contains a C1 open subset
or A is compact and convex, then

sup
t∈R

∣∣∣∣P
[

Vol(Aλ) −EVol(Aλ)√
Var Vol(Aλ)

≤ t

]
− 	(t)

∣∣∣∣= O
(
(logλ)3d+1λ−(d−1)/2d).

Additionally, if ∂A ∈M2(d), then as λ → ∞
λ(d+1)/2d(Vol(Aλ) −EVol(Aλ)

) D−→ N
(
0, σ 2(ν−, ∂A

))
.

Recall Xi, i ≥ 1, are i.i.d. with density κ ; Xn := {Xi}ni=1. The binomial-Voronoi
approximation of A is An := ⋃

Xi∈A C(Xi,Xn). The above theorems extend to
binomial input as follows.
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THEOREM 2.3. If κ ∈ C(∂A) and if either ∂A contains a C1 open subset or
A is compact and convex, then

Var Vol(An) = 
(
n−(d+1)/d) and Var Vol(A�An) = 

(
n−(d+1)/d).

Additionally, if ∂A ∈ M2(d), then

lim
n→∞n(d+1)/d Var Vol(An) = σ 2(ν−, ∂A

)
,

lim
n→∞n(d+1)/d Var Vol(A�An) = σ 2(ν+, ∂A

)
,

and as n → ∞,

n(d+1)/2d(Vol(An) −EVol(Aλ)
) D−→ N

(
0, σ 2(ν−, ∂A

))
.

REMARKS. (i) (Theorem 2.2.) When κ ≡ 1, Theorem 2.2 and (1.21) show that
the limiting variance of Vol(Aλ) and Vol(A�Aλ) involve multiples of Hd−1(∂A),
settling a conjecture implicit in Remark 2.2 of [26] when ∂A ∈ M2(d). Up to now,
it has been known that Var Vol(Aλ) = �(λ−(d+1)/d) for A compact and convex,
where the upper and lower bounds follow from [12] and [27], respectively.

(ii) (Corollary 2.1.) When ∂A contains a C1 open subset, Corollary 2.1 answers
the first conjecture in Remark 2.2 of [12]; when A is convex it establishes a rate
of normal convergence for (Vol(Aλ) −EVol(Aλ))/

√
Var Vol(Aλ), extending the

main result of [27] (Theorem 1.1).
(iii) (The C2 assumption.) If A ⊂ R

d has finite perimeter, denoted Per(A),
then [26] shows that limλ→∞ λ1/d

EVol(A�Aλ) = cd Per(A), where cd is an ex-
plicit constant depending only on dimension. This remarkable result, based on co-
variograms, holds with no other assumptions on A. Theorem 2.2 and Corollary 2.1
hold for ∂A not necessarily in M2(d); see [29].

2.2. Poisson–Voronoi surface integral estimators. We show that the surface
area of Aλ, when corrected by a factor independent of A, consistently estimates
Hd−1(∂A) and that it satisfies the limits in Theorems 1.1–1.3.

Given X locally finite and a Borel subset A ⊂ R
d , define for x ∈ X ∩ A

the area score α(x,X , ∂A) to be the Hd−1 measure of the (d − 1)-dimensional
faces of C(x,X ) belonging to the boundary of

⋃
w∈X∩A C(w,X ); if there are

no such faces or if x /∈ X ∩ A, then set α(x,X , ∂A) to be zero. Similarly, for
x ∈ X ∩ R

d−1− , put α(x,X ,Rd−1) to be the Hd−1 measure of the (d − 1)-
dimensional faces of C(x,X ) belonging to the boundary of

⋃
w∈X∩Rd−1−

C(w,X ),

otherwise α(x,X ,Rd−1) is zero.
The surface area of Aλ is then given by

∑
x∈Pλ

α(x,Pλ, ∂A). We might expect
that the statistic

λ−(d−1)/dHα(Pλ, ∂A) = λ−(d−1)/d
∑

x∈Pλ

αλ(x,Pλ, ∂A)(2.4)
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consistently estimates Hd−1(∂A),λ → ∞, and more generally, for f ∈ B([0,1]d)

that

λ−(d−1)/d
∑

x∈Pλ

αλ(x,Pλ, ∂A)f (x)

consistently estimates the surface integral
∫
∂A f (x)Hd−1(dx). Provided that one

introduces a universal correction factor which is independent of the target A, this
turns out to be the case, as seen in the next theorem. Define μ(α,d) and ν(α, d)

by putting ξ to be α in (1.17) and (1.19), respectively.

THEOREM 2.4. If κ ≡ 1 and ∂A ∈ M2(d), then

lim
λ→∞

(
μ(α,d − 1)

)−1Hd−1(∂Aλ) = Hd−1(∂A) in L2(2.5)

and

lim
λ→∞λ(d−1)/d Var

[
Hd−1(∂Aλ)

]
(2.6)

= [μ(α2, d − 1
)+ ν(α, d − 1)

]
Hd−1(∂A).

Further, for f ∈ B([0,1]d)

lim
λ→∞

(
μ(α,d − 1)

)−1
λ−(d−1)/d

∑
x∈Pλ

αλ(x,Pλ, ∂A)f (x)

(2.7)
=
∫
∂A

f (x)Hd−1(dx) in L2.

REMARKS. (i) (Extensions.) Assuming only ∂A ∈ M(d), it follows from The-
orem 1.3 and the upcoming proof of Theorem 2.4 that (VarHd−1(∂Aλ))

−1/2 ×
(Hd−1(∂Aλ)−EHd−1(∂Aλ)) is asymptotically normal. When ∂A ∈ M2(d) it fol-
lows by (1.22) that as λ → ∞

λ−(d−1)/2d(Hd−1(∂Aλ) −EHd−1(∂Aλ)
) D−→ N

(
0, σ 2),

with σ 2 := [μ(α2, d − 1) + ν(α, d − 1)]Hd−1(∂A). Analogs of (2.5)–(2.7) hold if
Pλ is replaced by Xn := {Xi}ni=1, Aλ is replaced by An :=⋃Xi∈A C(Xi,Xn), and
n → ∞.

(ii) (Related work.) Using the Delaunay triangulation of Pλ, [15] introduces an
a.s. consistent estimator of surface integrals of possibly nonsmooth boundaries.
The limit theory for the Poisson–Voronoi estimator Hα(Pλ, ∂A) extends to non-
smooth ∂A as in [29].
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2.3. Maximal points. Let K ⊂ R
d be a cone with nonempty interior and apex

at the origin of Rd . Given X ⊂ R
d locally finite, x ∈ X is called K-maximal, or

simply maximal if (K ⊕ x) ∩X = x. Here, K ⊕ x is Minkowski addition, namely
K ⊕ x := {z + x : z ∈ K}. In the case K = (R+)d , a point x = (x1, . . . , xd) ∈ X
is maximal if there is no other point (z1, . . . , zd) ∈ X with zi ≥ xi for all 1 ≤
i ≤ d . The maximal layer mK(X ) is the collection of maximal points in X . Let
MK(X ) := card(mK(X )).

Maximal points feature in various disciplines. They are of broad interest in com-
putational geometry; see books by Preparata and Shamos [25], Chen et al. [8].
Maximal points appear in pattern classification, multicriteria decision analysis,
networks, data mining, analysis of linear programming and statistical decision the-
ory; see Ehrgott [10] and Pomerol and Barba-Romero [24]. In economics, when
K = (R+)d , the maximal layer and K are termed the Pareto set and Pareto cone,
respectively; see Sholomov [28] for a survey on Pareto optimality.

Next, let κ be a density having support

A := {(v,w) :v ∈ D,0 ≤ w ≤ F(v)
}
,

where F :D → R has continuous partials Fi,1 ≤ i ≤ d − 1, which are bounded
away from zero and negative infinity; D ⊂ [0,1]d−1, and |F | ≤ 1. Let Pλ := Pλκ

and Xn := {Xi}ni=1 as above.
Using Theorems 1.1–1.3, we deduce laws of large numbers, variance asymp-

totics, and central limit theorems for MK(Pλ) and MK(Xn), as λ → ∞ and
n → ∞, respectively. Put ∂A := {(v,F (v)) :v ∈ D} and let

ζ(x,X , ∂A) :=
{

1, if
(
(K ⊕ x) ∩ A

)∩X = x,

0, otherwise.

When x = (y, t), y ∈ ∂A, we write

ζ(x,X ,Hy) :=
{

1, if
(
(K ⊕ x) ∩H+(y, ∂A)

)∩X = x,

0, otherwise,
(2.8)

where H+(y, ∂A) is the half-space containing 0 and with hyperplane H(y, ∂A).
To simplify the presentation, we take K = (R+)d , but the results extend to gen-

eral cones. Recalling definitions (1.11) and (1.12), we have the following results.

THEOREM 2.5. If κ ∈ C(∂A) and if κ is bounded away from 0 on A, then

lim
λ→∞λ−(d−1)/dMK(Pλ)

= μ(ζ, ∂A)(2.9)

= (d!)1/dd−1�
(
d−1) ∫

D

∣∣∣∣∣
d−1∏
i=1

Fi(v)

∣∣∣∣∣
1/d

κ
(
v,F (v)

)(d−1)/d
dv in L2
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and

lim
λ→∞λ−(d−1)/d Var

[
MK(Pλ)

]= σ 2(ζ, ∂A) ∈ (0,∞).(2.10)

Moreover, as λ → ∞, we have

λ−(d−1)/2d(MK(Pλ) −EMK(Pλ)
) D−→ N

(
0, σ 2(ζ, ∂A)

)
.

Identical limits hold with MK(Pλ) replaced by MK(Xn), n → ∞. We also have

sup
t∈R

∣∣∣∣P
[
MK(Pλ) −EMK(Pλ)√

Var[MK(Pλ)] ≤ t

]
− 	(t)

∣∣∣∣≤ c(logλ)3q+1λ(d−1)/2d .(2.11)

REMARKS. (i) (Related expectation and variance asymptotics.) Formu-
la (2.10) is new for all dimensions d , whereas formula (2.9) is new for d > 2.
For d = 2, (2.9) extends work of Devroye [9], who treats the case κ ≡ 1. Barbour
and Xia [3, 4] establish growth rates for Var[MK(Pλ)] but do not determine limit-
ing means or variances for d > 2. Hwang and Tsai [14] determine EMK(Xn) and
VarMK(Xn) when A := {(x1, . . . , xd) :xi ≥ 0,

∑d
i=1 xi ≤ 1}, that is, ∂A is a subset

of the plane
∑d

i=1 xi = 1.
(ii) (Related central limit theorems.) Using Stein’s method, Barbour and

Xia [3, 4] show for d = 2, κ uniform and K = (R+)2 that (MK(Xn) −
EMK(Xn))/

√
VarMK(Xn) tends to a standard normal. Assuming differentiability

conditions on F , they find rates of normal convergence of MK(Xn) and MK(Pλ)

with respect to the bounded Wasserstein distance [3] and the Kolmogorov dis-
tance [4], respectively. Their work adds to Bai et al. [2], which for K = (R+)2

establishes variance asymptotics and central limit theorems when κ is uniform on
a convex polygonal region, and Baryshnikov [5], who proves a central limit the-
orem under general conditions on ∂A, still in the setting of homogeneous point
sets.

(iii) (Related results.) Parametrizing points in R
d with respect to a fixed (d −1)-

dimensional plane H0, the preprint [7] obtains expectation and variance asymp-
totics for MK(Pλ) and MK(Xn), with limits depending on an integral over the pro-
jection of ∂A onto H0. By comparison, the limits in Theorem 2.5 follow straight-
forwardly from the general limit theorems and exhibit an explicit dependence on
the graph of F , that is, ∂A. Preprint [7] uses cumulants to show asymptotic nor-
mality without delivering the rate of convergence offered by Theorem 1.3.

(iv) (Extensions.) Separate analysis is needed to extend Theorem 2.5 to spherical
boundaries Sd−1 ∩ [0,∞)d , that is to say quarter circles in d = 2.

2.4. Navigation in Poisson–Voronoi tessellations. Put κ ≡ 1. Let X ⊂ R
2 be

locally finite and let r(t),0 ≤ t ≤ 1, be a C1 curve C in [0,1]2. Let VC := VC(X )

be the union of the Voronoi cells C(x,X ) meeting C. Order the constituent cells of
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VC according to the “time” at which r(t) first meets the cells. Enumerate the cells
as

C(x1,X ,C), . . . ,C(xN,X ,C); N random.

The piecewise linear path joining the nodes x1, . . . , xN is a path C(X ) whose
length |C(X )| approximates the length of C. The random path C(Pλ) has been
studied by Bacelli et al. [1], which restricts to linear C. For all x ∈ X define the
score

ρ(x,X ,C) :=
⎧⎨
⎩

one half the sum of lengths of edges incident to x in
C(X ) if x ∈ C(X ),

0, otherwise.

Then the path length |C(Pλ)| satisfies∣∣C(Pλ)
∣∣= ∑

x∈Pλ

ρ(x,Pλ,C) = λ−1/2Hρ(Pλ,C).

We claim that the score ρ satisfies the conditions of Theorems 1.1–1.3 and that
therefore the limit theory of |C(Pλ)| may be deduced from these general theorems,
adding to [1]. Likewise, using the Delaunay triangulation of Pλ, one can find a
unique random path C̃λ(Pλ) whose edges meet C and belong to the triangulation
of Pλ, with length∣∣C̃λ(Pλ)

∣∣= ∑
x∈Pλ

ρ̃(x,Pλ,C) = λ−1/2Hρ̃(Pλ,C),

where

ρ̃(x,Pλ,C) :=
{

one half the sum of lengths of edges incident to x if x ∈ C̃λ(Pλ),

0, otherwise.

Theorems 1.1–1.3 provide the limit theory for |C̃λ(Pλ)|.
3. Auxiliary results. We give three lemmas pertaining to the rescaled scores

ξλ, λ > 0, defined at (1.4).

LEMMA 3.1. Fix M ∈ M2(d). Assume that ξ is homogeneously stabilizing,
satisfies the moment condition (1.8) for p > 1 and is well-approximated by Pλ

input on half-spaces (1.10). Then for almost all y ∈ M, all u ∈ R, and all x ∈
R

d ∪∅ we have

lim
λ→∞Eξλ

((
y,λ−1/du

)+ λ−1/dx,Pλ,M
)= Eξ

(
(0y, u) + x,Hκ(y),Hy

)
.(3.1)

PROOF. Fix M ∈ M2(d). We first show for almost all y ∈ M that there exist
coupled realizations P ′

λ and H′
κ(y) of Pλ and H′

κ(y), respectively, such that for

u ∈ R and x ∈ R
d , we have as λ → ∞

ξλ

((
y,λ−1/du

)+ λ−1/dx,P ′
λ,M

) D−→ ξ
(
(0y, u) + x,H′

κ(y),Hy

)
.(3.2)
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By translation invariance of ξ , we have

ξλ

((
y,λ−1/du

)+ λ−1/dx,Pλ,M
)= ξλ

((
0y, λ

−1/du
)+ λ−1/dx,Pλ − y,M− y

)
= ξ

(
(0y, u) + x,λ1/d(Pλ − y), λ1/d(M− y)

)
.

By the half-space approximation assumption (1.10), we need only show for almost
all y ∈ M that there exist coupled realizations P ′

λ and H′
κ(y) of Pλ and Hκ(y),

respectively, such that as λ → ∞
ξ
(
(0y, u) + x,λ1/d(P ′

λ − y
)
,Hy

) D−→ ξ
(
(0y, u) + x,H′

κ(y),Hy

)
.(3.3)

This, however, follows from the homogeneous stabilization of ξ and the continu-
ous mapping theorem; see Lemmas 3.2 and 3.2 of [18], which proves this assertion
for the more involved case of binomial input. Thus, (3.2) holds and Lemma 3.1
follows from uniform integrability of ξλ((y, λ−1/du) + λ−1/dx,P ′

λ,M), which
follows from the moment condition (1.8). �

LEMMA 3.2. Fix M ∈ M2(d). Assume that ξ is homogeneously stabilizing,
satisfies the moment condition (1.8) for p > 2, and is well-approximated by Pλ

input on half-spaces (1.10). Given y ∈M, x ∈R
d and u ∈ R, put

Xλ := ξλ

((
y,λ−1/du

)
,Pλ ∪ ((y,λ−1/du

)+ λ−1/dx
)
,M

)
,

Yλ := ξλ

((
y,λ−1/du

)+ λ−1/dx,Pλ ∪ (y,λ−1/du
)
,M

)
,

X := ξ
(
(0y, u),Hκ(y) ∪ ((0y, u) + x

)
,Hy

)
and

Y := ξ
(
(0y, u) + x,Hκ(y) ∪ (0y, u),Hy

)
.

Then for almost all y ∈ M we have limλ→∞EXλYλ = EXY .

PROOF. By the moment condition (1.8), the sequence X2
λ, λ ≥ 1, is uniformly

integrable and hence the convergence in distribution Xλ
D−→ X extends to L2

convergence and likewise for Yλ
D−→ Y . The triangle inequality and the Cauchy–

Schwarz inequality give

‖XλYλ − XY‖1 ≤ ‖Yλ‖2‖Xλ − X‖2 + ‖X‖2‖Yλ − Y‖2.

Lemma 3.2 follows since supλ>0 ‖Yλ‖2 < ∞ and ‖X‖2 < ∞. �

The next result quantifies the exponential decay of correlations between scores
on re-scaled input separated by Euclidean distance ‖x‖.

LEMMA 3.3. Fix M ∈ M(d). Let ξ be exponentially stabilizing (1.7) and as-
sume the moment condition (1.8) holds for some p > 2. Then there is a c0 ∈ (0,∞)
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such that for all w,x ∈ R
d and λ ∈ (0,∞), we have∣∣Eξλ

(
w,Pλ ∪ (w + λ−1/dx

)
,M

)
ξλ

(
w + λ−1/dx,Pλ ∪ w,M

)
−Eξλ(w,Pλ,M)Eξλ

(
w + λ−1/dx,Pλ,M

)∣∣
≤ c0 exp

(−c−1
0 ‖x‖).

PROOF. See the proof of Lemma 4.2 of [19] or Lemma 4.1 of [6]. �

4. Proofs of Theorems 1.1–1.2. Roughly speaking, putting x = ∅ in (3.1)
and integrating (3.1) over y ∈ M and u ∈R, we obtain expectation convergence of
λ−(d−1)/dHξ (Pλ,M) in Theorem 1.1. We then upgrade this to L1 and L2 conver-
gence. Regarding Theorem 1.2, Lemmas 3.1 and 3.2 similarly yield convergence
of the covariance of scores ξλ at points (y, λ−1/du) and (y, λ−1/du) + λ−1/dx

and Lemma 3.3, together with dominated convergence, imply convergence of in-
tegrated covariances over x ∈ R

d and u ∈ R, as they appear in the iterated integral
formula for λ−(d−1)/d VarHξ(Pλ,M). The details go as follows.

PROOF OF THEOREM 1.1. We first prove L2 convergence. Recall the defini-
tions of Hξ(Pλ,M) and μ(ξ,M) at (1.2) and (1.11), respectively. In view of the
identity

E
(
λ−(d−1)/dHξ (Pλ,M) − μ(ξ,M)

)2
= λ−2(d−1)/d

EHξ(Pλ,M)2 − 2μ(ξ,M)λ−(d−1)/d
EHξ(Pλ,M)

+ μ(ξ,M)2,

it suffices to show

lim
λ→∞λ−(d−1)/d

EHξ(Pλ,M) = μ(ξ,M)(4.1)

and

lim
λ→∞λ−2(d−1)/d

EHξ(Pλ,M)2 = μ(ξ,M)2.(4.2)

To show (4.1), we first write

λ−(d−1)/d
EHξ(Pλ,M) = λ1/d

∫
[0,1]d

Eξλ(x,Pλ,M)κ(x) dx.

Given M ∈ M2(d) and x ∈ [0,1]d , recall from (1.3) the parameterization x =
y + tuy , with uy the unit outward normal to M at y. The Jacobian of the map
h :x �→ (y + tuy) at (y, t) is Jh((y, t)) :=∏d−1

i=1 (1 + tCy,i), where Cy,i,1 ≤ i ≤
d − 1, are the principal curvatures of M at y. Surfaces in M2(d) have bounded
curvature, implying ‖Jh‖∞ := sup(y,t)∈[0,1]d |Jh((y, t))| < ∞.
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Given y ∈ M, let Ny be the set of points in [0,1]d with parameterization (y, t)

for some t ∈ R. Define Ty := {t ∈ R : (y, t) ∈ Ny}. This gives

λ−(d−1)/d
EHξ(Pλ,M)

= λ1/d
∫
y∈M

∫
t∈Ty

Eξλ

(
(y, t),Pλ,M

)∣∣Jh

(
(y, t)

)∣∣κ((y, t)
)
dt dy.

Let t = λ−1/du to obtain

λ−(d−1)/d
EHξ(Pλ,M)

=
∫
y∈M

∫
u∈λ1/dTy

Eξλ

((
y,λ−1/du

)
,Pλ,M

)∣∣Jh

((
y,λ−1/du

))∣∣(4.3)

× κ
((

y,λ−1/du
))

dudy.

By Lemma 3.1, for almost all y ∈M and u ∈ R, we have

lim
λ→∞Eξλ

((
y,λ−1/du

)
,Pλ,M

)= Eξ
(
(0y, u),Hκ(y),Hy

)
.(4.4)

By (1.8), for y ∈ M, u ∈ R, and λ ∈ (0,∞), the integrand in (4.3) is bounded
by Gξ,1(|u|)‖Jh‖∞‖κ‖∞, which is integrable with respect to the measure dudy.
Therefore, by the dominated convergence theorem, the limit λ1/dTy ↑ R, the con-
tinuity of κ , and (4.4), we obtain (4.1), namely

lim
λ→∞λ−(d−1)/d

EHξ(Pλ,M) =
∫
y∈M

∫ ∞
−∞

E
[
ξ
(
(0y, u),Hκ(y),Hy

)]
duκ(y) dy.

To show (4.2), we note

λ−2(d−1)/d
EHξ(Pλ,M)2

= λ−2(d−1)/d

×
[
λ

∫
[0,1]d

E
[
ξλ(x,Pλ,M)2]κ(x) dx

+ λ2
∫
[0,1]d

∫
[0,1]d

Eξλ(x,Pλ,M)ξλ(w,Pλ,M)κ(x)κ(w)dx dw

]
.

The first integral goes to zero, since supλ>0 λ1/d
∫
[0,1]d Eξλ(x,Pλ,M)2κ(x) dx is

bounded. The second integral simplifies to

λ2/d
∫
[0,1]d

∫
[0,1]d

Eξλ(x,Pλ,M)ξλ(w,Pλ,M)κ(x)κ(w)dx dw.

As λ → ∞, this tends to μ(ξ,M)2 by independence, proving the asserted L2

convergence of Theorem 1.1.
To prove L1 convergence we follow a truncation argument similar to that for

the proof of Proposition 3.2 in [21]. Given K > 0, we put

ξK(x,X ,M) := min
(
ξ(x,X ,M),K

)
.
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Then ξK is homogenously stabilizing and uniformly bounded and, therefore, by
the first part of this proof we get

lim
λ→∞λ−(d−1)/dHξK

(Pλ,M) = μ
(
ξK,M

)
in L2.(4.5)

Also, following the arguments around (4.3), we have
∣∣λ−(d−1)/d(

EHξ(Pλ,M) −EHξK

(Pλ,M)
)∣∣

≤
∫
y∈M

∫
u∈λ1/dTy

E[· · ·]∣∣Jh

((
y,λ−1/du

))∣∣κ((y,λ−1/du
))

dudy,

where E[· · ·] := E[|ξλ((y, λ−1/du),Pλ,M)−ξK
λ ((y, λ−1/du),Pλ,M)|]. This ex-

pected difference tends to zero as K → ∞, because the moments condition (1.8)
with p > 1 implies that |ξλ((y, λ−1/du),Pλ,M) − ξK

λ ((y, λ−1/du),Pλ,M)| is
uniformly integrable. By monotone convergence, μ(ξK,M) → μ(ξ,M) as K →
∞. Thus, letting K → ∞ in (4.5) we get the desired L1 convergence. �

PROOF OF THEOREM 1.2. We have

λ−(d−1)/d VarHξ(Pλ,M) = λ1/d
∫
[0,1]d

Eξ2
λ (x,Pλ,M)κ(x)Hd(dx)

+ λ1+1/d
∫
x∈[0,1]d

∫
w∈[0,1]d

{· · ·}κ(x)κ(w)dx dw,

where

{· · ·} := Eξλ(x,Pλ ∪ w,M)ξλ(w,Pλ ∪ x,M) −Eξλ(x,Pλ,M)Eξλ(w,Pλ,M).

For a fixed (y, t) ∈ M × R, parameterize points x ∈ [0,1]d by xy := (zy, sy),
where zy ∈ Hy and sy ∈ R. Given (y, t) ∈ [0,1]d and zy ∈ Hy , let Szy := Szy,t :=
{sy ∈ R : (y, t) + (zy, sy) ∈ [0,1]d} and let Zy := [0,1]d ∩Hy . We have

λ−(d−1)/d Var
[
Hξ(Pλ,M)

]
= λ1/d

∫
[0,1]d

Eξλ(x,Pλ,M)2κ(x) dx

(4.6)
+ λ1+1/d

∫
y∈M

∫
Ty

∫
Zy

∫
Szy

{· · ·}∣∣Jh

(
(y, t)

)∣∣
× κ

(
(y, t)

)
κ
(
(y, t) + (zy, sy)

)
dsy dzy dt dy,

where

{· · ·} := Eξλ

(
(y, t),Pλ ∪ (y, t) + (zy, sy),M

)
ξλ

(
(y, t) + (zy, sy),Pλ ∪ (y, t),M

)
−Eξλ

(
(y, t),Pλ,M

)
Eξλ

(
(y, t) + (zy, sy),Pλ,M

)
.
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As in the proof of Theorem 1.1, the first integral in (4.6) converges to∫
M

∫ ∞
−∞

Eξ2((0y, u),Hκ(y),Hy

)
duκ(y) dy.(4.7)

In the second integral in (4.6), we let t = λ−1/du, sy = λ−1/ds, zy = λ−1/dz so that
dz = λ(d−1)/d dzy . These substitutions transform the multiplicative factor∣∣Jh

(
(y, t)

)∣∣κ((y, t)
)
κ
(
(y, t) + (zy, sy)

)
into ∣∣Jh

((
y,λ−1/du

))∣∣κ((y,λ−1/du
))

κ
((

y,λ−1/du
)+ (λ−1/dz, λ−1/ds

))
,(4.8)

they transform the differential λ1+1/d dsy dzy dt dy into ds dz dudy, and, lastly,
they transform [recalling xy = (zy, sy)] the covariance term {· · ·} into

{· · ·}′ := Eξλ

((
y,λ−1/du

)
,Pλ ∪ (y,λ−1/du

)+ λ−1/dxy,M
)

× ξλ

((
y,λ−1/du

)+ λ−1/dxy,Pλ ∪ (y,λ−1/du
)
,M

)
(4.9)

−Eξλ

((
y,λ−1/du

)
,Pλ,M

)
Eξλ

((
y,λ−1/du

)+ λ−1/dxy,Pλ,M
)
.

The factor at (4.8) is bounded by ‖Jh‖∞‖κ‖2∞ and converges to κ(y)2, as λ → ∞.
By Lemma 3.2, for almost all y ∈ M, the covariance term {· · ·}′ at (4.9) converges
to

cξ ((0y, u), (0y, u) + (z, s),Hκ(y),Hy

)
.

By Lemma 3.3 as well as (1.8), the factor {· · ·}′ is dominated by an integrable
function of (y,u, xy) ∈ M × R × R

d . By dominated convergence, together with
the set limits λ1/dZy ↑ R

d−1, λ1/dSzy ↑ R, and λ1/dTy ↑ R the second integral
converges to∫

M

∫
Rd−1

∫ ∞
−∞

∫ ∞
−∞

cξ ((0y, u), (0y, u) + (z, s);Hκ(y),Hy

)
(4.10)

× κ(y)2 duds dz dy,

which is finite. Combining (4.7) and (4.10), we obtain Theorem 1.2. �

5. Proof of Theorem 1.3. Put Tλ := Hξ(Pλ,M),M ∈ M(d). We shall first
prove that Theorem 1.3 holds when Tλ is replaced by a version T ′

λ on input concen-
trated near M. To show asymptotic normality of T ′

λ, we follow the set-up of [22],
which makes use of dependency graphs, allowing applicability of Stein’s method.
We show that T ′

λ is close to Tλ, thus yielding Theorem 1.3. This goes as follows.
Put ρλ := β logλ, sλ := ρλλ

−1/d = β logλ · λ−1/d , β ∈ (0,∞) a constant to be
determined. Consider the collection of cubes Q of the form

∏d
i=1[jisλ, (ji +1)sλ),

with all ji ∈ Z, such that
∫
Q κ(x)dx > 0. Further, consider only cubes Q such
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that d(Q,M) < 2sλ, where for Borel subsets A and B of Rd , we put d(A,B) :=
inf{|x − y| :x ∈ A,y ∈ B}. Relabeling if necessary, write the union of the cubes as
Q :=⋃W

i=1 Qi , where W := W(λ) = �((s−1
λ )d−1), because Hd−1(M) < ∞.

We have card(Qi ∩ Pλ) := Ni := N(νi), where Ni is an independent Poisson
random variable with parameter

νi := λ

∫
Qi

κ(x) dx ≤ ‖κ‖∞ρd
λ .

We may thus write Pλ ∩⋃W
i=1 Qi =⋃W

i=1{Xij }Ni

j=1, where for 1 ≤ i ≤ W , we have
Xij are i.i.d. on Qi with density

κi(·) := κ(·)∫
Qi

κ(x) dx
1(Qi).

Define

T̃λ := ∑
x∈Pλ∩Q

ξλ(x,Pλ,M).

Then by definition of W , Ni and Xij , we may write

T̃λ =
W∑
i=1

Ni∑
j=1

ξλ(Xij ,Pλ,M).

As in [22], it is useful to consider a version T ′
λ of T̃λ which has more inde-

pendence between summands. This goes as follows. For all 1 ≤ i ≤ W and all
j = 1,2, . . . , recalling the definition (1.7), let Rij := Rξ(Xij ,Pλ,M) denote the
radius of stabilization of ξ at Xij if 1 ≤ j ≤ Ni and otherwise let Rij be zero. Put
Eij := {Rij ≤ ρλ}, let

Eλ :=
W⋂
i=1

∞⋂
j=1

Eij(5.1)

and define

T ′
λ :=

W∑
i=1

Ni∑
j=1

ξλ(Xij ,Pλ,M)1(Eij ).

For all 1 ≤ i ≤ W , define

Si := SQi
:= (VarT ′

λ

)−1/2
Ni∑

j=1

ξλ(Xij ,Pλ,M)1(Eij ).

Note that Si and Sj are independent if d(Qi,Qj ) > 2λ−1/dρλ. Put

Sλ := (VarT ′
λ

)−1/2(
T ′

λ −ET ′
λ

)= W∑
i=1

(Si −ESi).
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We aim to show that T ′
λ closely approximates Tλ, but first we show that T̃λ

closely approximates Tλ.

LEMMA 5.1. Given M ∈ M(d), let Gξ,2 := Gξ,2,M satisfy (1.8) and (1.9).
Choose β ∈ (0,∞) so that

β lim sup
|u|→∞

|u|−1 logGξ,2(|u|)< −8.(5.2)

Then

‖T̃λ − Tλ‖2 = O
(
λ−3)(5.3)

and

|Var T̃λ − VarTλ| = O
(
λ−2).(5.4)

PROOF. Writing T̃λ = Tλ + (T̃λ − Tλ) gives

Var T̃λ = VarTλ + Var[T̃λ − Tλ] + 2 Cov(Tλ, T̃λ − Tλ).

Now

Var[T̃λ − Tλ]

≤ ‖T̃λ − Tλ‖2
2 = E

( ∑
x∈Pλ\Q

ξλ(x,Pλ,M)

)2

= λ2
∫
[0,1]d\Q

∫
[0,1]d\Q

E
[
ξλ(x,Pλ,M)ξλ(y,Pλ,M)

]
κ(x)κ(y) dx dy.

If x ∈ [0,1]d \Q, then d(x,M) ≥ β logλ ·λ−1/d . Thus, by (1.8) and (1.9), for large
λ we have Eξλ(x,Pλ,M)2 ≤ Gξ,2(β logλ) ≤ exp(−8 logλ) = λ−8. Applying the
Cauchy–Schwarz inequality to Eξλ(x,Pλ,M)ξλ(y,Pλ,M) with x, y ∈ [0,1]d \
Q, we obtain

‖T̃λ − Tλ‖2
2 = O

(
λ−6)(5.5)

which gives (5.3). Also, since ‖Tλ‖2 = O(λ) and ‖T̃λ − Tλ‖2 = O(λ−3), another
application of the Cauchy–Schwarz inequality gives

Cov(Tλ, T̃λ − Tλ) ≤ ‖Tλ‖2‖T̃λ − Tλ‖2 = O
(
λ−2).(5.6)

Combining (5.5) and (5.6) gives (5.4). �

LEMMA 5.2. Assume that ξ satisfies the moment conditions (1.8) and (1.9)
for some p > q,q ∈ (2,3]. For β large, we have∥∥Tλ − T ′

λ

∥∥
2 = O

(
λ−3)(5.7)

and ∣∣VarTλ − VarT ′
λ

∣∣= O
(
λ−2).(5.8)
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PROOF. We have ‖Tλ − T ′
λ‖2 ≤ ‖Tλ − T̃λ‖2 + ‖T̃λ − T ′

λ‖2 = O(λ−3) +
‖T̃λ − T ′

λ‖2, by Lemma 5.1. Note that |T̃λ − T ′
λ| = 0 on Eλ, with Eλ defined

at (5.1). Choosing β large enough, we have P [Ec
λ] = O(λ−D) for any D > 0.

By the analog of Lemma 4.3 of [22], and using condition (1.8), we get for
q ∈ (2,3] that ‖T̃λ −T ′

λ‖q = O(λ). This, together with the Hölder inequality, gives
‖(T̃λ − T ′

λ)1(Ec
λ)‖2 = O(λ−3), whence (5.7).

To show (5.8), we note that by (5.4) and the triangle inequality, it is enough to
show |Var T̃λ − VarT ′

λ| = O(λ−2). However, this follows by writing

Var T̃λ = VarT ′
λ + Var

[
T̃λ − T ′

λ

]+ 2 Cov
(
T ′

λ, T̃λ − T ′
λ

)
,

noting Var[T̃λ − T ′
λ] ≤ ‖T̃λ − T ′

λ‖2 = O(λ−3), and then using ‖T ′
λ‖2 = O(λ) and

the Cauchy–Schwarz inequality to bound Cov(T ′
λ, T̃λ − T ′

λ) by O(λ−2). �

Now we are ready to prove Theorem 1.3. Since (1.14) trivially holds for large
enough λ when VarTλ < 1, we may without loss of generality assume VarTλ ≥ 1.

As in [22], we define a dependency graph Gλ := (Vλ,Eλ) for {Si}Vi=1. The
set Vλ consists of the cubes Q1, . . . ,QV and edges (Qi,Qj ) belong to Eλ

iff d(Qi,Qj ) < 2λ−1/dρλ. Using Stein’s method in the context of dependency
graphs, we adapt the proof in [22] to show the asymptotic normality of Sλ,
λ → ∞, and then use this to show the asymptotic normality of Tλ,λ → ∞.
In [22], we essentially replace the term V = �(λ/(logλ)d) by the smaller
term W = �(λ(d−1)/d/(logλ)d−1), and instead of (4.16) and (4.17) of [22],
we use (5.7) and (5.8). Note that for p > q,q ∈ (2,3], we have ‖Si‖q =
O((Var[T ′

λ])−1/2ρ
d(p+1)/p
λ ). We sketch the argument as follows.

Let c denote a generic constant whose value may change at each occurrence.
Following Section 4.3 of [22] verbatim up to (4.18) gives, via Lemma 4.1 of [22],
with p > q , q ∈ (2,3] and θ := c(Var[T ′

λ])−1/2ρ
d(p+1)/p
λ :

sup
t∈R
∣∣P [Sλ ≤ t] − 	(t)

∣∣
≤ cWθq ≤ cλ(d−1)/dρ

−(d−1)
λ

(
VarT ′

λ

)−q/2
ρ

d(p+1)q/p
λ(5.9)

≤ cλ(d−1)/d(Var[Tλ])−q/2
ρ

dq+1
λ ,

where we use Var[T ′
λ] ≥ Var[Tλ)]/2, which follows (for λ large) from (5.8).

Follow verbatim the discussion between (4.18)–(4.20) of [22], with V (λ) there
replaced by W . Recall that q ∈ (2,3] with p > q . Making use of (5.7), this gives
the analog of (4.20) of [22]. In other words, this gives a constant c depending on
d, ξ,p, and q such that for all λ ≥ 2 the inequality (5.9) becomes

sup
t∈R
∣∣P [(VarT ′

λ

)−1/2
(Tλ −ETλ) ≤ t

]− 	(t)
∣∣

(5.10)
≤ cλ(d−1)/d(VarTλ)

−q/2ρ
dq+1
λ + cλ−2.
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By [6, 19], we have VarTλ = O(λ) and so cλ−2 is negligible with respect to the
first term on the right-hand side of (5.10).

Finally we replace VarT ′
λ by VarTλ on the left-hand side of (5.10). As in [22],

we have by the triangle inequality

sup
t∈R
∣∣P [(VarTλ)

−1/2(Tλ −ETλ) ≤ t
]− 	(t)

∣∣

≤ sup
t∈R

∣∣∣∣P
[(

VarT ′
λ

)−1/2
(Tλ −ETλ) ≤ t ·

(
VarTλ

VarT ′
λ

)1/2]
(5.11)

− 	

(
t

(
VarTλ

VarT ′
λ

)1/2)∣∣∣∣
+ sup

t∈R

∣∣∣∣	
(
t

(
VarTλ

VarT ′
λ

)1/2)
− 	(t)

∣∣∣∣.
We have ∣∣∣∣

√
VarTλ

VarT ′
λ

− 1
∣∣∣∣≤
∣∣∣∣VarTλ

VarT ′
λ

− 1
∣∣∣∣= O

(
λ−2).

Let φ := 	′ be the density of 	. Following the analysis after (4.21) of [22], we get

sup
t∈R

∣∣∣∣	
(
t

√
VarTλ

VarT ′
λ

)
− 	(t)

∣∣∣∣≤ c sup
t∈R

(( |t |
λ2

)(
sup

u∈[t−tc/λ2,t+tc/λ2]
φ(u)

))
= O

(
λ−2).

This gives (1.14) as desired.

6. Proofs of Theorems 2.1–2.5. We first give a general result useful in prov-
ing versions of Theorems 1.1–1.3 for binomial input. Say that ξ is binomially
exponentially stabilizing with respect to the pair (Xn,M) if for all x ∈ R

d there is
a radius of stabilization R := Rξ(x,Xn,M) ∈ (0,∞) a.s. such that

ξn

(
x,Xn ∩ Bn−1/dR(x),M

)= ξn

(
x,
(
Xn ∩ Bn−1/dR(x)

)∪A,M
)

(6.1)

for all locally finite A ⊂R
d \Bn−1/dR(x), and moreover, the tail probability τ̃ (t) :=

τ̃ (t,M) := supn≥1,x∈Rd P [R(x,Xn,M) > t] satisfies lim supt→∞ t−1 log τ̃ (t) <

0.

LEMMA 6.1. Let M ∈ M(d). Let ξ be exponentially stabilizing (1.7), bino-
mially exponentially stabilizing (6.1), and assume the moment conditions (1.8)
and (1.9) hold for some p > 2. If there is constant c1 ∈ (0,∞) such that

P
[∣∣ξn(X1,Xn,M)

∣∣≥ c1 logn
]= O

(
n−1−2/(1−1/p)),(6.2)

and if N(n) is an independent Poisson random variable with parameter n, then∣∣VarHξ(Xn,M) − VarHξ(XN(n),M)
∣∣= o

(
n(d−1)/d).(6.3)



200 J. E. YUKICH

PROOF. Let D := 2/(1 − 1/p). By (6.2), there is an event Fn,1, with
P [Fc

n,1] = O(n−D) such that on Fn,1 we have

max
1≤i≤n+1

∣∣ξn(Xi,Xn,M)
∣∣≤ c1 logn.(6.4)

As in the proof of Theorem 1.3, put sn := β logn/n1/d , Q := Q(n) :=⋃W
i=1 Qi ,

where d(Qi,M) < 2sn, W := W(n) = O((s−1
n )d−1), and β is a constant to be

determined. Consider the event Fn,2 such that for all 1 ≤ i ≤ n + 1, we have
ξn(Xi,Xn,M) = ξn(Xi,Xn ∩ Bs(n)(Xi),M). By binomial exponential stabiliza-
tion (6.1) and for β large enough, we have P [Fc

n,2] = O(n−D). Define for all
n = 1,2, . . .

T̃n := ∑
Xi∈Xn∩Qn

ξn(Xi,Xn ∩Qn,M).

As in Lemma 5.1, for β large we have the generous bounds∣∣VarHξ(Xn,M) − Var T̃n

∣∣= o
(
n(d−1)/d)

and ∣∣VarHξ(XN(n),M) − Var T̃N(n)

∣∣= o
(
n(d−1)/d).

Therefore, to show (6.3), it is enough to show∣∣Var T̃n − Var T̃N(n)

∣∣= o
(
n(d−1)/d).(6.5)

Write ξn(Xi,Xn) for ξn(Xi,Xn,M). If Xi ∈ Bc
sn

(Xn+1),1 ≤ i ≤ n, then on Fn,2
we have ξn(Xi,Xn) = ξn(Xi,Xn+1). On Fn,2, we thus have

|T̃n − T̃n+1| ≤ ξn(Xn+1,Xn+1) + ∑
1≤i≤n : Xi∈Bsn(Xn+1)

∣∣ξn(Xi,Xn) − ξn(Xi,Xn+1)
∣∣.

Given a constant c2 ∈ (0,∞), define

Fn,3 := {card
{
Xn ∩ Bsn(Xn+1)

}≤ c2 logn
}
.

Choose c2 large such that P [Fc
n,3] = O(n−D). On Fn,1 ∩ Fn,2 ∩ Fn,3 we have

by (6.4) |T̃n − T̃n+1| = O((logn)2). We deduce there is a c3 such that on Fn,1 ∩
Fn,2 ∩ Fn,3 and all integers l ∈ {1, . . . , n}

|T̃n − T̃n+l| ≤ c3l(logn)2.(6.6)

To show (6.5), we shall show

|Var T̃n − Var T̃N(n)| = O
(
(logn)4n1−3/2d).(6.7)

To show (6.7), write

Var T̃n = Var T̃N(n) + (Var T̃n − Var T̃N(n)) + 2 cov(T̃N(n), T̃n − T̃N(n)).(6.8)
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The proof of Theorem 1.2 shows Var T̃N(n) = O(n(d−1)/2d), yielding

cov(T̃N(n), T̃n − T̃N(n)) ≤
√

Var T̃N(n) · ∥∥(T̃n − T̃N(n))
∥∥

2

= O
(
n(d−1)/2d

∥∥(T̃n − T̃N(n))
∥∥

2

)
.

It is thus enough to show
∥∥(T̃n − T̃N(n))

∥∥2
2 = O

(
(logn)8n1−2/d),(6.9)

since the last two terms in (6.8) are then O((logn)4n1−3/2d). Relabel the Xi, i ≥ 1,
so that Xn ∩Qn = {X1, . . . ,XB(n,sn)},XN(n) ∩Qn = {X1, . . . ,XN(n·sn)}.

Put En := {B(n, sn) �= N(n · sn)}. There is a coupling of B(n, sn) and N(n · sn)
such that P [En] ≤ sn. By definition of En,

∥∥(T̃n − T̃N(n))
∥∥2

2

=
∫ ∣∣∣∣ ∑

Xi∈Xn∩Qn

ξn(Xi,Xn ∩Qn) − ∑
Xi∈XN(n)∩Qn

ξn(Xi,XN(n) ∩Qn)

∣∣∣∣
2

× 1(En) dP.

Now |B(n, sn) − N(n · sn)| ≤ c4 logn
√

nsn on an event Fn,4 with P [Fc
n,4] =

O(n−D). Let Fn :=⋂4
i=1 Fn,i and note that P [Fc

n ] = O(n−D). By (6.6), we have

∫ ∣∣∣∣ ∑
Xi∈Xn∩Qn

ξn(Xi,Xn ∩Qn) − ∑
Xi∈XN(n)∩Qn

ξn(Xi,XN(n) ∩Qn)

∣∣∣∣
2

× 1(En)1(Fn) dP(6.10)

≤ (c3c4 logn
√

nsn(logn)2)2.
For random variables U and Y , we have ‖UY‖2

2 ≤ ‖U‖2
2p‖Y‖2

2q,p−1 + q−1 = 1,
giving

∥∥(T̃n − T̃N(n))1
(
Fc

n

)∥∥2
2 = ‖T̃n − T̃N(n)‖2

2p

∥∥1(Fc
n

)∥∥2
2q

(6.11)
= O

(
n2)(P [Fc

n

])1/q = O(1).

Combining (6.10)–(6.11) yields (6.9) as desired:

∥∥(T̃n − T̃N(n))
∥∥2

2 = O

(
(logn)6nsn

∫
1(En)1(Fn) dP

)
+ O(1)

= O
(
(logn)6nsnP [En])+ O(1)

= O
(
(logn)6ns2

n

)= O
(
(logn)8n1−2/d). �
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PROOF OF THEOREM 2.1. Recalling the definition of ν− at (2.2), we have

λ
(
Vol(Aλ) − Vol(A)

)= ∑
x∈Pλ

ν−
λ (x,Pλ, ∂A) = Hν−

(Pλ, ∂A),(6.12)

where the last equality follows from (1.5). Therefore,

λ(d+1)/d Var
[
Vol(Aλ) − Vol(A)

]= λ−(d−1)/d Var
[
Hν−

(Pλ, ∂A)
]
.

Likewise,

λVol(A � Aλ) = ∑
x∈Pλ

ν+
λ (x,Pλ, ∂A) = Hν+

(Pλ, ∂A).

It is therefore enough to show that ν− and ν+ satisfy the conditions of Theo-
rem 1.3. We show this for ν−; similar arguments apply for ν+. Write ν for ν− in
all that follows.

As seen in Lemma 5.1 of [18], when κ is bounded away from 0 and infinity,
the functional ν̃(x,X ) := Vol(C(x,X )) is homogeneously stabilizing and expo-
nentially stabilizing with respect to Pλ. Identical arguments show that ν is homo-
geneously stabilizing and exponentially stabilizing with respect to (Pλ, ∂A). The
arguments in [18] may be adapted to show that ν satisfies the p-moment condi-
tion (1.8), and we provide the details. For all y ∈ ∂A, z ∈ R

d, u ∈ R, we have∣∣νλ

((
y,λ−1/du

)
,Pλ ∪ z, ∂A

)∣∣
≤ ωd diam

[
C
((

λ1/dy,u
)
, λ1/d(Pλ ∪ z)

)]d(6.13)

× 1
(
C
((

λ1/dy,u
)
, λ1/d(Pλ ∪ z)

)∩ ∂A �= ∅
)
,

where ωd := πd/2[�(1 + d/2)]−1 is the volume of the d-dimensional unit ball.
When κ is bounded away from zero, the factor diam[C((λ1/dy,u), λ1/d(Pλ ∪z))]d
has finite moments of all orders, uniformly in y and z [17]. It may be seen that
E[1(C((λ1/dy,u), λ1/d(Pλ ∪ z)) ∩ ∂A �= ∅)] decays exponentially fast in u, uni-
formly in y and z (see, e.g., Lemma 2.2 of [17]), giving condition (1.8). The
Cauchy–Schwarz inequality gives exponential decay (1.9) for ν.

Thus, ν := ν− satisfies all conditions of Theorem 1.3 and, therefore, recall-
ing (6.12), the first part of Theorem 2.1 follows. The second part of Theorem 2.1
follows from identical arguments involving ν := ν+. �

PROOF OF THEOREM 2.2. As seen above, ν is homogeneously and exponen-
tially stabilizing with respect to (Pλ, ∂A). It remains only to establish that ν is
well-approximated by Pλ input on half-spaces (1.10) and we may then deduce the
second part of Theorem 2.2 from Theorem 1.2. This goes as follows.

Fix ∂A ∈ M2(d), y ∈ ∂A. Translating y to the origin, letting Pλ denote a Pois-
son point process on [0,1]d − y, letting ∂A denote ∂A − y, and using rotation
invariance of ν, it is enough to show for all w ∈ R

d that

lim
λ→∞E

∣∣ν(w,λ1/dPλ, λ
1/d∂A

)− ν
(
w,λ1/dPλ,R

d−1)∣∣= 0.
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Without loss of generality, we assume, locally around the origin, that ∂A ⊂ R
d−1− .

Let C̃(w,λ1/dPλ) be the union of C(w,λ1/dPλ) and the Voronoi cells adjacent
to C(w,λ1/dPλ) in the Voronoi tessellation of Pλ. Consider the event

E(λ,w) := {diam
[
C̃
(
w,λ1/dPλ

)]≤ β logλ
}
.(6.14)

For β large, we have P [E(λ,w)c] = O(λ−2) (see, e.g., Lemma 2.2 of [17]). Note
that ν(w,λ1/dPλ, λ

1/d∂A) and ν(w,λ1/dPλ,R
d−1) have finite second moments,

uniformly in w ∈ R
d and λ ∈ (0,∞). By the Cauchy–Schwarz inequality, for large

β ∈ (0,∞), we have for all w ∈R
d ,

lim
λ→∞E

∣∣(ν(w,λ1/dPλ, λ
1/d∂A

)− ν
(
w,λ1/dPλ,R

d−1))1(E(λ,w)c
)∣∣= 0.

It is therefore enough to show for all w ∈ R
d that

lim
λ→∞E

∣∣(ν(w,λ1/dPλ, λ
1/d∂A

)− ν
(
w,λ1/dPλ,R

d−1))1(E(λ,w)
)∣∣= 0.(6.15)

We first assume w ∈ R
d−1− ; the arguments with w ∈ R

d−1+ are nearly identical.
Moreover, we may assume w ∈ λ1/dA for λ large. Consider the (possibly degen-
erate) solid

�λ(w) := �λ(w,β) := (Rd−1− \ λ1/dA
)∩ B2β logλ(w).(6.16)

Since ∂A is C2, the solid �λ(w) has maximal “height” o((‖w‖ + 2β logλ)λ−1/d)

with respect to the hyperplane R
d−1. It follows that

Vol
(
�λ(w)

)= O
((‖w‖ + 2β logλ

)
λ−1/d(2β logλ)d−1)= O

(
(logλ)dλ−1/d).

On the event E(λ,w), the difference of the volumes C(w,λ1/dPλ) ∩ λ1/dAc and
C(w,λ1/dPλ) ∩R

d−1+ is at most Vol(�λ(w)). Thus,

E
∣∣(ν(w,λ1/dPλ, λ

1/d∂A
)− ν

(
w,λ1/dPλ,R

d−1))1(E(λ,w)
)∣∣

≤ Vol
(
�λ(w)

)= O
(
(logλ)dλ−1/d),

which gives (6.15), and thus the variance asymptotics follow.
We next prove the first part of Theorem 2.2, namely Var Vol(Aλ) =

(λ−(d−1)/d). By assumption, there is a C1 subset � of ∂A, with Hd−1(�) >

0. Recalling A ⊂ [0,1]d , subdivide [0,1]d into cubes of edge length l(λ) :=
(�λ1/d�)−1. The number L(λ) of cubes having nonempty intersection with � satis-
fies L(λ) = (λ(d−1)/d), as otherwise the cubes would partition � into o(λ(d−1)/d)

sets, each of Hd−1 measure O((λ−1/d)d−1), giving Hd−1(�) = o(1), a contradic-
tion.

Find a subcollection Q1, . . . ,QM of the L(λ) cubes such that d(Qi,Qj ) ≥
2
√

dl(λ) for all i, j ≤ M , and M = (λ(d−1)/d). Rotating and translating Qi,1 ≤
i ≤ M , by a distance at most (

√
d/2)l(λ), if necessary, we obtain a collection

Q̃1, . . . , Q̃M of disjoint cubes (with faces not necessarily parallel to a coordinate
plane) such that:
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• d(Q̃i, Q̃j ) ≥ √
dl(λ) for all i, j ≤ M ,

• � contains the center of each Q̃i , here denoted xi,1 ≤ i ≤ M .

By the C1 property, � is well-approximated locally around each xi by a hyper-
plane Hi tangent to � at xi . Making a further rotation of Qi , if necessary, we may
assume that Hi partitions Q̃i into congruent rectangular solids.

Write ν for ν−. We now exhibit a configuration of Poisson points Pλ which has
strictly positive probability, for which λ(d−1)/dVol(Aλ) has variability bounded
away from zero, uniform in λ. Let

−→
0ni, ni ∈ R

d , be the unit normal to � at xi .
Let ε := ε(λ) := l(λ)/8 and subdivide each Q̃i into 8d subcubes of edge length ε.
Recall that Br(x) denotes the Euclidean ball centered at x ∈ R

d with radius r .
Consider cubes Q̃i,1 ≤ i ≤ M , having these properties:

(a) the subcubes of Q̃i having a face on ∂Q̃i , called the “boundary subcubes,”
each contain at least one point from Pλ,

(b) Pλ ∩ [Bε/20(xi − ε
10ni) ∪ Bε/20(xi + ε

10ni)] consists of a singleton, say wi ,
and

(c) Pλ puts no other points in Q̃i .

Relabeling if necessary, let I := {1, . . . ,K} be the indices of cubes Q̃i having
properties (a)–(c). It is easily checked that the probability a given Q̃i satisfies
property (a) is strictly positive, uniform in λ. This is also true for properties (b)–
(c), showing that

EK = 
(
λ(d−1)/d).(6.17)

Without loss of generality, we may assume that A contains Bε/20(xi − ε
10ni)

but that A ∩ Bε/20(xi + ε
10ni) = ∅. Abusing notation, let Q :=⋃K

i=1 Q̃i and put
Qc := [0,1]d \ Q. Let Fλ be the sigma algebra determined by the random set I ,
the positions of points of Pλ in all boundary subcubes, and the positions of points
Pλ in Qc. Given Fλ, properties (a) and (c) imply that Vol(C(wi,Pλ)) = (εd).
Simple geometry shows that when wi ∈ Bε/20(xi − ε

10ni) we have Vol(C(wi,Pλ)∩
Ac) = (εd), that is the contribution to Aλ by the cell C(wi,Pλ) is (εd). On
the other hand, when wi ∈ Bε/20(xi + ε

10ni), then there is no contribution to Aλ.
Moreover, in either case, the volume contribution to Aλ arising from points of Pλ

in the boundary subcubes is modified by o(εd) regardless of the position of wi .
Conditional on Fλ, and using that wi is equally likely to belong to either ball, it
follows that Vol(Aλ ∩ Q̃i) has variability (ε2d) = (λ−2), uniformly in i ∈ I ,
that is,

Var
[
Vol(Aλ ∩ Q̃i)|Fλ

]= 
(
λ−2), i ∈ I.(6.18)

By the conditional variance formula,

Var
[
Vol(Aλ)

]= Var
[
E
[
Vol(Aλ)|Fλ

]]+E
[
Var
[
Vol(Aλ)|Fλ

]]
≥ E

[
Var
[
Vol(Aλ)|Fλ

]]
= E

[
Var
[
Vol(Aλ ∩Q) + Vol

(
Aλ ∩Qc)|Fλ

]]
.
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Given Fλ, the Poisson–Voronoi tessellation of Pλ admits variability only in-
side Q, that is Vol(Aλ ∩Qc) is constant. Thus,

Var
[
Vol(Aλ)

] ≥ E
[
Var
[
Vol(Aλ ∩Q)|Fλ

]]
= E

[
Var
[∑

i∈I

Vol(Aλ ∩ Q̃i)|Fλ

]]
= E

[∑
i∈I

Var
[
Vol(Aλ ∩ Q̃i)|Fλ

]]
,

since, given Fλ, Vol(Aλ ∩ Q̃i), i ∈ I , are independent. By (6.17) and (6.18), we
have

Var
[
Vol(Aλ)

]≥ c5λ
−2

E[K] = 
(
λ−(d+1)/d),

concluding the proof of Theorem 2.2 when ν is set to ν−.
To show Var[Vol(A � Aλ)] = (λ−(d+1)/d), consider cubes Q̃i,1 ≤ i ≤ M ,

having these properties:

(a′) the “boundary subcubes,” each contain at least one point from Pλ,
(b′) Pλ ∩ Bε/20(xi − ε

10ni) consists of a singleton, say wi , and
(c′) Pλ ∩ [Bε/20(xi + ε

10ni) ∪ Bε/20(xi + εni)] consists of a singleton, say zi ,
(d′) Pλ puts no other points in Q̃i .

Let I ′ := {1, . . . ,K ′} be the indices of cubes Q̃i having properties (a′)–(d′). Let
Fλ be as above, with I replaced by I ′. It suffices to notice that on Fλ, we have

Vol(A � Aλ)1
(
zi ∈ Bε/20(xi + εni)

) ≥ 2Vol(A � Aλ)1
(
zi ∈ Bε/20(xi + ε/10ni)

)
= 

(
λ−2).

From this, we may deduce the analog of (6.18), namely

Var
[
Vol
(
(A � Aλ) ∩ Q̃i

)|Fλ

]= 
(
λ−2), i ∈ I,

and follow the above arguments nearly verbatim. This concludes the proof when ν

is set to ν+. �

PROOF OF THEOREM 2.3. For any ∂A, we have |ν±
n (Xi,Xn, ∂A)| ≤

Vol(C(Xi,Xn)) ≤ ωd(diam[C(n1/dXi, n
1/dXn)])d . Let D = 2/(1 − 1/p). Modi-

fications of Lemma 2.2 of [17] show that with probability at least 1 − n−D−1 we
have (diam[C(n1/dXi, n

1/dXn)])d = O(logn), that is to say ν± satisfies (6.2). The
discussion in Section 6.3 of [19] shows that the functionals ν+ and ν− are bino-
mially exponentially stabilizing as at (6.1). Theorem 2.3 follows from Lemma 6.1,
Theorems 2.1–2.2, and Corollary 2.1. �

PROOF OF THEOREM 2.4. It suffices to show that the functional α defin-
ing the statistics (2.4) satisfies the conditions of Theorems 1.1 and 1.2 and then
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apply (1.20) and (1.21) to the statistic (2.4) to obtain (2.5) and (2.6), respec-
tively. To do this, we shall follow the proof that the volume functional ν de-
fined at (2.2) satisfies these conditions. The proof that α is homogeneously sta-
bilizing and satisfies the moment condition (1.8) follows nearly verbatim the
proof that ν satisfies these conditions, where we only need to replace the fac-
tor ωd diam[C((λ1/dy,u), λ1/d(Pλ ∪ z))]d in (6.13) by ωd−1 diam[C((λ1/dy,u),

λ1/d(Pλ ∪ z))]d−1.
To show that α is well-approximated by Pλ input on half-spaces (1.10), by

moment bounds on α and the Cauchy–Schwarz inequality, it is enough to show
the analog of (6.15), namely for all w ∈ R

d that

lim
λ→∞E

∣∣(α(w,λ1/dPλ, λ
1/d∂A

)− α
(
w,λ1/dPλ,R

d−1))1(E(λ,w)
)∣∣= 0,(6.19)

where E(λ,w) is at (6.14). Recalling the definition of �λ(w) at (6.16), define

E0(λ,w) := {λ1/dPλ ∩ �λ(w) = ∅
}
.

Since the intensity measure of λ1/dPλ is upper bounded by ‖κ‖∞, we have

P
[
E0(λ,w)c

]= 1 − P
[
E0(λ,w)

]≤ 1 − exp
(−‖κ‖∞Vol

(
�λ(w)

))
(6.20)

≤ 1 − exp
(−c6(logλ)dλ−1/d)= O

(
(logλ)dλ−1/d).

On the event E(λ,w) ∩ E0(λ,w), the scores α(w,λ1/dPλ, λ
1/d∂A) and

α(w,λ1/dPλ,R
d−1) coincide. Indeed, on this event it follows that f is face of

the boundary cell C(w,λ1/dPλ) of λ1/dAλ iff f is a face of a boundary cell
of the Poisson–Voronoi tessellation of R

d−1− . [If f is a face of the boundary
cell C(w,λ1/dPλ),w ∈ λ1/dA, then f is also a face of C(z,λ1/dPλ) for some
z ∈ λ1/dAc. If �λ(w) = ∅, then z must belong to R

d−1+ , showing that f is a face
of a boundary cell of the Poisson–Voronoi tessellation of Rd−1− . The reverse impli-
cation is shown similarly.]

On the other hand, since∣∣∣∣(α(w,λ1/dPλ, λ
1/d∂A

)− α
(
w,λ1/dPλ,R

d−1))1(E(λ,w)
)∣∣∣∣

2 = O(1),

and since by (6.20) we have P [E0(λ,w)c] = O((logλ)dλ−1/d), it follows by the
Cauchy–Schwarz inequality that as λ → ∞,

E
∣∣(α(w,λ1/dPλ, λ

1/d∂A
)− α

(
w,λ1/dPλ,R

d−1))
(6.21)

× 1
(
E(λ,w)

)
1
(
E0(λ,w)c

)∣∣→ 0.

Therefore, (6.19) holds and so α is well-approximated by Pλ input on half-spaces
and α satisfies all conditions of Theorems 1.1 and 1.2. This proves statements
(2.5)–(2.6). Note that (2.7) follows from (1.23), proving Theorem 2.4. To show
these limits hold when Poisson input is replaced by binomial input Xn we shall
show that α satisfies the conditions of Lemma 6.1. Notice that |αn(X1,Xn, ∂A)| ≤
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Hd−1(C(X1,Xn)) = O(diam[C(n1/dX1, n
1/dXn)]d−1) = O((logn)(d−1)/d) with

probability at least 1 − n−D−1, that is α satisfies condition (6.2), where D =
2/(1 − 1/p). The arguments in Section 6.3 of [19] may be modified to show that
α is binomially exponentially stabilizing as at (6.1) and, therefore, by Lemma 6.1,
the limits (2.5)–(2.7) hold for input Xn, as asserted in remark (i) following Theo-
rem 2.4. �

PROOF OF THEOREM 2.5. Orient ∂A so that points (y, t) ∈ A, have positive
t coordinate. Notice that ζ satisfies the decay condition (1.9) for all p ∈ [1,∞).
Indeed, for all z ∈R

d ∪∅, y ∈ ∂A,u ∈ (−∞,∞), and λ ∈ (0,∞), we have∣∣ζλ

((
y,λ−1/du

)
,Pλ ∪ z, ∂A

)∣∣≤ 1
((

K ⊕ (y,λ−1/du
))∩ A ∩Pλ =∅

)
.

Now

P
[(

K ⊕ (y,λ−1/du
))∩ A ∩Pλ = ∅

]= exp
(−λVol

((
K ⊕ (y,λ−1/du

))∩ A
))

decays exponentially fast in |u| ∈ (0,∞), uniformly in y ∈ ∂A and λ ∈ (0,∞) and
therefore (1.9) holds for all p ∈ [1,∞).

To see that ζ is homogeneously stabilizing as at (1.6), we argue as follows.
Without loss of generality, let 0 belong to the half-space H with hyperplane H, as
otherwise ζ(0,Hτ ,H) = 0. Now ζ(0,Hτ ,H) is insensitive to point configurations
outside K ∩ H and so Rζ (Hτ ,H) := diam(K ∩ H) is a radius of stabilization
for ζ .

To show exponential stabilization of ζ as at (1.7), we argue similarly. By def-
inition of maximality, ζλ(x,Pλ, ∂A) is insensitive to point configurations outside
(K ⊕ x) ∩ A. In other words, ζ(λ1/dx, λ1/dPλ, λ

1/d∂A) is unaffected by point
configurations outside

Kλ(x) := (K ⊕ λ1/dx
)∩ λ1/dA.

Let R(x) := Rζ (x,Pλ, ∂A) be the distance between λ1/dx and the nearest point
in Kλ(x)∩λ1/dPλ, if there is such a point; otherwise let R(x,Pλ, ∂A) be the max-
imal distance between λ1/dx and Kλ(x) ∩ ∂(λ1/dA), denoted here by D(λ1/dx).
By the smoothness assumptions on the boundary, it follows that Kλ(x)∩Bt(x) has
volume at least c7t

d for all 0 ≤ t ≤ D(λ1/dx). It follows that uniformly in x ∈ ∂A

and λ > 0

P
[
R(x) > t

]≤ exp
(−c7t

d), 0 ≤ t ≤ D
(
λ1/dx

)
.(6.22)

For t ∈ [D(λ1/dx),∞), this inequality holds trivially. Moreover, we claim that
R(x) is a radius of stabilization for ζ at x. Indeed, if R(x) ∈ (0,D(λ1/dx)), then
x is not maximal, and so

ζ
(
x,λ1/dPλ ∩ BR(x), λ1/d∂A

)= 0.
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Point configurations outside BR(x) do not modify the score ζ . If R(x) ∈
[D(λ1/dx),∞) then

ζ
(
x,λ1/dPλ ∩ BR(x), λ1/d∂A

)= 1

and point configurations outside BR(x) do not modify ζ , since maximality of x is
preserved. Thus, R(x) := Rζ (x,Pλ, ∂A) is a radius of stabilization for ζ at x, it
decays exponentially fast by (6.22), and (1.7) holds.

It remains to show that ζ is well-approximated by Pλ input on half-spaces
(1.10). As with the Poisson–Voronoi functional, it is enough to show the conver-
gence (6.15), with ν replaced by ζ there. However, since ζ is either 0 or 1, we
have that (6.15) is bounded by the probability of the event that λ1/dPλ puts points
in the region �λ(w) defined at (6.16). However, this probability tends to zero as
λ → ∞, since the complement probability satisfies

lim
λ→∞P

[
λ1/dPλ ∩ �λ(w) =∅

]= lim
λ→∞ exp

(−Vol
(
�λ(w)

))= 1.

This gives the required analog of (6.15) for ζ and so ζλ satisfies (1.10), which
was to be shown. Thus, Theorem 2.5 holds for Poisson input Pλ, where we note
σ 2(ζ, ∂A) ∈ (0,∞) by Theorem 4.3 of [3]. Straightforward modifications of the
above arguments show that ζ is binomially exponentially stabilizing as at (6.1).
Now |ζ | ≤ 1, so ζ trivially satisfies (6.2). Therefore, by Lemma 6.1, Theorem 2.5
holds for binomial input Xn.

This completes the proof of Theorem 2.5, save for showing (2.9). First notice
that

μ(ζ, ∂A) =
∫
∂A

∫ ∞
0

Eζ
(
(0y, u),H1,Hy

)
κ(y)(d−1)/d dudy,(6.23)

which follows from (1.11) and Eζ((0y, u),Hτ ,Hy) = Eζ((0y, uτ 1/d),H1,Hy).
The limit (6.23) further simplifies as follows. In d = 2, we have for y =

(v,F (v)) ∈ ∂A and all u ∈ (0,∞) that

Eζ
(
(0y, u),H1,Hy

)= exp
(
−u2

2

(1 + F ′(v)2)

|F ′(v)|
)
,

where we use that a right triangle with legs on the coordinate axes, hypotenuse
distant u from the origin and having slope m ∈ (0,−∞) has area u2(1+m2)/2|m|.
Put b := (1 + F ′(v)2)/2|F ′(v)| and z = u2b. Then

μ(ζ, ∂A) =
∫
∂A

∫ ∞
0

Eζ
(
(0y, u),H1,Hy

)
duκ(y)1/2 dy

= 1

2

∫
v∈[0,1]

∫ ∞
0

exp(−z)(bz)−1/2
√

1 + F ′(v)2κ
(
v,F (v)

)1/2
dzdv

= 1

2
�

(
1

2

)∫
v∈[0,1]

b−1/2
√

1 + F ′(v)2κ
(
v,F (v)

)1/2
dv
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= 1

2
�

(
1

2

)∫
v∈[0,1]

21/2∣∣F ′(v)
∣∣1/2

κ
(
v,F (v)

)1/2
dv

=
(

π

2

)1/2 ∫ 1

0

∣∣F ′(v)
∣∣1/2

κ
(
v,F (v)

)1/2
dv.

More generally, in d > 2, assume that F is continuously differentiable with
partials which are negative and bounded away from 0 and −∞. Let y ∈ ∂A be
given by y = (v,F (v)), v ∈ D, and put Fi := ∂F/∂vi . Then for u ∈ (0,∞) we
have

Eζ
(
(0y, u),H1,Hy

)= exp
(−ud(1 +∑d−1

i=1 F ′
i (v)2)d/2

d!|∏d−1
i=1 Fi(v)|−1

)
.

Let z = udb, where b := 1
d!(1 +∑d−1

i=1 F ′
i (v)2)d/2|∏d−1

i=1 Fi(v)|−1. This yields

μ(ζ, ∂A) :=
∫
∂A

∫ ∞
0

Eζ
(
(0y, u),H1,Hy

)
duκ(y)(d−1)/d dy

= (d!)1/dd−1�
(
d−1) ∫

D

∣∣∣∣∣
d−1∏
i=1

Fi(v)

∣∣∣∣∣
1/d

κ
(
v,F (v)

)(d−1)/d
dv,

that is to say (2.9) holds. �
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