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VARIANCE ASYMPTOTICS AND CENTRAL LIMIT THEOREMS
FOR GENERALIZED GROWTH PROCESSES WITH

APPLICATIONS TO CONVEX HULLS
AND MAXIMAL POINTS

BY T. SCHREIBER1 AND J. E. YUKICH2

Nicholas Copernicus University and Lehigh University

We show that the random point measures induced by vertices in the con-
vex hull of a Poisson sample on the unit ball, when properly scaled and cen-
tered, converge to those of a mean zero Gaussian field. We establish limiting
variance and covariance asymptotics in terms of the density of the Poisson
sample. Similar results hold for the point measures induced by the maximal
points in a Poisson sample. The approach involves introducing a generalized
spatial birth growth process allowing for cell overlap.

1. Introduction, main results. Given Xi, i ≥ 1, i.i.d. random variables with
values in a d-dimensional convex set S, d ≥ 2, a classic problem in convex geom-
etry involves determining the distribution of the number of points in the set of
extreme points V({Xi}ni=1), defined as the vertices in the convex hull of {Xi}ni=1.
This problem was first considered by Rényi and Sulanke [33], with recent notable
progress by Reitzner [28–31] and Vu [37].

A closely related problem involves determining, for a given K ⊂ R
d , the dis-

tribution of the number of points in the set MK({Xi}ni=1) of K-maximal points,
where a point Xj belongs to MK({Xi}ni=1) iff (Xj ⊕ K) ∩ {Xi}ni=1 = Xj , where
here and henceforth, for all B ⊂ R

d and x ∈ R
d we write x ⊕B := {x +y :y ∈ B}.

When K is (R+)d , then MK({Xi}ni=1) is simply the set of maximal points, that
is, those points Xj in {Xi}ni=1 having the property that no point Xi , i �= j , ex-
ceeds it in all coordinates. The limit theory for the number of maximal points in
MK({Xi}ni=1) was first considered by Rényi [32] and Barndorff-Nielsen and Sobel
[5]. Chen, Hwang and Tsai [11] surveys the vast literature, which includes books
by Ehrgott [17], Pomerol and Barba-Romero [27], and recent papers of [1, 2, 4, 8,
16].

In this paper we establish convergence of the finite-dimensional distributions of
the re-scaled point measures induced by the random point sets V(Pλρ), where
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Pλρ denotes a Poisson point process of intensity λρ on Bd , the unit radius
d-dimensional ball centered at the origin and where ρ is a continuous density on
Bd . For sets K := {(w1, . . . ,wd) :wd ≥ (w2

1 + · · · + w2
d−1)

α/2}, where α ∈ (0,1]
is fixed, we also establish convergence of the finite-dimensional distributions of
the point measures induced by MK(Pλρ), where Pλρ denotes the Poisson point
process of intensity λρ on A × R+, where A ⊂ R

d−1 is compact and convex and
where ρ :A× R+ is continuous. These results are facilitated by introducing a gen-
eralized spatial birth–growth process as a means toward obtaining explicit vari-
ance asymptotics and central limit theorems for random measures arising in convex
geometry. The relevant spatial birth–growth process, possibly of independent inter-
est, modifies the classical spatial birth–growth process introduced by Kolmogorov
[20] as a model for crystal growth by allowing the possibility of cell overlap. As
in [20], cells may grow at nonconstant growth rates.

In the context of the set of extreme points V(Pλρ), the approach taken here
adds to the work of Reitzner [28–31] and Vu [37] in the following ways. First, the
present set-up establishes convergence of the finite-dimensional distributions of
the canonical point measures induced by V(Pλρ), whereas [28–31] and [37] deal
with one-dimensional central limit theorems. Second, we establish a formula for
variance and covariance asymptotics. Third, the present paper concerns the limit
theory for nonuniform samples, whereas [28–31] and [37] treat uniform random
samples.

In the context of the set of maximal points MK(Pλρ), the present set-up estab-
lishes convergence of the finite-dimensional distributions of the canonical point
measures induced by MK(Pλρ), with covariances, whereas previous work [4, 16]
is concerned with one dimensional central limit theorems without a formula for
covariance asymptotics and/or is limited to the case when K is a cone [8].

1.1. Terminology, ψ-growth processes. Let the function ψ : R+ → R+ satisfy
the following conditions:

(�1) ψ is monotone and liml→∞ ψ(l) = ∞, and
(�2) there exists α > 0 such that ψ(l) = lα(1 + o(1)) for l small enough.

Let 0 denote the origin of R
d−1, d ≥ 2, and let |y| denote the Euclidean norm of

y ∈ R
d . We define K[0] to be the ψ-epigraph {(y,h) ∈ R

d−1 × R+ : h ≥ ψ(|y|)}
and, more generally, for x̄ := (x,hx) ∈ R

d−1 × R+, we define its ψ-epigraph (or
upward cone) by

K[x̄] := x̄ ⊕ K[0] := {(y,h) ∈ R
d−1 × R+ :h ≥ hx + ψ(|y − x|)}.(1.1)

Given a point set X ⊆ R
d−1 × R+, a point x̄ ∈ X is called ψ-extremal in X

iff K[x̄] �⊆ ⋃
ȳ∈X\{x̄} K[ȳ], that is to say the ψ-epigraph of x̄ is not completely

covered by the union of the ψ-epigraphs of points in X\ {x}. Define the functional

ξ(x̄,X) := ξ(ψ; x̄,X) :=
{

1, if x̄ is ψ-extremal in X,
0, otherwise.

(1.2)
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With D standing for some bounded domain in R
d−1 ×R+, we consider the version

ξD(·, ·) of ξ(·, ·) restricted to D, by setting ξD(x̄,X) to be 1 iff K[x̄] ∩ D �⊆⋃
ȳ∈(X\{x̄})∩D K[ȳ], in which case we declare x̄ to be ψ-extremal in D ∩ X, and

otherwise we set ξD(x̄,X) to be zero. In case x̄ /∈ X we abbreviate notation and
write ξ(x̄,X) for ξ(x̄,X ∪ x̄) and similarly for ξD(x̄,X).

To provide a physical interpretation of these functionals, we regard R
d−1 × R+

as d-dimensional space time, with R+ standing for the time coordinate, and we
interpret the graph ∂(K[x̄]), x̄ := (x, t), as the boundary of a (d − 1)-dimensional
spherical particle born at x at time t (at which time it has initial radius zero) and
growing thereupon with radial speed v(t) := d

dt
[ψ−1(t)], provided the derivative

exists. The particles (spheres) grow independently and do not exhibit exclusion,
that is, they may overlap or penetrate one another. A particle is extreme iff at some
time it is not completely covered by other particles. When ψ is the identity, so that
the ψ graph gives a cone, we see that ψ-extremal points coincide with maximal
points [8].

In the context of this representation, it should be noted that, unlike the one stated
here, the classic growth process (see, e.g., [7, 13, 20, 24]) assumes that particles,
upon being born at random locations x ∈ R

d−1 at random times hx ∈ R
+, form a

cell by growing radially in all directions with a possibly nonconstant speed, that
is, with ψ possibly nonlinear. When one growing cell touches another, it stops
growing in that direction, that is, no overlap is allowed. Furthermore, a particle
born inside an existing cell is discarded, otherwise it is accepted. Letting ξ̂ (x̄,X)

be zero or one according to whether x̄ is accepted or not, this paper also considers
such functionals ξ̂ .

The growth process giving rise to the functional ξ will henceforth be called
the ψ-growth process with overlap, while the process corresponding to ξ̂ will be
referred to as the ψ-growth process without overlap. This paper will mainly con-
centrate on applications of the first concept and the corresponding functional ξ,

but the subsequently developed general theory also treats the latter concept in the
special case of linear ψ . Throughout, let A be a compact convex subset of R

d−1.

We shall also admit the case A := R
d−1 in the sequel, in which case we assume

that ρ is uniformly bounded. Consider a density function ρ on A+ := A×R+, not
necessarily integrable, such that

(R1) ρ is continuous on A+,

(R2) there exists a constant δ ≥ 0 and a continuous function ρ0 :A → R+
bounded away from zero such that

ρ(x,h) = ρ0(x)hδ(1 + o(1)
)

for h small enough and ρ(x,h) = O(hδ) for large h uniformly in x ∈ A.

For λ > 0, we recall that Pλρ denotes the Poisson point process on A+ with

intensity measure λρ(x,h) dx dh. The “extreme point” empirical measures µ
ξ
λρ
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and µ
ξ̂
λρ generated by Pλρ are

µ
ξ
λρ := ∑

x̄∈Pλρ

ξ(x̄,Pλρ)δx̄(1.3)

and

µ
ξ̂
λρ := ∑

x̄∈Pλρ

ξ̂ (x̄,Pλρ)δx̄,(1.4)

with δx standing for the unit point mass at x ∈ R
d . For any random measure σ on

R
d , we write σ̄ for its centered version σ − E[σ ], so that, for example, µ̄

ξ
λρ :=

µ
ξ
λρ − E[µξ

λρ].
Notice that for small α the upward cones K[x̄] have relatively narrow apera-

tures, making it less likely that cones having apexes with a small temporal coordi-
nate get covered by ψ-epigraphs, that is, one expects more ψ-extreme points as α

gets smaller. Also, roughly speaking, for small δ, one expects more points in Pλρ

with small temporal coordinate and thus more ψ-extreme points in this case as
well. One of the goals of this paper is to show (see Theorem 1.1) that the expected
total mass of the extreme point empirical measures (1.3)–(1.4) is asymptotically
proportional to λτ , where

τ := τ(d,α, δ) := d − 1

d − 1 + α(1 + δ)
.(1.5)

More general goals include establishing the variance asymptotics and the conver-
gence of the finite-dimensional distributions of the appropriately scaled measures
(1.3)–(1.4) to Gaussian distributions (see Theorems 1.2 and 1.3) and to treat the
applications to extreme and maximal points described at the outset.

Notation. Given α > 0, put

ψ(∞)(l) := lα.(1.6)

Recalling the definition of ξ , we define the functional ξ (∞) by ξ (∞)(·, ·) :=
ξ(ψ(∞); ·, ·) and similarly for ξ̂ (∞). We also let P∗ stand for the Poisson point
process in R

d−1 × R+ with intensity measure hδ dx dh.
For all x̄ := (x,hx) and ȳ := (y,hy), let

m(∞)(x̄) := E
[
ξ (∞)(x̄,P∗)

]
and

c(∞)∗ (x̄, ȳ) := E
[
ξ (∞)(x̄,P∗ ∪ ȳ)ξ (∞)(ȳ,P∗ ∪ x̄)

]
− E

[
ξ (∞)(x̄,P∗)

]
E[ξ (∞)(ȳ,P∗)]

respectively denote the one and two point correlation functions for the ψ(∞)

growth process with overlap.
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For sets A and B ⊂ R
d , let d(A,B) := inf{|x − y| :x ∈ A, y ∈ B}. Let

Bd(y, r) denote the d-dimensional Euclidean ball centered at y ∈ R
d with radius

r ∈ (0,∞).
Given a subset B of R

d , let Cb(B) denote the bounded continuous functions
on B . For any signed measure µ on A+ and f ∈ Cb(A+), let 〈f,µ〉 := ∫

f du.

Unless otherwise specified, C denotes a generic positive constant whose value
may change from line to line.

1.2. Limit theory for �-growth functionals. For all f ∈ Cb(A+) with A ⊂
R

d−1 compact and convex, we define the average of the product of f and the one
and two point correlation functions as follows:

I (f ) :=
∫
A

∫ ∞
0

f (x,0)m(∞)(0, h′)ρτ
0 (x)(h′)δ dh′ dx(1.7)

and

J (f ) :=
∫
A

∫ ∞
0

∫
Rd−1

∫ ∞
0

f (x,0)c(∞)∗ ((0, h′), (y′, h′
y))

(1.8)
× ρτ

0 (x)(h′
y)

δ(h′)δ dh′
y dy′ dh′ dx.

The finiteness of I (f ) follows by Lemmas 3.2 and 3.3 [see the bound (3.11)],
whereas the finiteness of J (f ) follows from Lemmas 3.4 and 3.5 [see the bound
(3.22)] which imply rapid enough decay of two-point correlation functions.

The following are our main results. We state the results for µ
ξ
λρ and note that

analogous results hold for µ
ξ̂
λρ when ψ is linear. The first result specifies first-order

behavior, whereas the second provides second-order asymptotics.

THEOREM 1.1. We have for all f ∈ Cb(A+)

lim
λ→∞λ−τ

E[〈f,µ
ξ
λρ〉] = I (f ).(1.9)

THEOREM 1.2. We have for all f ∈ Cb(A+)

lim
λ→∞λ−τ Var[〈f,µ

ξ
λρ〉] = I (f 2) + J (f 2).(1.10)

The next result establishes the convergence of the finite-dimensional distribu-
tions of (λ−τ/2µ

ξ
λρ).

THEOREM 1.3. The finite-dimensional distributions λ−τ/2(〈f1, µ̄
ξ
λ〉, . . . ,

〈fk, µ̄
ξ
λ〉), f1, . . . , fk ∈ Cb(A+), of (λ−τ/2µ̄

ξ
λρ) converge as λ → ∞ to those of

a mean zero Gaussian field with covariance kernel

(f, g) �→ I (fg) + J (fg), f, g ∈ Cb(A+).(1.11)
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Section 2 describes applications of ψ-growth processes with overlap, as given
by the general limits of Theorems 1.1–1.3, to convex hulls and maximal points of
i.i.d. samples.

REMARKS. (i) Applications to the ψ-growth process ξ̂ without overlap. The
results of Theorems 1.1–1.3 for the functional ξ̂ provide variance asymptotics and
central limit theorems for the classic spatial birth–growth model in R

d−1, whereby
seeds are born at random locations in R

d−1 and times in R+ according to the
Poisson point process λPλρ on λ1/dA × R+ and grow linearly in time. Theorems
1.1–1.3 for ξ̂ provide a central limit theorem for the number of seeds accepted
in such models. This generalizes and extends [7, 24], which builds on work of
Chiu and Quine [13, 14], Chiu [12] and Chiu and Lee [15], which do not consider
convergence of finite-dimensional distributions and which often restrict to models
with homogeneous temporal input.

(ii) Scaling. The scaling λ−τ arises in the following way. From a conceptual
and analytic point of view, it is convenient to re-scale the ψ-growth process in time
and space so as to obtain an equivalent growth process on Poisson points of ap-
proximately unit intensity density on a region of volume λ. The scaling is designed
to asymptotically preserve the ψ-epigraphs and the behavior of the density locally
close to h = 0.

To achieve this, we scale A+ in the d − 1 spatial directions by λβ and in
the temporal direction by λγ . Under this temporal scaling and under (R2), the
density ρ exhibits growth (hλγ )δ for small temporal h, and we thus require
λβ(d−1)+γ (1+δ) = λ. This scaling maps |x| and hx to λβ |x| and λγ hx , respectively,
and therefore, it asymptotically preserves the ψ-epigraphs and condition (�2),
provided (λβ |x|)α = λγ hx(1 + o(1)) for (x,hx) lying on the graph of ψ , that is,
hx = ψ(x). Since hx = |x|α(1 + o(1)) for such (x,hx), we require λβα = λγ . We
thus require the relations

β(d − 1) + γ (1 + δ) = 1 and βα = γ,

which yields these values for the scaling exponents

β = γ

α
and γ = α

(d − 1) + α(1 + δ)
.(1.12)

Given the re-scaled ψ-growth process on λβA × R+, we expect that a point is
ψ-extremal (i.e., ξ = 1) iff its time coordinate is small. Thus, the functional
µ

ξ
λρ(A+) should exhibit growth proportional to the Lebesgue measure of λβA, that

is, proportional to λβ(d−1) = λτ . In the special case when δ = 0 and the growth is
linear (α = 1) the ψ-epigraphs are preserved by time and space scaling by λ1/d ,
that is, γ = 1/d = β . Thus, τ = (d − 1)/d in this case.
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(iii) de-Poissonization. In Section 4 we de-Poissonize Theorems 1.1–1.3 when
α ∈ (0,1]. In other words, we obtain the identical limit theory when Pλρ is re-
placed by i.i.d. random variable X1, . . . ,Xn, chosen in A+ according to the den-
sity ρ, assumed to be integrable to 1. We expect similar de-Poissonization results
for α > 1, but are unable to prove this.

(iv) We have not tried to establish a.s. convergence in (1.9), but expect that
concentration inequalities should be useful in this context.

1.3. Notation and scaling relations. Motivated by remark (ii) above, we place
the ψ-growth process on its proper scale by re-scaling as follows. With β and γ

as in (1.12), for a fixed x ∈ A and any generic point ȳ := (y,hy) ∈ A+, we put
ȳ(λ) := ȳ′ := (y′, h′

y) with

y′ := y(λ) := λβ(y − x) and h′
y := h(λ)

y := λγ hy.(1.13)

Also, for readability, in our notation we will not explicitly indicate the dependency
of the scaling in (1.13) on x. The versions of ψ,ρ,Pλρ and ξ under this re-scaling
are determined by the relations

ψ(λ)(l) := λγ ψ(λ−βl),(1.14)

ρ(λ)(y′, h′
y) := λδγ ρ(y,hy),(1.15)

P (λ)
λρ := P (λ)

λρ [x] := {(y′, h′
y) : (y,hy) ∈ Pλρ}(1.16)

and

ξ (λ)((y′, h′
y), {(y′

i , h
′
yi

)}i≥1) := ξ((y,hy), {(yi, hyi
)}i≥1)(1.17)

and likewise for ξ̂ . Since dy′ = λβ(d−1) dy and dh′
y = λγ dhy , it follows that

ρ(λ)(y′, h′
y) dy′ dh′

y = λρ(y,hy) dy dhy.

Note also that

P (λ)
λρ

D= Pρ(λ) .(1.18)

Moreover, by (1.13) and (1.15), ρ(λ)(y′, h′
y)(h

′
y)

−δ = λδγ ρ(y,hy)(λ
γ hy)

−δ ,
where y = λ−βy′ + x. Under the above re-scaling for each fixed x ∈ A and for
each (y′, h′

y), we have the crucial limit

lim
λ→∞ρ(λ)(y′, h′

y)(h
′
y)

−δ = lim
λ→∞ρ(y,hy)(hy)

−δ = ρ0(x)(1.19)

and by (�2) and (1.14), for all l ∈ R+,

lim
λ→∞ψ(λ)(l) = lα.(1.20)

It is also worth noting that ξ (λ) could alternatively be defined by following the
original definition of ξ with ψ replaced there by ψ(λ); the same applies for ξ̂ (λ).
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Observe that in fact it states approximate self-similarity of ψ-growth processes
under the re-scaling given by (1.13) and (1.14). Motivated by this observation,
we have already put ψ(∞)(l) := lα and now we define, for all x ∈ A and for all
(y′, h′

y) ∈ R
d−1 × R+,

ρ(∞)(y′, h′
y) := ρ(∞)

x (y′, h′
y) := ρ0(x)(h′

y)
δ.(1.21)

2. Applications. We describe here applications of the main results. We limit
the discussion to the following:

(i) the number of vertices in the convex hull of a Poisson sample, and
(ii) the number of maximal points in a Poisson or i.i.d. sample,

but it should be emphasized that the techniques could potentially be applied to a
broader scope of examples. These include, for instance, the variance asymptotics
for Johnson–Mehl growth processes [21] with nonlinear growth rates (see, e.g.,
Section 3.2.2 in [7] for the description of the model and the corresponding cen-
tral limit theorem). Also, as observed in Section 2.3 of [6], the case ψ(l) = l2

(paraboloids) may figure in the limit behavior of some point processes associated
with the asymptotic solutions of Burgers equation

∂v

∂t
+ v

∂v

∂x
= ε�v

in the inviscous limit ε → 0. We will likewise not treat this example either.

2.1. Number of vertices in the convex hull of an i.i.d. sample. Recall that Bd

denotes the unit radius ball centered at the origin of R
d and let ∂Bd denote its

boundary. Let ρ :Bd → R+ be a continuous density on Bd . We shall assume that
ρ(x) = ρ0(x/|x|)(1 − |x|)δ(1 + o(1)) for some δ ≥ 0 and that ρ0 : ∂Bd → R+
is continuous and bounded away from 0. Let Pλρ be a Poisson point process on
Bd with intensity measure λρ(x) dx and let conv(Pλρ) be the random polytope
given by the convex hull of Pλρ . Recalling that V(Pλρ) denotes the vertices of
conv(Pλρ), consider the vertex empirical point measure

µλρ := ∑
x∈V(Pλρ)

δx.(2.1)

As will be shown in Section 4, Theorems 1.1–1.3 yield the following limit the-
ory for µλρ . Let N(0,1) denote the standard normal random variable.

THEOREM 2.1. There are constants M := M(d, δ) and V := V (d, δ) such
that for all f ∈ Cb(Bd)

lim
λ→∞λ−(d−1)/(d−1+2(1+δ))

E[〈f,µλρ〉]
(2.2)

= M

∫
∂Bd

f (s)ρ
(d−1)/(d−1+2(1+δ))
0 (s) ds
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and

lim
λ→∞λ−(d−1)/(d−1+2(1+δ)) Var[〈f,µλρ〉]

(2.3)
= V

∫
∂Bd

f 2(s)ρ
(d−1)/(d−1+2(1+δ))
0 (s) ds.

Moreover, the finite-dimensional distributions λ−(d−1)/2(d−1+2(1+δ))(〈f1, µ̄λρ〉, . . . ,
〈fk, µ̄λρ〉), fi ∈ Cb(Bd), of (λ−(d−1)/2(d−1+2(1+δ))µ̄λρ) converge as λ → ∞ to
those of a mean zero Gaussian field with covariance kernel

(f, g) �→ V

∫
∂Bd

f (s)g(s)ρ
(d−1)/(d−1+2(1+δ))
0 (s) ds, f, g ∈ Cb(Bd).

Additionally, if δ = 0, then for all f ∈ Cb(Bd),

sup
t

∣∣∣∣P
[ 〈f, µ̄λρ〉√

Var〈f, µ̄λρ〉 ≤ t

]
− P [N(0,1) ≤ t]

∣∣∣∣
(2.4)

= O
(
λ−(d−1)/2(d+1)(logλ)3+2(d−1)).

REMARKS. (i) Taking f1 ≡ 1 (and all other fi ≡ 0, i = 2, . . . , k) provides a
central limit theorem for the cardinality of V(Pλρ).

(ii) Theorem 2.1 adds to the work of the following authors: (a) Groeneboom
[18] and Cabo and Groeneboom [10], who prove a central limit theorem for the
cardinality of V(Pλρ) when ρ is uniform and when d = 2, (b) Reitzner [31] who
considers the one-dimensional central limit theorem and who establishes a rate
of convergence O(λ−(d−1)/2(d+1)(logλ)2+2/(d+1)) to the normal for ρ uniform
(whence δ = 0 in our setting), without giving asymptotics for the limiting variance
and covariance, and (c) Vu [37], who proves a central limit theorem for the car-
dinality of V({Xi}n=1), Xi i.i.d. uniform, but who also does not consider limiting
covariances. Concerning rates, we believe that the power on the logarithm, namely,
3 + 2(d − 1), can be reduced to 2(d − 1), but we have not tried for this sharper
rate.

(iii) As shown by Reitzner (Lemma 7 of [31]), when δ = 0, the right-hand side
of (2.3) is strictly positive and finite whenever f is not identically zero.

2.2. Number of maximal points in an i.i.d. sample. For all w̄ := (w,hw), we
define the downward cone

K↓[w̄] := {(z, hz) ∈ R
d−1 × R+ :hz ≤ hw − ψ(|z − w|)}.(2.5)

Consider ψ(l) := lα , α ∈ (0,1], in Section 1.1 so that K[0] := {(w1, . . . ,wd) :
wd ≥ (w2

1 + · · · + w2
d−1)

α/2}. Given a locally finite set X ⊂ R
d , a point w̄ ∈ X

is called K-maximal iff w̄ does not belong to any u ⊕ K[0] for u ∈ X. When
α ∈ (0,1] we have the equivalence ȳ ∈ K[x̄] iff K[ȳ] ⊆ K[x̄] and x̄ ∈ K↓[ȳ] iff
K↓[x̄] ⊆ K↓[ȳ]. It thus follows that for such ψ the present notion of maximality
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is just a rephrasing of the maximality notion as discussed in Section 1. Indeed,
we see that w̄ is K-maximal or ψ-extremal in X iff w̄ ⊕ K↓[0] contains no other
points in X. This is not the case for α > 1, where the equivalence ȳ ∈ K[x̄] iff
K[ȳ] ⊆ K[x̄] does not hold.

Recalling that MK(Pλρ) denotes the collection of K-maximal points in Pλρ ,
and with ρ and A as in Section 1.1, consider the induced maximal point measure

µλρ := ∑
x∈MK (Pλρ)

δx.

Recalling the definitions of I (f ) and J (f ) at (1.7) and (1.8), respectively, we
have the following:

THEOREM 2.2. With τ as given by (1.5) and α ∈ (0,1], for all f ∈ Cb(A+),

lim
λ→∞λ−τ

E[〈f,µλρ〉] = I (f )(2.6)

and

lim
λ→∞λ−τ Var[〈f, µ̄λρ〉] = I (f 2) + J (f 2).(2.7)

Moreover, the finite-dimensional distributions (〈f1, λ
−τ/2µ̄λρ〉, . . . ,

〈fk, λ
−τ/2µ̄λρ〉), f1, . . . , fk ∈ Cb(A+), of λ−τ/2µ̄λρ converge as λ → ∞ to those

of a mean zero Gaussian field with covariance kernel

(f, g) �→ I (fg) + J (fg), f, g ∈ Cb(A+).

Additionally, if δ = 0, then for all f ∈ Cb(A+),

sup
t

∣∣∣∣P
[ 〈f, µ̄λρ〉√

Var〈f, µ̄λρ〉 ≤ t

]
− P [N(0,1) ≤ t]

∣∣∣∣
(2.8)

= O
(
λ−(d−1)/2d(logλ)3+2(d−1)).

Theorem 2.2 admits de-Poissonization as follows. Let X1, . . . ,Xn be i.i.d. cho-
sen in A+ according to the density ρ, assumed to be integrable to 1, and consider
the associated maximal point measure

νξ
n := ∑

x∈MK ({Xi}ni=1)

δx.

We have then the following equivalent of Theorem 2.2 for binomial samples.

THEOREM 2.3. With τ as given by (1.5) and α ∈ (0,1], for all f ∈ Cb(A+),

lim
n→∞n−τ

E[〈f, νξ
n〉] = I (f )(2.9)

and

lim
n→∞n−τ Var[〈f, ν̄ξ

n〉] = I (f 2) + J (f 2).(2.10)
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Moreover, the finite-dimensional distributions (〈f1, n
−τ/2ν̄

ξ
n〉, . . . , 〈fk, n

−τ/2ν̄
ξ
n〉),

f1, . . . , fk ∈ Cb(A+), of n−τ/2ν̄
ξ
n converge as n → ∞ to those of a mean zero

Gaussian field with covariance kernel

(f, g) �→ I (fg) + J (fg), f, g ∈ Cb(A+).

REMARK. Theorems 2.2 and 2.3 extend and generalize the work of (a) Bar-
bour and Xia [4], who establish central limit theorems for the case of homogeneous
spatial temporal input, with K the positive octant in R

d , and who consider nei-
ther convergence of finite-dimensional distributions nor convergence of variances,
(b) Baryshnikov and Yukich [7], who establish convergence of finite-dimensional
distributions but who restrict to homogeneous temporal input (δ = 0) as well as to
the case ψ(l) = l (i.e., α = 1), and (c) Baryshnikov [6], who also restricts to homo-
geneous temporal input and does not consider convergence of finite-dimensional
distributions.

3. Proof of main results. In this section we prove Theorems 1.1–1.3. An es-
sential component of the proofs involves introducing a notion of localization,
which quantifies the decoupling property of the considered functional ξ over dis-
tant regions. It is straightforward to check that the proofs hold for ψ-growth with-
out overlap when ψ is linear.

3.1. Stabilization for �-growth functionals. With Bd−1(y, r) standing as
usual for the (d −1)-dimensional ball centered at y ∈ R

d−1 with radius r ∈ (0,∞),
we denote by Cd−1(y, r) the cylinder Bd−1(y, r) × R+. Recalling ȳ := (y,hy),
consider for all r > 0 the finite range version of ξ(ȳ,X), namely,

ξ[r](ȳ,X) := ξCd−1(y,r)(ȳ,X),

that is, ξ[r](ȳ,X) depends only on the local behavior of X with spatial coordinates
restricted to the r-neighborhood of y. For a point process P (usually chosen to be
Poisson in the sequel) in R

d−1 ×R+, the localization radius of ξ at ȳ ∈ R
d−1 ×R+

is defined by

Rξ := Rξ [ȳ;P ] := inf
{
r ∈ R+ :∀s ≥ r ξ(ȳ,P ) = ξ[s](ȳ,P )

}
.(3.1)

In full analogy with ξ (λ) given by (1.17), we define for all λ > 0 the localization
radius Rξ(λ)[·; ·] by

Rξ(λ) := Rξ(λ)[ȳ;P ′] := inf
{
r ∈ R+ :∀s ≥ r ξ (λ)(ȳ′,P ′) = ξ

(λ)
[s] (ȳ′,P ′)

}
.

Observe that the localization radius considered here formally differs from the
stabilization radii considered in [7], [23–26], essentially defined for all ȳ := (y,h)

to be the smallest positive real r such that ξ(ȳ, (P ∩Cd−1(y, r))∪A) = ξ(ȳ, (P ∩
Cd−1(y, r)) for all finite A ⊂ Cc

d−1(y, s). However, the ψ-extremal functional is
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in general extremely sensitive to the choice of the “outside” configuration A ⊂
Cc

d−1(y, s), rendering the existence and use of standard stabilization radii a bit
difficult. The benefit of the localization radius is that it considers only the outside
configurations involving points from P . However, since the localization radius
shares many of the same properties as the stabilization radii in [7], [23–26], we
will abuse terminology and henceforth refer to the localization radius Rξ as a
stabilization radius.

The following lemma shows that ξ (λ) given by (1.17) has a stabilization radius
whose tail decays exponentially uniformly in large enough λ when P is P (λ)

λρ given

by (1.16) or when P is given by P (λ)
λρ ∪{z̄′

1, . . . , z̄
′
k}, k ≥ 1, where z̄′

i , i = 1, . . . , k,
are certain deterministic points (fixed atoms). This result will prove useful later in
showing exponential decay of correlation functions for ψ-growth processes.

LEMMA 3.1. (i) For A compact and convex, there exists a constant C such
that, uniformly in x and λ large enough, for all ȳ′ ∈ λβA × R+ and for all col-
lections {z̄′

1, . . . , z̄
′
k} ⊆ λβA × R+ of deterministic points, k ≥ 0, we have for all

L > 0

P
[
Rξ(λ)[

ȳ′;P ∗(λ)
λρ

]
> L

] ≤ C exp
(
−Lα+d−1

C

)
,(3.2)

where P ∗(λ)
λρ := P (λ)

λρ ∪{z̄1, . . . , zk}, so that, in particular, P ∗(λ)
λρ = P (λ)

λρ for k = 0.

(ii) An identical bound holds if instead A := R
d−1 and P (λ)

λρ is replaced by a

homogeneous Poisson point process on R
d−1.

REMARK. In place of (3.2) we have uniformly in x and λ large enough, for
all ȳ′ ∈ λβA × R+ and for all L > 0, the simpler bound

P
[
Rξ(λ)[

ȳ′;P ∗(λ)
λρ

]
> L

] ≤ C exp
(
−L

C

)
.(3.3)

PROOF OF LEMMA 3.1. We will only prove Lemma 3.1(i) as identical argu-
ments handle Lemma 3.1(ii). Also, since the proof relies on probability bounds for
certain regions being devoid of points of the underlying point process P ∗(λ)

λρ , as
easily noted below, we can assume without loss of generality that k = 0 so that
P ∗(λ)

λρ = P (λ)
λρ . Moreover, to simplify the argument below, we ignore the boundary

effects arising when ȳ′ is close to ∂(λβA × R+), noting that the absence of points
of P (λ)

λρ in the vicinity of ȳ′ can only decrease Rξ(λ)[ȳ′;P (λ)
λρ ]. This allows us to

avoid obvious but technical separate considerations for ȳ′ close to ∂(λβA × R+).
Also, we consider x fixed but arbitrary, keeping in mind that the required unifor-
mity in x follows by the boundedness of ρ, both from above and away from 0.

Define for fixed ȳ′ := (y′, h′
y) and all λ ∈ [0,∞] the scaled upward cone

K(λ)[ȳ′] := {
(v′, h′

v) ∈ R
d−1 × R+ :h′

v ≥ h′
y + ψ(λ)(|v′ − y′|)}(3.4)
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and the scaled downward cone

K
↓
(λ)[ȳ′] := {

(v′, h′
v) ∈ R

d−1 × R+ :h′
v ≤ h′

y − ψ(λ)(|v′ − y′|)}.(3.5)

Note that ū′ ∈ K(λ)[z̄′] iff h′
u ≥ h′

z + ψ(|u′ − z′|), which is equivalent to h′
z ≤

h′
u − ψ(|z′ − u′|), and thus, the duality ū′ ∈ K(λ)[z̄′] iff z̄′ ∈ K

↓
(λ)[ū′].

To proceed, note that the event {Rξ(λ)[ȳ′;P (λ)
λρ ] > L} is equivalent to the event

E := {∃r > L : ξ (λ)(ȳ′,P (λ)
λρ

) �= ξ
(λ)
[r]

(
ȳ′,P (λ)

λρ

)}
,

and moreover, E ⊂ E1 ∪ E2, where E1 and E2 are defined below. Roughly speak-
ing, the event E1 ensures that ȳ′ is extremal with respect to P (λ)

λρ ∩ Cd−1(y
′, r)

for some r > L but not necessarily with respect to P (λ)
λρ , whereas E2 is just the

opposite.

Event E1: For some r > L, there exists a boundary point ū′ ∈ ∂(K(λ)[ȳ′]) ∩
Cd−1(y

′, r), and such that ū′ /∈ ⋃
z̄′∈[P (λ)

λρ \{ȳ′}]∩Cd−1(y
′,r) K

(λ)[z̄′] but ū′ ∈⋃
z̄′∈P (λ)

λρ ∩Cd−1(y
′,r) K

(λ)[z̄′], that is, ξ
(λ)
[r] (ȳ′,P (λ)

λρ ) = 1, but possibly

ξ (λ)(ȳ′,P (λ)
λρ ) = 0.

Event E2: For some r > L, there exists a boundary point ū′ ∈ ∂(K(λ)[ȳ′]) ∩
Cc

d−1(y
′, r) such that ū′ /∈ ⋃

z̄′∈P (λ)
λρ \{ȳ′} K

(λ)[z̄′], but K(λ)[ȳ′] ∩ Cd−1(ȳ
′, r) ⊂⋃

z̄′∈[P (λ)
λρ \{ȳ′}]∩Cd−1(y

′,r) K
(λ)[z̄′], that is, ξ (λ)(ȳ′,P (λ)

λρ ) = 1 but

ξ
(λ)
[r] (ȳ′,P (λ)

λρ ) = 0.

On event E1 writing ū′ := (u′, h′
u), we easily check that

h′
u ≥ ψ(λ)

(
L

2

)
.(3.6)

Indeed, we have:

• either |u′ − y′| ≥ r/2 or
• d(u′, ∂Bd−1(y

′, r)) ≥ r/2 and, hence, d(u′, z′) ≥ r/2 for all z̄′ ∈ P (λ)
λρ ∩

Cc
d−1(y

′, r).

In both cases, on E1, (u′, h′
u) falls into K(λ)[v̄′] for some v̄′ such that |v′ − u′| ≥

r/2, either with v̄′ = ȳ′ or v̄′ ∈ P (λ)
λρ ∩ Cc

d−1(y
′, r). Consequently, recalling that

r > L and using the definition of K(λ)[·], we obtain (3.6) as required.
On E1 we have ū′ /∈ ⋃

z̄′∈[P (λ)
λρ \{ȳ′}]∩Cd−1(y

′,r) K
(λ)[z̄′], implying that the down-

ward cone K
↓
(λ)[ū′] is devoid of points of P (λ)

λρ ∩ Cd−1(y
′, r). By the assumed

properties of ψ and ρ, the integral of ρ(λ) over K
↓
(λ)[ū′] is �(Vol(K↓

(λ)[ū′])), which
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is

�

(∫ h′
u

0

([
ψ(λ)]−1

(h′
u − h′)

)d−1
dh′

)
= �

(∫ h′
u

0
(h′

u − h′)(d−1)/α dh′
)

(3.7)
= �

(
(h′

u)
(α+d−1)/α)

,

with the second equality following by the definition of [ψ(λ)]−1, and where we use
f (λ) = �(g(λ)) to signify that f (λ)/g(λ) is asymptotically bounded away from
zero. Clearly, the integral of ρ(λ) over K

↓
(λ)[ū′] ∩ Cd−1(y

′, r) for ū′ ∈ Cd−1(y
′, r)

is of the same order.
Recalling from (1.18) that the intensity measure of the Poisson process P (λ)

λρ has

its density given by ρ(λ), we thus conclude for fixed ū′ that the probability of the
considered event �[ū′] := {K↓

(λ)[ū′] ∩ [P (λ)
λρ \ {ȳ′}] ∩ Cd−1(y

′, r) = ∅} satisfies

P [�[ū′]] ≤ exp
(−�

(
(h′

u)
(α+d−1)/α))

.(3.8)

To proceed, we recall that r > L and we partition R
d−1 × R+ into unit volume

cubes and we let q1, q2, . . . be an enumeration of those cubes having nonempty
intersection with ∂(K(λ)[ȳ′]). Let

pi := P
[∃ū′ ∈ qi :K↓

(λ)[ū′] ∩ [
P (λ)

λρ \ {ȳ′}] ∩ Cd−1(y
′,L) = ∅

]
for all i = 1,2, . . . and note that, by (3.8), we have

pi ≤ exp
(−�

(
(h′

q)(α+d−1)/α))
,

where h′
qi

is the last coordinate of the center of the cube qi.

We now have

P [E1] ≤
∞∑
i=1

pi ≤ C

∫ ∞
ψ(λ)(L/2)

Ld−2 exp
(
− 1

C
(h′

u)
(α+d−1)/α

)
dh′

u

for some 0 < C < ∞ in view of the discussion above. Here CLd−2 bounds the
number of cubes in the set q1, q2, . . . of any fixed height h′

u ≥ ψ(λ)(L/2).
Recalling that ψ(λ)(L/2) = (1 + o(1))(L/2)α , it follows (using a different

choice of C if necessary) that

P [E1] ≤ C exp
(
− 1

C
Lα+d−1

)
.

To estimate P [E2], note that for ū′ := (u′, h′
u) ∈ ∂(K[ȳ′]) lying in Cc

d−1(y
′, r)

we must have

h′
u ≥ ψ(λ)(r).(3.9)

Further, since ū′ /∈ ⋃
z̄′∈P (λ)

λρ \{ȳ′} K
(λ)[z̄′], we have K

↓
(λ)[ū′] ∩ [P (λ)

λρ \ {ȳ′}] = ∅.

Denoting this event �∗[ū′] := {K↓
(λ)[ū′] ∩ [P (λ)

λρ \ {ȳ′}] = ∅}, noting that as in
(3.8) we have

P [�∗[ū′]] ≤ exp
(−�

(
(h′

u)
(α+d−1)/α))

,(3.10)
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recalling that r > L and proceeding in analogy with the case of event E1 above,
with (3.6) and (3.8) there replaced by (3.9) and (3.10) respectively and with
Cc

d−1(y
′,L) partitioned into unit volume cubes, we bound P [E2] by

P [E2] ≤ C

∫ ∞
s=L

sd−2
∫ ∞
h′

y+ψ(λ)(s)
exp

(
− 1

C
(h′

u)
(α+d−1)/α

)
dh′

u ds

for some 0 < C < ∞. It follows that P [E2] ≤ C exp(−Lα+d−1/C). Since
P [Rξ(λ)[ȳ′;P (λ)

λρ ] > L] = P [E] ≤ P [E1] + P [E2], Lemma 3.1 follows. �

Given ȳ := (y′, h′
y), we expect for large temporal h′

y , that ȳ is ψ-extremal with
small probability. Also, as previously noted in Section 1.1, we expect for small α

that ȳ is more likely to be ψ-extremal. The next lemma makes these probabilities
a bit more precise and shows that the probability of having (y′, h′

y) extreme in

P ∗(λ)
λρ := P (λ)

λρ ∪ {z̄′
1, . . . , z̄

′
k}, k ≥ 0, with respect to ψ(λ) decays exponentially

with h′
y uniformly in λ for λ large enough.

LEMMA 3.2. There exists a constant C such that, uniformly in λ large enough,
for all ȳ′ ∈ λβA × R+ and {z̄′

1, . . . , z̄
′
k}, we have

P
[
ξ (λ)(ȳ′,P ∗(λ)

λρ

) = 1
] ≤ C exp

(
− 1

C
(h′

y)
(α+d−1)/α

)
.

PROOF. Clearly, since adding extra points to P (λ)
λρ decreases the probability

of (y′, h′
y) being extreme, we may without loss of generality choose k = 0 so that

P ∗(λ)
λρ = P (λ)

λρ .

On the event E := {ξ (λ)(ȳ′,P (λ)
λρ ) = 1} there exists ū′ := (u′, h′

u) ∈ ∂(K(λ)[ȳ′])
such that ū′ /∈ ⋃

z̄′∈P (λ)
λρ \{ȳ′} K

(λ)[z̄′], which is equivalent to K
↓
(λ)[ū′] ∩ [P (λ)

λρ \
{ȳ′}] = ∅. As in the proof of Lemma 3.1, for fixed ū′, the probability of the last
event does not exceed

exp
[
−

∫
K

↓
(λ)[ū′]

ρ(λ)(v′h′
v) dv′ dh′

v

]
≤ C exp

(
− 1

C
(h′

u)
(α+d−1)/α

)
.

Recalling the relation h′
u = h′

y +ψ(λ)(|u′−y′|), putting |u′−y′| = s, and resorting
again to a partition of R

d−1 × R+ into unit volume cubes and summing up the
respective probabilities as in the proof of Lemma 3.1, we obtain the required bound

P [E] ≤ C

∫ ∞
0

sd−2
∫ ∞
h′

y

exp
(
− 1

C
(h′

u)
(α+d−1)/α

)
dh′

u ds

≤ C exp
(
− 1

C
(h′

y)
(α+d−1)/α

)
. �



378 T. SCHREIBER AND J. E. YUKICH

3.2. Proof of Theorem 1.1. Recall the definition of P
ρ

(∞)
x

from (1.21). One

benefit of stabilization is that the one point correlation function E[ξ (∞)((0, h′),
P

ρ
(∞)
x

)] is approximated for large r by the finite range version

E
[
ξ

(∞)
[r]

(
(0, h′),P

ρ
(∞)
x

)]
and, similarly, E[ξ (λ)((0, h′),P (λ)

λρ )] is approximated by its finite range version

E[ξ (λ)
[r] ((0, h′),P (λ)

λρ )]. Using the large λ weak convergence of P (λ)
λρ to P

ρ
(∞)
x

, one
may approximate the first mentioned finite range version by the second and thus
show that E[ξ (λ)((0, h′),P (λ)

λρ )] is asymptotically equal to E[ξ (∞)((0, h′),P
ρ

(∞)
x

)].
This is spelled out in Lemma 3.3 below, which captures the essence of stabilization
and which lies at the heart of the proof of Theorem 1.1. Note that when Lemma 3.3
is combined with Lemma 3.2, then it shows

E
[
ξ (∞)((0, h′),P ∗)

] ≤ C exp
(
− 1

C
(h′)(α+d−1)/α

)
(3.11)

and, therefore, I (f ) < ∞ for f ∈ Cb(A+). Recall from (1.17) that ξ (λ) is the re-
scaled version of ξ with dependency on x fixed.

LEMMA 3.3. For all x ∈ A and h′ ∈ R+, we have

lim
λ→∞E

[
ξ (λ)((0, h′),P (λ)

λρ

)] = E
[
ξ (∞)((0, h′),P

ρ
(∞)
x

)]
.

PROOF. Fix x ∈ A. Taking into account (1.19) and (1.21) and using the re-
sults of Section 3.5 in [34] [see Proposition 3.22 or Proposition 3.19 there com-
bined with Proposition 3.6(ii) ibidem], we observe that as λ → ∞, P (λ)

λρ converges
weakly to P

ρ
(∞)
x

as a point process; see ibidem. Using Theorem 5.5 in [9] with

hλ := ξ
(λ)
[r] ((0, h′), ·) and h := ξ

(∞)
[r] ((0, h′), ·) there, we easily see that, by Lem-

mas 3.1 and 3.2, under the law of the limit process P
ρ

(∞)
x

, the discontinuity event
E ibidem [an infinitesimal move of the point configuration alters the ξ -value for
(0, h)] is contained up to an event of probability 0 in the set of point configura-
tions X such that either the spatial coordinates of two points in X coincide or
such that there are at least two points ȳ′, ȳ′′ ∈ X such that the boundaries of the
upward cones K(∞)[ȳ′] and K(∞)[ȳ′′] [recall (3.4)] intersect in a point lying on
the boundary of the upward cone K(∞)[(0, h′)], which clearly happens with prob-
ability 0 under the law of P

ρ
(∞)
x

. Indeed, Lemma 3.2 states that no effects coming
from h → ∞ arise (no infinite range dependencies in h). A similar statement in
space is provided by Lemma 3.1. Combining both these statements allows us to
draw conclusions from the weak convergence of point processes as we do in the
above argument; see ibidem in [34]. Thus, Theorem 5.5 in [9] yields

lim
λ→∞E

[
ξ

(λ)
[r]

(
(0, h′),P (λ)

λρ

)] = E
[
ξ

(∞)
[r]

(
(0, h′),P

ρ
(∞)
x

)]
.(3.12)
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Let Rξ := Rξ(λ)[(0, h′);P (λ)
λρ ]. We have for all r > 0 and all λ > 0

E
[
ξ (λ)((0, h′),P (λ)

λρ

)]
= E

[
ξ (λ)((0, h′),P (λ)

λρ

)
1Rξ≤r

] + E
[
ξ (λ)((0, h′),P (λ)

λρ

)
1Rξ>r

]
= E

[
ξ

(λ)
[r]

(
(0, h′),P (λ)

λρ

)
1Rξ≤r

] + E
[
ξ (λ)((0, h′),P (λ)

λρ

)
1Rξ>r

]
.

By Lemma 3.1(i) [recall the bound (3.3)], Cauchy–Schwarz, and the boundedness
of ξ

(λ)
[r] , uniformly in large λ and all r > 0,

E
[
ξ

(λ)
[r]

(
(0, h′),P (λ)

λρ

)
1Rξ>r

] ≤ C exp
(
− r

C

)

for some C not depending on x. Likewise, uniformly in large λ, we have
E[ξ (λ)((0, h′),P (λ)

λρ )1Rξ>r ] ≤ C exp(−r/C). It follows that, for large λ > 0 and
all r > 0,∣∣E[

ξ (λ)((0, h′),P (λ)
λρ

)] − E
[
ξ

(λ)
[r]

(
(0, h′),P (λ)

λρ

)]∣∣ ≤ 2C exp
(
− r

C

)
.(3.13)

Similarly, Lemma 3.1(ii) gives, for all r > 0,

∣∣E[
ξ (∞)((0, h′),P

ρ
(∞)
x

)] − E
[
ξ

(∞)
[r]

(
(0, h′),P

ρ
(∞)
x

)]∣∣ ≤ 2C exp
(
− r

C

)
.

Write ∣∣E[
ξ (λ)((0, h′),P (λ)

λρ

)] − E
[
ξ (∞)((0, h′),P

ρ
(∞)
x

)]∣∣
≤ ∣∣E[

ξ (λ)((0, h′),P (λ)
λρ

)] − E
[
ξ

(λ)
[r]

(
(0, h′),P (λ)

λρ

)]∣∣
(3.14)

+ ∣∣E[
ξ

(λ)
[r]

(
(0, h′),P (λ)

λρ

)] − E
[
ξ

(∞)
[r]

(
(0, h′),P

ρ
(∞)
x

)]∣∣
+ ∣∣E[

ξ
(∞)
[r]

(
(0, h′),P

ρ
(∞)
x

)] − E
[
ξ (∞)((0, h′),P

ρ
(∞)
x

)]∣∣.
For fixed r , the second term on the right-hand side of (3.14) goes to zero as

λ → ∞ by (3.12). The first and third terms are bounded above by 2C exp(−r/C).
Letting r → ∞ completes the proof of Lemma 3.3. �

Given Lemmas 3.2 and 3.3, we now prove Theorem 1.1 as follows. We have

E[〈f,µ
ξ
λρ〉] =

∫
A

∫ ∞
0

f (x,hx)E[ξ((x,hx),Pλρ)]λρ(x,hx) dhx dx.

By (1.17), we have ξ((x,hx),Pλρ) = ξ (λ)((0, h′
x),P

(λ)
λρ ) and by (1.15), we have

ρ(x,hx) = λ−γ δρ(λ)(0, h′
x). Thus, putting h′

x := λγ hx and recalling 1 − γ (δ +
1) = τ [see (1.5) and (1.12)], we obtain

E[〈f,µ
ξ
λρ〉] =

∫
A

∫ ∞
0

f (x,h′
xλ

−γ )E
[
ξ (λ)((0, h′

x),P
(λ)
λρ

)]
λτρ(λ)(0, h′

x) dh′
x dx
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or, simply,

λ−τ
E[〈f,µ

ξ
λρ〉] =

∫
A

∫ ∞
0

f (x,h′
xλ

−γ )E
[
ξ (λ)((0, h′

x),P
(λ)
λρ

)]
ρ(λ)(0, h′

x) dh′
x dx.

We put

gλ(x,h′
x) := E

[
ξ (λ)((0, h′

x),P
(λ)
λρ

)]
ρ(λ)(0, h′

x).

For all x ∈ A and h′
x ∈ R+, we have by Lemma 3.3 and (1.19)

lim
λ→∞gλ(x,h′

x) = E
[
ξ (∞)((0, h′

x),Pρ
(∞)
x

)]
ρ0(x)h′δ

x

and moreover, by Lemma 3.2 for all (x,h) ∈ A+, gλ(x,h′
x) is bounded uniformly

in λ by the function (x,h′) �→ C′(h′)δ exp(−h′/C), which is integrable on A+.
Consequently, the dominated convergence theorem yields

lim
λ→∞λ−τ

E[〈f,µ
ξ
λρ〉]

(3.15)
=

∫
A

∫ ∞
0

f (x,0)E
[
ξ (∞)((0, h′),P

ρ
(∞)
x

∪ {(0, h′)})]ρ0(x)(h′)δ dh′ dx.

Using the scaling relations (1.13), (1.14), (1.6) and (1.21), we see that

ξ (∞)((0, h′),P
ρ

(∞)
x

∪ {(0, h′)})
(3.16)

D= ξ (∞)((0, [ρ0(x)]γ h′),P∗ ∪ {(0, [ρ0(x)]γ h′)}),
with D= standing for equality in law. Theorem 1.1 follows by using (3.16), chang-
ing variables h′′ := [ρ0(x)]γ h′ in the integral in (3.15) and recalling that τ =
1 − γ (δ + 1).

3.3. Proof of Theorem 1.2. Fix x ∈ A and recall from (1.16) that P (λ)
λρ :=

P (λ)
λρ [x]. For all λ > 0, h′ ∈ R+, and (y′, h′

y) ∈ λβA × R+, consider the pair cor-
relation function for the re-scaled growth process:

c(λ)((0, h′), (y′, h′
y))

:= c(λ)
x ((0, h′), (y′, h′

y))
(3.17)

:= E
[
ξ (λ)((0, h′),P (λ)

λρ ∪ (y′, h′
y)

)
ξ (λ)((y′, h′

y),P
(λ)
λρ ∪ (0, h′)

)]
− Eξ (λ)((0, h′),P (λ)

λρ

)
Eξ (λ)((y′, h′

y),P
(λ)
λρ

)
.

Consider also the pair correlation function for the limit growth process ξ (∞):

c(∞)
x ((0, h′), (y′, h′

y))

:= E
[
ξ (∞)((0, h),P

ρ
(∞)
x

∪ (y′, h′
y)

)
ξ (∞)((y′, h′

y),Pρ
(∞)
x

∪ (0, h′)
)]

− Eξ (∞)((0, h′),P
ρ

(∞)
x

)
Eξ (∞)((y′, h′

y),Pρ
(∞)
x

)
.



VARIANCE ASYMPTOTICS AND CENTRAL LIMIT THEOREMS 381

A second benefit of stabilization, as shown by the next lemma, is that it facili-
tates convergence of pair correlation functions and thus leads to variance asymp-
totics. The next lemma is the second-order counterpart to Lemma 3.3.

LEMMA 3.4 (Convergence of two point correlation function). For all (x,

hx) := (x,h) ∈ A+, and (y′, h′
y) ∈ λβA × R+, we have

lim
λ→∞ c(λ)

x ((0, h′), (y′, h′
y)) = c(∞)

x ((0, h′), (y′, h′
y)).

PROOF. In view of Lemma 3.3, it will suffice to show

lim
λ→∞ E

[
ξ (λ)((0, h′),P (λ)

λρ ∪ (y′, h′
y)

)
ξ (λ)((y′, h′

y),P
(λ)
λρ ∪ (0, h′)

)]
(3.18)

= E
[
ξ (∞)((0, h′),P

ρ
(∞)
x

∪ (y′, h′
y)

)
ξ (∞)((y′, h′

y),Pρ
(∞)
x

∪ (0, h′)
)]

.

Let Rξ := Rξ(λ)[(0, h′);P (λ)
λρ ∪ (y′, h′

y)] and let R
ξ

y′ := Rξ(λ)[(y′, h′
y);P (λ)

λρ ∪
(0, h′)]. For all r > 0, we let Er := {Rξ

y′ ≤ r, Rξ ≤ r}. We split the left-hand side
of (3.18) as

E
[
ξ (λ)((0, h′),P (λ)

λρ ∪ (y′, h′
y)

)
ξ (λ)((y′, h′

y),P
(λ)
λρ ∪ (0, h′)

)
1Er

]
+ E

[
ξ (λ)((0, h′),P (λ)

λρ ∪ (y′, h′
y)

)
ξ (λ)((y′, h′

y),P
(λ)
λρ ∪ (0, h′)

)
1Ec

r

]
.

The second expectation is bounded by C exp(−r/C) for some C not depending on
x by Lemma 3.1(i) and by Cauchy–Schwarz. By the definition of the stabilization
radius, the first is simply

E
[
ξ

(λ)
[r]

(
(0, h′),P (λ)

λρ ∪ (y′, h′
y)

)
ξ

(λ)
[r]

(
(y′, h′

y),P
(λ)
λρ ∪ (0, h′)

)
1Er

]
.

Again, by Lemma 3.1(i) and by Cauchy–Schwarz, for all r > 0, this is within
C exp(−r/C) of

E
[
ξ

(λ)
[r]

(
(0, h′),P (λ)

λρ ∪ (y′, h′
y)

)
ξ

(λ)
[r]

(
(y′, h′

y),P
(λ)
λρ ∪ (0, h′)

)]
,

hence, ∣∣E[
ξ (λ)((0, h′),P (λ)

λρ ∪ (y′, h′
y)

)
ξ (λ)((y′, h′

y),P
(λ)
λρ ∪ (0, h′)

)]
− E

[
ξ

(λ)
[r]

(
(0, h′),P (λ)

λρ ∪ (y′, h′
y)

)
ξ

(λ)
[r]

(
(y′, h′

y),P
(λ)
λρ ∪ (0, h′)

)]∣∣(3.19)

≤ 2C exp
(−r

C

)

uniformly in x. Now, in analogy with (3.12), we have

lim
λ→∞E

[
ξ

(λ)
[r]

(
(0, h′),P (λ)

λρ ∪ (y′, h′
y)

)
ξ

(λ)
[r]

(
(y′, h′

y),P
(λ)
λρ ∪ (0, h′)

)]
(3.20)

= E
[
ξ

(∞)
[r]

(
(0, h′),P

ρ
(∞)
x

∪ (y′, h′
y)

)
ξ

(∞)
[r]

(
(y′, h′

y),Pρ
(∞)
x

∪ (0, h′)
)]

.



382 T. SCHREIBER AND J. E. YUKICH

By Lemma 3.1(ii), we have for all r > 0∣∣E[
ξ (∞)((0, h′),P

ρ
(∞)
x

∪ (y′, h′
y)

)
ξ (∞)((y′, h′

y),Pρ
(∞)
x

∪ (0, h′)
)]

− E
[
ξ

(∞)
[r]

(
(0, h′),P

ρ
(∞)
x

∪ (y′, h′
y)

)
ξ

(∞)
[r]

(
(y′, h′

y),Pρ
(∞)
x

∪ (0, h′)
)]∣∣(3.21)

≤ 2C exp
(
− r

C

)

as in (3.19). Again, note that C does not depend on x since ρ0(x) is bounded away
from zero. Combining (3.19), (3.20) and (3.21) yields

lim sup
λ→∞

∣∣E[
ξ (λ)((0, h′),P (λ)

λρ ∪ (y′, h′
y)

)
ξ (λ)((y′, h′

y),P
(λ)
λρ ∪ (0, h′)

)]
− E

[
ξ (∞)((0, h′),P

ρ
(∞)
x

∪ (y′, h′
y)

)
ξ (∞)((y′, h′

y),Pρ
(∞)
x

∪ (0, h′)
)]∣∣

≤ 4C exp
(
− r

C

)

for all r > 0. We conclude the proof of Lemma 3.4 by letting r → ∞. �

Lemma 3.4 is not enough to establish second-order asymptotics. We will also
need that c

(λ)
x is bounded by an integrable function on A+ ×λβA×R+, that is, we

will need to establish the exponential decay of the correlation function (3.17). This
is done in the following lemma, which combined with Lemma 3.4, shows that

∣∣c(∞)
x ((0, h′), (y′, h′

y))
∣∣ ≤ C exp

(
− 1

C
max

( |y′|
2

, h′
y, h

′
))

(3.22)

and, therefore, J (f ) < ∞ for all f ∈ Cb(A+).

LEMMA 3.5. There exists a constant C such that, for all λ > 0, (x,hx) :=
(x,h) ∈ A+, and (y′, h′

y) ∈ λβA × R+, we have

∣∣c(λ)
x ((0, h′), (y′, h′

y))
∣∣ ≤ C exp

(
− 1

C
max

( |y′|
2

, h′
y, h

′
))

.

PROOF. Let r ≤ |y′|/2 and note that, by definition of ξ
(λ)
[r] , we have

E
[
ξ

(λ)
[r]

(
(0, h′),P (λ)

λρ ∪ (y′, h′
y)

)
ξ

(λ)
[r]

(
(y′, h′

y),P
(λ)
λρ ∪ (0, h′)

)]
= E

[
ξ

(λ)
[r]

(
(0, h′),P (λ)

λρ

)]
E

[
ξ

(λ)
[r]

(
(y′, h′

y),P
(λ)
λρ

)]
.

Recalling (3.13) and (3.19), we see that

∣∣c(λ)
x ((0, h′), (y′, h′

y))
∣∣ ≤ 4C exp

(
− r

C

)
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for all r ≤ |y′|/2. In other words, putting r = |y′|/2 yields for all (x,h) ∈ A+ and
(y′, h′

y) ∈ λβA × R+
∣∣c(λ)

x ((0, h′), (y′, h′
y))

∣∣ ≤ C exp
(
−|y′|

2C

)
.

Appealing to Lemma 3.2 shows

∣∣c(λ)
x ((0, h′), (y′, h′

y))
∣∣ ≤ 2C exp

(
− 1

C
max(h′

y, h
′)

)
.

Combining the previous two displays concludes the proof of Lemma 3.5. �

Given Lemmas 3.4 and 3.5, we now prove Theorem 1.2 as follows. By the
Palm theory for Poisson processes (see, e.g., Theorem 1.6 of [22]), we express
Var[〈f,µ

ξ
λρ〉] as

λ

∫
A+

f 2(x̄)E[ξ(x̄,Pλρ)]ρ(x̄) dx̄

(3.23)
+ λ2

∫
A+

∫
A+

f (x̄)f (ȳ)c(1)
x

(
(0, hx), (y − x,hy)

)
ρ(x̄)ρ(ȳ) dx̄ dȳ,

where x̄ := (x,hx) and ȳ := (y,hy).

Following verbatim the proof of Theorem 1.1 shows that after normalization by
λτ , the first integral converges as λ → ∞ to∫

A

∫ ∞
0

f 2(x,0)E
[
ξ (∞)((0, h′

x),Pρ
(∞)
x

)
]
ρ0(x)(h′

x)
δ dh′

x dx,

which by the definition of m(∞) and the scaling relation (3.16) equals∫
A

∫ ∞
0

f 2(x,0)m(∞)(0, h′
x)ρ

τ
0 (x)(h′

x)
δ dh′

x dx.

Making again the usual substitutions y′ = λβ(y − x), h′
x = λγ hx, and h′

y =
λγ hy and recalling ρ(x,hx) = λ−γ δρ(λ)(0, h′

x), the second integral in (3.23) be-
comes

λ2−2γ−2γ δ−β(d−1)
∫
A

∫
λβA

∫ ∞
0

∫ ∞
0

f (x,h′
xλ

−γ )f (λ−βy′ + x,h′
yλ

−γ )

× c(λ)
x ((0, h′

x), (y
′, h′

y))

× ρ(λ)(0, h′
x)ρ

(λ)(y′, h′
y) dh′

x dh′
y dy′ dx.

Recalling from (1.12) that β(d − 1) + γ (1 + δ) = 1, we have by definition of τ

[see (1.5)] that 2 − 2γ − 2γ δ − β(d − 1) = 1 − γ (1 + δ) = τ . After normalization
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by λτ , the above integral equals∫
A

∫
λβA

∫ ∞
0

∫ ∞
0

f (x,h′
xλ

−γ )f (λ−βy′ + x,h′
yλ

−γ )

× gλ(x,h′
x, y

′, h′
y) dh′

x dh′
y dy′ dx,

where we put

gλ(x,h′
x, y

′, h′
y) := c(λ)

x ((0, h′
x), (y

′, h′
y))ρ

(λ)(0, h′
x)ρ

(λ)(y′, h′
y).

Clearly, f (x,h′
xλ

−γ )f (λ−βy′ + x,h′
yλ

−γ ) converges to f 2(x,0) as λ → ∞.
Lemma 3.4 implies for all (x,h′

x, y
′, h′

y) ∈ A+ × λβA × R+ that the product
gλ(x,h′

x, y
′, h′

y)(h
′
x)

−δ(h′
y)

−δ converges to

c(∞)
x ((0, h′

x), (y
′, h′

y))ρ
2
0(x)

as λ → ∞. Since, by Lemma 3.5 and (R2), gλ(x,h′
x, y

′, h′
y)(h

′
x)

δ(h′
y)

δ is domi-
nated in absolute value by the integrable function

(x,h′
x, y

′, h′
y) �→ C′(h′

x)
δ(h′

y)
δ exp

(
− 1

C
max

( |y′|
2

, h′
x, h

′
y

))

on A+ × R
d−1 × R+, the dominated convergence theorem combined with relation

(3.16) produces the desired limit (1.10).

3.4. Proof of Theorem 1.3. Given Theorems 1.1 and 1.2, one may prove The-
orem 1.3 either by the method of cumulants [7] or by the Stein method [26]. The
first approach shows that the Fourier transform of λ−τ/2〈f, µ̄

ξ
λρ〉, namely,

E exp[iλ−τ/2〈f, µ̄
ξ
λρ〉],

converges as λ → ∞ to the Fourier transform of a normal mean zero random vari-
able with variance σ 2

f := I (f 2) + J (f 2). Even though we use a formally different
version of stabilization, this is accomplished by following [7] nearly verbatim.
Indeed, recall that Lemma 3.5 shows the exponential decay of the two point corre-
lation function c

(λ)
x ((0, h′), (y′, h′

y)). In a similar way we may establish the expo-
nential decay of k-point correlation functions, and, more generally, that the k-point
correlation functions cluster exponentially, as shown in Lemma 5.2 of [7]. In this
way we show (as in Lemma 5.3 of [7]) that for all k = 3,4, . . . and f ∈ Cb(A+)

that

lim
λ→∞λ−τk/2〈f ⊗k, ck

λ〉 = 0,(3.24)

where ck
λ denotes the kth cumulant figuring in the logarithm of the Laplace

transform (their existence follows by Lemma 3.2). This consequently shows that
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λ−τ/2〈f, µ̄
ξ
λρ〉 converges to a mean zero normal random variable with variance σ 2

f .
The convergence of the finite-dimensional distributions follows from the Cramér–
Wold device and is standard (see, e.g., page 251 of [7] or [23]).

Alternatively, we may also use the Stein method [23, 26]. This is a bit simpler
and has the advantage of yielding rates of convergence when σ 2

f > 0, as would be
the case when δ = 0 and α = 2 (Lemma 7 of [31] combined with Section 4 below)
or when α = 1 (Theorem 2.2 of [8]). (When σ 2

f = 0, then λτ/2〈f, µ̄
ξ
λρ〉 converges

to a unit point mass.) Our proof is based closely on [26], which uses a formally
different version of stabilization. For simplicity, we assume A = [0,1]d−1.

Recalling that x̄ := (x,hx), we have

〈f,µ
ξ
λρ〉 = ∑

x̄∈Pλρ

ξ(x̄,Pλρ)f (x̄) = ∑
x̄∈Pλρ

ξ (λ)((0, h′
x),P

(λ)
λρ [x])f ((x,h′

xλ
−γ )).

For all L > 0, let

Tλ := Tλ(L) := ∑
x̄∈Pλρ∩([0,1]d−1×[0,Lλ−γ logλ])

ξ (λ)((0, h′
x),P

(λ)
λρ [x])f ((x,h′

xλ
−γ ))

= ∑
x̄∈Pλρ : h′

x≤Lλ−γ logλ

ξ (λ)((0, h′
x),P

(λ)
λρ [x])f ((x,h′

xλ
−γ )).

By Lemma 3.2, given arbitrarily large κ > 0, if L is large enough, then 〈f,µ
ξ
λρ〉

and Tλ coincide except on a set with probability O(λ−κ) in λ. Thus, Tλ has the
same asymptotic distribution as 〈f,µ

ξ
λρ〉 and it suffices to find a rate of conver-

gence to the standard normal for (Tλ − ETλ)/
√

VarTλ.
Subdivide [0,1]d−1 into V (λ) := λβ(d−1)(ρλ)

−(d−1) sub-cubes Cλ
i of edge

length λ−βρλ and of volume λ−β(d−1)(ρλ)
d−1, where ρλ := M logλ for some

large M , exactly as in Section 4 of [26].
Enumerate Pλρ ∩ (Cλ

i ×Lλ−γ logλ) by {X̄i,j }Ni

j=1 where X̄i,j := (xij , hij ). Re-
write Tλ as

Tλ =
V (λ)∑
i=1

Ni∑
j=1

ξ (λ)((0, h′
ij ),P

(λ)
λρ [xij ])f ((xij , h

′
ij λ

−γ )).

This is the analog of Tλ in [26].
For any random variable X and any p > 0, let ‖X‖p := (E[|X|p])1/p. For all

1 ≤ i ≤ V (λ), we have
∑Ni

j=1 ξ (λ)((0, h′
ij ),P

(λ)
λρ [xij ]) ≤ Ni , where Ni is Poisson

with mean

λ

∫
Cλ

i ×[0,Lλ−γ logλ]
ρ(u)du = O([logλ]1+δ).

It follows by the boundedness of f that∥∥∥∥∥
Ni∑

j=1

ξ (λ)((0, h′
ij ),P

(λ)
λρ [xij ])f ((xij , h

′
ij λ

−γ ))

∥∥∥∥∥
3

≤ C‖f ‖L1+δ(logλ)1+δ(ρλ)
d−1,
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where ‖f ‖ denotes the essential supremum of f . This is the analog of Lemma 4.3
in [26] (putting q = 3 there) with an extra logarithmic factor.

For all 1 ≤ i ≤ V (λ) and j = 1,2, . . . , let Ri,j denote the radius of stabilization

for ξ (λ) at Xi,j for P (λ)
λρ if 1 ≤ j ≤ Ni and let Ri,j be zero otherwise.

As in [26], put Ei := ⋂∞
j=1{Ri,j ≤ ρλ} and let Eλ := ⋂V (λ)

i=1 Ei . Then by
Lemma 3.1(i), we have P [Ec

λ] ≤ λ−κ for κ arbitrarily large if M is large enough.
This is the analog of (4.11) of [26].

Next, recalling ρλ = M logλ, we define the analog of T ′
λ in [26]:

T ′
λ :=

V (λ)∑
i=1

Ni∑
j=1

ξ
(λ)
[ρλ]

(
(0, h′

ij ),P
(λ)
λρ [xij ])f ((xij , h

′
ij λ

−γ )).

Then we define, for all 1 ≤ i ≤ V (λ),

Si := SQi
:= (VarT ′

λ)
−1/2

Ni∑
j=1

ξ
(λ)
[ρλ]

(
(0, h′

ij ),P
(λ)
λρ [xij ]) f ((xij , h

′
ij λ

−γ )).

We define Sλ := ∑V (λ)
i=1 (Si − ESi), noting that it is the analog of S in [26].

Notice that T ′
λ is a close approximation to Tλ and that, by definition of Ei,1 ≤

i ≤ V (λ), it has a high amount of independence between summands. In fact, by
the independence property of Poisson point processes, it follows that Si and Sk are
independent whenever d(Cλ

i ,Cλ
k ) > 2λ−βρλ.

Next we define a graph Gλ := (Vλ,Eλ) as follows. The set Vλ consists of the
sub-cubes Cλ

1 , . . . ,Cλ
V (λ) and the edges (Cλ

i ,Cλ
j ) belong to Eλ if d(Cλ

i ,Cλ
j ) ≤

2λ−βρλ. Since Si and Sk are independent whenever d(Cλ
i ,Cλ

k ) > 2λ−βρλ, it fol-

lows that Gλ is a dependency graph for {Si}V (λ)
i=1 .

Now proceed exactly as in [26], noting that:

(i) V (λ) = λβ(d−1)(ρλ)
−(d−1),

(ii) the maximum degree of Gλ is bounded by 5d ,
(iii) for all 1 ≤ i ≤ V (λ), we have ‖Si‖3 ≤ K(Var(T ′

λ))
−1/2(logλ)1+δ ×

(ρλ)
d−1 =: θ [λ].

These bounds correspond to the analogous bounds (i), (ii) and (iii) on pages 54–
55 of [26]. Moreover, provided σ 2

f > 0, then the counterpart of (v) of [26] holds,
namely,

Var[T ′
λ] = �(Var[Tλ]) = �(λτ ).

Putting q = 3 in (4.1) and (4.18) of [26] gives a rate of convergence for both Sλ

and (Tλ − ETλ)/
√

VarTλ to the standard normal. This rate is

O(V (λ)θ [λ]3) = O
(
λβ(d−1)(ρλ)

−(d−1)(λτ )−3/2(logλ)3(1+δ)ρ
3(d−1)
λ

)
.
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Recalling that τ = β(d − 1), we rewrite this as

O
(
λ−τ/2 logλ3(1+δ)+2(d−1)).(3.25)

This completes the proof of Theorem 1.3. �

4. Proofs of applications. The purpose of the present section is to derive The-
orems 2.1 and 2.2 from our general theorems of Section 1.

PROOF OF THEOREM 2.1. To derive Theorem 2.1 from our general theory,
we translate the convex hull problem into the language of ψ-growth processes
with overlap. To this end, recall first that for a compact convex body C ⊆ R

d we
define its support function hC :Sd−1 → R by

hC(u) := sup
x̄∈C

〈x̄, u〉, u ∈ Sd−1,

with now 〈·, ·〉 standing for the usual scalar product in R
d ; see Section 1.7 in [35].

An easily verified and yet crucial feature of the support functional h·(·) is that

hconv{x̄1,...,x̄k}(u) = max
1≤i≤k

h{x̄i}(u), u ∈ Sd−1,(4.1)

for each collection {x̄1, . . . , x̄k} of points in R
d . Moreover, by definition, it is clear

that, for all u ∈ Sd−1, we have h{x̄}(u) = 〈x̄, u〉, u ∈ Sd−1.
This leads to the following way of describing V(Pλρ) considered in Theo-

rem 2.1. For a particular realization {x̄1, . . . , x̄k} of Pλρ in Bd , we consider the
collection H [x̄1], . . . ,H [x̄k] of support epigraphs given by

H [x̄] := {
(y,hy) ∈ Sd−1 × R+ :hy ≥ 1 − h{x̄}(y)

}
,(4.2)

where hy stands for the distance between ȳ and the boundary Sd−1 = ∂Bd. A com-
pact convex body is uniquely determined by its support functional (cf. Section 1.7
in [35]), and in view of (4.1), the set conv({x̄1, . . . , x̄k}) is in one-to-one correspon-
dence with the union

⋃k
i=1 H [x̄i]. Further, the number of vertices in the convex

hull is easily seen to coincide with the number of those x̄i , i = 1, . . . , k, for which
H [x̄i] is not completely contained in the union

⋃
j �=i H [x̄j ].

Next we shall also write ry := 1 − hy for the distance between ȳ and the
origin of R

d . Note now that the intensity measure ρ(x̄) dx̄, x̄ ∈ Bd, coincides
with ρ((x, r))rd−1 dr dx = ρ((x, r))(1 − h)(d−1) dhdx, where x̄ := (x, r), with
r ∈ [0,1] denoting the distance between x̄ and the origin of R

d , with h := 1 − r

and with x ∈ Sd−1 being the radial projection of x̄ onto ∂Bd = Sd−1. Observe also
that the support epigraph H [x̄] as given in (4.2) can be represented by

H [(x, r)] = {(y,hy) ∈ Sd−1 × R+ :hy ≥ 1 − r cos(distSd−1(x, y))}
with distSd−1(x, y) := cos−1〈x, y〉 denoting the geodesic distance in Sd−1 between
x and y. Now put

ψ(l) := 1 − cos(l).
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Writing the inequality hy ≥ 1 − r cos(distSd−1(x, y)) as hy ≥ 1 − r +
rψ(distSd−1(x, y)), we have

H [(x, r)] = {(y,hy) ∈ Sd−1 × R+ :hy ≥ h + rψ(distSd−1(x, y))},(4.3)

in other words, the support epigraphs are remarkably similar to the upward cones
(1.1) described at the outset.

The above observations naturally suggest identifying the cardinality of the stud-
ied set V(Pλρ) with the number of extreme points in the rψ-growth process with
overlap in the sense of Section 1 with the underlying point density ρ((x, r))rd−1 =
ρ((x, r))(1 − h)d−1. Likewise, the vertex empirical measure µλρ in (2.1) corre-

sponds to the empirical measure µ
ξ
λρ , ξ := ξ(ψ; ·); see (1.2).

This identification is valid modulo the following issues though:

(1) the “spatial” coordinate x of a point x̄ := (x, r) ∈ Bd falls into Sd−1 rather
than into a subset A of R

d−1, as required in Section 1,
(2) ψ as given above is monotone only in a neighborhood of 0, and moreover,

we do not have liml→∞ ψ(l) = ∞, which violates (�1),
(3) the support epigraph H [(x, r)] coincides with the (x,h)-shifted

ψ-epigraph K[x,h] given by (1.1) only when r = 1 and, hence, only when h = 0;
in general, for 0 ≤ r ≤ 1, the set H [(x, r)] is an (x,h)-shifted rψ-epigraph.

We claim, however, that the above three restrictions can be neglected in the
asymptotic regime λ → ∞, thus rendering the theory of Section 1 applicable. In-
deed, first note that the sphere Sd−1, unlike the boundary of a general smooth
convex body, has a spatially homogeneous structure and so the behavior of ψ is
independent of x, exactly as in Section 1. Moreover, the sphere Sd−1, being a
smooth manifold, has a local geometry coinciding with that of R

d−1, which takes
care of issue (1). Concerning issues (2) and (3), for each r ∈ (0,1), the convex hull
conv(Pλρ) coincides with conv(Pλρ ∩ (Bd \ Bd(0, r))) with overwhelming prob-
ability, that is, the probability of the complement event goes to zero exponentially
fast in λ; see the discussion in [19] and the references therein. This allows us to
focus on the geometry of conv(Pλρ) in a thin shell Bd \ Bd(0, r) within a distance
1 − r from the boundary Sd−1.

Consequently, only the behavior of ψ in a neighborhood of 0 matters. Recalling
that the standard re-scaling of Section 1.3 involves scaling in the spatial directions
by λβ , it follows that for a given x̄ := (x, r) and support epigraph H [x̄], the con-
tribution of points distant from x by more than O(λ−β) is negligible in view of
the argument in Lemma 3.1(i) and no distortions from the local Euclidean geom-
etry have to be taken into account in the limit under this re-scaling. Likewise, we
only have to control the geometry of H [x̄], x̄ := (x, r), for r arbitrarily close to 1.
This allows us to rewrite the proofs of Theorems 1.1–1.3 for the thus modified
r-dependent ψ. Indeed, the stabilization Lemma 3.1, as well as Lemma 3.2, do not
require any modifications in their proofs and neither does Lemma 3.4 nor Lemma
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3.5. Consequently, the arguments leading to the central limit theorem in Section
3.4 do not require modification either. In this context we note that the proof of
Lemma 3.1 would break down if the sphere Sd−1 were replaced by a nonconvex
set allowing for long-range dependencies between extreme points.

It only remains to show the limit arguments in Sections 3.3 and 3.2 remain valid
for the modified ψ. To see that this is indeed the case, we note that the arguments
rely on two main ingredients: on stabilization which holds with no changes as
stated above, and on re-scaling relations discussed in Section 1.3. However, it is
easily seen that the re-scaling relations and their proofs can be readily rewritten for
the modified ψ , the only essential modification being to add one extra argument
(h := 1 − r) to the ψ-function, which anyway vanishes in the scaling limit of Sec-
tion 1.3 with h = 1 − r tending to 0 as discussed above (whereas the contribution
coming from smaller h is negligible in view of Lemma 3.2). This discussion takes
care of issues (2) and (3) above.

Thus, we can now conclude that the considered convex hull process falls into the
range of applicability of the general theory of Section 1, with α = 2 in (�2) and δ

in (R2) coinciding with that in the statement of Theorem 2.1. Thus, we obtain the
required Theorem 2.1 as a consequence of the general Theorems 1.1–1.3. The rate
of convergence follows from (3.25) by putting δ = 0 and α = 2. �

PROOFS OF THEOREMS 2.2 AND 2.3. Theorem 2.2 follows directly by the
general theory in Section 1 (Theorems 1.1–1.3 with α ∈ (0,1]). The rate (2.8)
follows from (3.25) by putting δ = 0 and α = 1. We thus focus attention on estab-
lishing Theorem 2.3. The first lemma yields (2.9).

LEMMA 4.1. For all f ∈ Cb(A+), we have

|E[〈f, νξ
n〉] − E[〈f,µξ

nρ〉]| = O(n−τ ′
).(4.4)

PROOF. For all w̄ ∈ A+, let p(w̄) := ∫
K↓[w̄] ρ(u)du, where K↓[w̄] is as in

(2.5) with ψ(l) = lα. Note that in our current setting for all w ∈ A+ we have
p(w) ∈ [0,1] since ρ is a probability density. Also, note that ψ(n) ≡ ψ and K(n) ≡
K with K(n) := {(y(n), h

(n)
y ) : (y,hy) ∈ K}, that is, the self-similarity under the

re-scaling is immediate rather than emerging as n → ∞. For all s ∈ [0,1] and
f ∈ Cb(A+), let Bf (s) := ∫

p(w̄)≤s f (w̄)ρ(w̄) dw̄. Recalling that for α ∈ (0,1] the
ψ-extremality of a point w in a given sample is equivalent to having no other
sample points in K↓[w] (see the discussion at the beginning of Section 2.2), we
have

E[〈f, νξ
n〉] = n

∫
A+

(
1 − p(w)

)n−1
f (w)ρ(w)dw

= n

∫ 1

0

∫
p(w)=s

(1 − s)n−1f (w)ρ(w)dw ds = n

∫ 1

0
(1 − s)n−1 dBf (s)
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by Fubini’s theorem. Similarly,

E[〈f,µξ
nρ〉] = n

∫ 1

0
e−nsdBf (s) ∼ Cf nτ ,(4.5)

where the asymptotics are given by Theorem 1.1. Bf is monotone, nondecreas-
ing and Karamata’s Tauberian theorem (e.g., Theorem 2.3 in [36]) gives Bf (s) ∼
Cf sτ ′

as s → 0+. Notice

|E[〈f,µξ
nρ〉] − E[〈f, νξ

n〉]| = n

∫ 1

0

(
e−ns − (1 − s)n−1)

dBf (s)

≤ n

∫ 1

0

(
e−ns − en ln(1−s))dBf (s)

≤ Cn2
∫ 1

0
e−nss2 dBf (s)

= Cn2
∫ 1/n

0
e−nss2 dBf (s) + Cn2

∫ 1

1/n
e−nss2 dBf (s).

The first integral behaves like Cn−τ ′
since Bf (s) ∼ Cf sτ ′

, whereas the second
behaves like C

n

∫ n
1 u2e−udBf (u/n) ≤ C/n, since Bf is bounded by Bf (1). This

gives (4.4). �

We now establish the remainder of Theorem 2.3. Recall ū′ := (u′, h′
u). For all

λ > 0, define

A′(λ) :=
{
ȳ′ ∈ λβA × R+ :

∫
K↓[ȳ′]

ρ(λ)(u) du ≤ C logλ

}
.

Let A(λ) := {ȳ ∈ A+ : ȳ′ ∈ A′(λ)} and put aλ := ∫
A(λ) ρ(w)dw. Note that by

Lemma 3.2 the probability that a sample point from X̄n := {Xi}ni=1 in A+ \ A(λ)

is ψ-extremal is at most

C exp
(
−n logλ

Cλ

)
(4.6)

and the same holds for X̄n replaced by the Poisson sample with intensity nρ.

Indeed, although Lemma 3.2 was originally established for Poisson samples, it is
easily seen that the same proof works also for binomial samples, as it essentially
relies on exponentially decaying upper bounds for probabilities of certain sets in
A+ being devoid of points of the underlying point process. Thus, the ψ-extremal
points are predominantly concentrated in A(λ), a fact which we will use to show
(2.10). First we find growth bounds for aλ.

LEMMA 4.2. We have aλ ≤ C(logλ)α(1+δ)/(α+d−1)λ−α(1+δ)/(d−1+α(1+δ)).
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PROOF. If M(λ) := sup{hy :hy ∈ A(λ)}, then note that α(λ) grows like∫ M(λ)
0 hδ

y dhy = C(M(λ))1+δ . We now find M(λ).

If ȳ′ := (y′, h′
y) ∈ A′(λ), then, by (3.7), we have h′(α+d−1)/α

y ≤ C logλ. Since
h′

y = λγ hy and since γ = βα, it follows that

h(α+d−1)/α
y λβ(α+d−1) ≤ C logλ.

Since γ (d − 1)/α = τ , we have

h(α+d−1)/α
y λγ+τ ≤ C logλ or hy ≤ (logλ)α/(α+d−1)λ−α(γ+τ)/(α+d−1),

that is,

M(λ) ≤ (logλ)α/(α+d−1)λ−α(γ+τ)/(α+d−1).

Recall that γ + τ = (α + d − 1)/(d − 1 + α(1 + δ)) to get the result. �

The next lemma yields (2.10). The proof borrows heavily from [8] and, for the
sake of completeness, we provide the details.

LEMMA 4.3. For all f ∈ Cb(A+), we have limn→∞ n−τ Var[〈f, ν
ξ
n〉] =

limn→∞ n−τ Var[〈f,µ
ξ
nρ〉].

PROOF. Recall X̄n := {Xi}ni=1. Let Nn := card{X̄n ∩ A(n)} and N ′
n :=

card{Pnρ ∩ A(n)}. For all r = 1,2, . . . , denote by e(r) := ef (r) the expected

value of the functional 〈f · 1(A(n)),µ
ξ
n〉 conditioned on {N(n) = r}, and by v(r)

the variance of this functional conditioned on {N(n) = r}. Let νA
n := ν

ξ,A
n denote

the point measure induced by the ψ-extremal points in {X̄n ∩ A(n)}. Similarly,
let µA

nρ := µ
ξ,A
nρ denote the point measure induced by the ψ-extremal points in

{Pnρ ∩ A(n)}.
By the bound (4.6) on the probability of a given point outside A(n) being ex-

tremal, νA
n coincides with νn and µ

ξ,A
nρ coincides with µ

ξ
nρ except on a set with

probability at most nC exp(−C logn) = Cn−C+1. Since C can be chosen arbitrar-
ily large, it suffices to show that

lim
n→∞n−τ Var[〈f, νA

n 〉] = lim
n→∞n−τ Var[〈f,µA

nρ〉].(4.7)

The conditional variance formula implies that

Var[〈f, νA
n 〉] = Var[e(Nn)] + E[v(Nn)] and

Var[〈f,µA
nρ〉] = Var[e(N ′

n)] + E[v(N ′
n)].

We prove (4.7) by showing that:

(i) the terms E[v(Nn)] and E[v(N ′
n)] are dominant and that their ratio tends

to one as n → ∞, and
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(ii) Var[e(Nn)] and Var[e(N ′
n)] are both o(nτ ).

We will first show (ii) as follows. For all s > 0, recall that Bf (s) :=∫
p(w̄)≤s f (w̄)ρ(w̄) dw̄. By Fubini’s theorem, for all r = 1,2, . . . and with an =∫
A(n) ρ(w)dw, we obtain

e(r) = r

an

∫
A(n)

(
1 − p(w)

an

)r−1

f (w)ρ(w)dw = r

an

∫ an

0

(
1 − s

an

)r−1

dBf (s).

Letting �r denote the difference e(r + 1) − e(r), we obtain

�r = 1

an

∫ an

0

(
1 − s

an

)r

− rs

an

(
1 − s

an

)r−1

dBf (s).

Setting u = rs/an and applying Bf (s) ∼ Cf sτ ′
, we see that (τ = 1 − τ ′)

|�r | ≤ Cf

r

∫ r

0

∣∣∣∣
(

1 − u

r

)r

− u

(
1 − u

r

)r−1∣∣∣∣
(

uan

r

)−τ

du.

Since supr>0
∫ r

0 |(1 − u
r
)r − u(1 − u

r
)r−1|u−τ du ≤ C, it follows that |�r | ≤

C(an

r
)−τ .

When r ∈ In := (nan − C(logn)(nan)
1/2, nan + C(logn)(nan)

1/2), then, by
Lemma 4.2, for n large,

|�r | ≤ C(nan)
−1nτ = Ca−1

n n−τ ′

= Cnα(1+δ)/(d−1+α(1+δ))n−τ ′
(logn)−α(1+δ)/(α+d−1).

Recalling that τ ′ = (1 + δ)α/(d − 1 + α(1 + δ)), we see that for r ∈ In we have

|�r | ≤ �(n) := C(logn)−α(1+δ)/(α+d−1).

Write e(Nn) = e(1) + ∑Nn

j=2(e(j) − e(j − 1)) and observe that e(Nn) differs

from the constant e(1) + ∑E[Nn]
j=2 (e(j) − e(j − 1)) by at most∑

j∈Jn

(
e(j) − e(j − 1)

)
,

where Jn := (min(E[Nn],Nn), max(E[Nn],Nn)). Thus,

Var[e(Nn)] ≤ E

[ ∑
j∈Jn

(
e(j) − e(j − 1)

)]2

≤ E

[ ∑
j∈Jn

(
e(j) − e(j − 1)

)
1Nn∈In

]2

+ o(1),

by Cauchy–Schwarz and since (by increasing C in the definition of In) standard
concentration inequalities (see, e.g., Proposition A.2.3(ii), (iii) and Proposition
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A.2.5(ii), (iii) in [3]) show that P [Nn ∈ I c
n ] can be made smaller than any neg-

ative power of n.
For j ∈ Jn and Nn ∈ In, we have j ∈ In and so (e(j) − e(j − 1)) ≤ �(n).

Since the length of Jn is bounded by |Nn − ENn|, it follows that Var[e(Nn)] ≤
Var[Nn](�(n))2 +o(1). Note that Var[Nn] ≤ Cnτ (logn)α(1+δ)/(α+d−1). It follows
that Var[e(Nn)] ≤ Cnτ (logn)−α(1+δ)/(α+d−1) + o(1), that is, Var[e(Nn)] = o(nτ ).

Similarly, Var[e(N ′
n)] = o(nτ ) and so condition (ii) holds.

We now show condition (i) by showing that the ratio E[v(Nn)]/E[v(N ′
n)] is

asymptotically one, as n → ∞. Let pn,r := P [Nn = r] and p′
n,r := P [N ′

n = r].
Stirling’s formula implies that, for |r − ann| ≤ nβ , where 0 < β < 1/2,

lim
n→∞

pn,r

p′
n,r

= 1(4.8)

uniformly. Now, for |r − ann| > nβ , where β ∈ (0,1/2) is chosen so that n2β/nan

grows faster than some (small) power of n, we have that both pn,r and p′
n,r are

bounded by C exp(−nδ/C) for some C, δ > 0 (see, e.g., Proposition A.2.3(i) and
Proposition A.2.5(i) in [3]). Write

E[v(Nn)] = ∑
|r−ann|≤nβ

v(r)pn,r + ∑
|r−ann|>nβ

v(r)pn,r .

The second sum is negligible since 0 < v(r) < r2 and pn,r is exponentially small.
Consider the terms in the first sum. By (4.8), we have pn,r = p′

n,r (1 + o(1)) uni-
formly for all |r − an| ≤ nβ and since the terms in the first sum are positive, it
follows that

lim
n→∞

E[v(Nn)]
E[v(N ′

n)]
= 1.(4.9)

Now from before we know Var[〈f,µA
nρ〉] has asymptotic growth Cnτ ,C > 0.

It follows that E[v(N ′
n)] has the same growth, since Var[e(N ′

n)] = o(nτ ). Thus,
by (4.9) and the growth bounds Var[e(Nn)] = o(nτ ) and Var[e(N ′

n)] = o(nτ ), the
desired identity (4.7) follows, completing the proof of Lemma 4.3. �

We conclude the proof of Theorem 2.3 by showing for all f ∈ Cb(A+)

lim
n→∞dTV(n−τ/2〈f, ν̄ξ

n〉, n−τ/2〈f, µ̄ξ
nρ〉) = 0,

where the total variation distance between two measures m1 and m2 is
dTV(m1,m2) := supB |m1(B) − m2(B)|, where the sup runs over all Borel subsets
in R

d . Since n−τ/2|E[〈f, ν
ξ
n〉]−E[〈f,µ

ξ
nρ〉]| → 0 by (4.4) and since n−τ/2〈f, µ̄

ξ
nρ〉

converges in law to an appropriate Gaussian distribution, recalling that an = o(1)

(see Lemma 4.2), Theorem 2.3 follows at once from the following:
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LEMMA 4.4. For all f ∈ Cb(A+), we have

dTV(〈f, νξ
n〉, 〈f,µξ

nρ〉) = O(an).(4.10)

PROOF. We follow the proof of Lemma 7.1 in [8]. Recall that νA
n is the mea-

sure induced by the maximal points in {(Xi, hi)}ni=1 ∩A(n) and, similarly, let µ
ξ,A
nρ

be the measure induced by the maximal points in Pnρ ∩A(n). If C is large enough
in the definition of A(n), then the probability that points in A+ \ A(n) contribute
to ν

ξ
n or µ

ξ
nρ is O(n−2). It follows that, for all f ∈ Cb(A+)

dTV(〈f,µξ
nρ〉, 〈f,µξ,A

nρ 〉) = O(n−2) = o(an)

and

dTV(〈f, νξ
n〉, 〈f,µξ,A

n 〉) = O(n−2) = o(an).

Thus, we only need to show dTV(〈f, νA
n 〉, 〈f, νA

nρ〉) = O(an).

Recall that Nn is the number of points from X̄n belonging to A(n). Conditional
on N = r , 〈f, νA

n 〉 is distributed as 〈f, ν̃A
r 〉, where ν̃A

r is the point measure induced
by considering the maximal points among r points placed randomly according
to the restriction of ρ to A(n). The same is true for 〈f,µ

ξ,A
nρ 〉 conditional on the

cardinality of {Pnρ ∩ A(n)} taking the value r .
Hence, with Bi(n,p) standing for a binomial random variable with parameters

n and p and Po(α) standing for a Poisson random variable with parameter α, we
have for all f ∈ Cb(A+)

dTV(〈f, νA
n 〉, 〈f,µA

nρ〉) ≤ CdTV(Bi(n, an), Po(nan)) ≤ C
1

nan

n∑
i=1

(an)
2 ≤ Can,

where the penultimate inequality follows by standard Poisson approximation
bounds (see, e.g., (1.23) of Barbour, Holst and Janson [3]). This is the desired
estimate (4.10). �
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