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Abstract

When is it safe to use synthetic data in supervised classification? Trainable classifier tech-

nologies require large representative training sets consisting of samples labeled with their

true class. This is in the context of supervised classification in which classifiers are de-

signed fully automatically by learning from a file of labeled training samples. Acquiring

such training sets is difficult and costly. One way to alleviate this problem is to enlarge

training sets by generating artificial, synthetic samples. Of course this immediately raises

many questions, perhaps the first being “Why should we trust artificially generated data

to be an accurate representative of the real distributions?” Other questions include “When

will training on synthetic data work as well as — or better than — training on real data?”

We distinguish between sample space (the set of all real samples), parameter or gener-

ator space (samples that can be generated synthetically), and finally, feature space (sam-

ples described by numerical feature values). Synthetic data can be produced in what we

call parameter space by varying the parameters that control their generation. We are in-

terested in exploring how generator and feature space relate to one another. Specifically,

we have explored the feasibility of varying the generating parameters for typefaces in

Knuth’s Metafont system to see if previously unseen fonts could also be recognized.

Generally, we have attempted to formalize a reliable methodology for the generation

and use of synthetic data in supervised classification. We have designed and carried out

systematically a family of experiments in which pure typefaces already widely used are

supplemented with synthetically generated typefaces interpolated in generator or param-

eter space in the Metafont system. We also vary image quality widely using a parameter-

ized image defect generator.

We have found that training on interpolated data is for the most part safe, that is to say

1



never did worse when tested on the pure samples. Furthermore, the classifier trained on

interpolated data often but not always improved (about one third of the time) classification

when tested on previously unseen interpolated samples.
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Chapter 1

Introduction

It has been widely accepted in pattern recognition research that the classifier trained

on the most data wins Ho, T. K. and Baird, H. S. [HB97], Simard, P. Y., LeCun,

Y. A., Decker, J. S. and Victorri, B. [SV98], Varga, T. and Bunke, H. [VH04]. Of

course, putting this strategy into practice can be troublesome, since large training

sets are expensive or impossible to obtain, and may not be representative - or sets

may be imbalanced, where one class is represented by too few samples, and others

have too many. This is in the context of supervised classification in which classifiers

are designed fully automatically by reading in files of labeled training samples so

that the classifier can learn from example patterns.

Good results in pattern recognition have been achieved by the use of supervised

classifiers such as nearest neighbors algorithms(kNN) 1 [DA91]; however these

results require large amounts of training data together with carefully labeled ground

truth (the true classes of each sample) which can be even more expensive to provide

than the data themselves. Often the acquisition of such data becomes a problem, as

much time and labor must be spent to locate existing training data, or alternatively,

to classify new training data properly.

1The k-nearest neighbor algorithm is amongst the simplest of all machine learning algorithms. An object

is classified by a majority vote of its neighbors, with the object being assigned to the class most common

amongst its k nearest neighbors.
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We believed that one way out of this impasse is to amplify the training data: that is to

increase it artificially by generating more. We called such generated data synthetic

in contrast to data collected in the field, real data. The generation of data can be

completely automated and is often inexpensive, but when is it safe? That is, when

will synthetic data perform as well as real data? It is easy to imagine how it could

perform worse! We posed the following questions. Given a set of training data, can

we generate more that is still representative of the underlying distribution? When

can you reliably use such data? What are valid ways of generating these new data?

We thought it would be useful if a way could be found to amplify existing data

so that it could be used in classification programs with results equivalent to that of

data gathered in the usual, tedious and time-consuming fashion. To this end, we

conducted experiments to explore the validity and uses of artificial data.

In practice, researchers tend to use datasets because a) others have used them, b)

they are freely available, c) they possess a documented collection protocol, and d)

they are uncommonly large. A synthetic data set may enjoy most or all of these

properties. It can be offered for use by others at low cost. The underlying model of

the generated data may be arguably a carefully documented protocol, and of course,

perhaps the overwhelming advantage of such a data set is that the size is effectively

unbounded! The most serious drawback of synthetic datasets is that people don’t

trust them to be representative of real distributions.

We made the assumption, as is done classically in Bayesian decision theory, that

we had a classifier technology which could be trained on a training set and tested

on a separate set. Typically the training samples arise in a natural sample space. In

our domain, the sample space was the set of all document images.

Usually the first step in crafting a classifier is to choose numerical features (say d

of them) that can be algorithmically extracted so each sample is represented by a

set of features: that is, as a point in d-dimensional space. In this sense, data also

live in feature space.

4



However, since we know how images are generated, then the parameters that con-

trol the generation process are yet another way of describing the data – so syntheti-

cally generated data can be said to live in parameter space also.

It may be informative to give an example of a method of generating artificial data

which ‘lives’ in each space. For example, in sample space, one might generate

synthetic data by taking several real images, cutting them up, pasting them together

in a random fashion, and so, making a collage of them.

To generate data synthetically in feature space, one might extract features for sev-

eral samples, giving several points in feature space, then interpolate between the

points to generate a new point. An example of feature space data generation is

outlined in more detail in our small experiment described in the following pages.

In this example, the features reddish, greenish and blueish have numerical values

assigned to them, and new feature points are generated by interpolating between

the values to obtain new reddish, greenish and blueish values.

Samples that are generated in parameter space were synthesized by varying the gen-

erating parameters. In the case of document images, these generating parameters

were among the following; type, size, image degradations such as blur, threshold,

additive noise, etc. and layout dimensions such as gutter width, line spacing. We

can say that pairs of real images span ranges in parameter space and thus allow the

generation of synthetic training data densely within that range.

We explored the relationship between parameter space, sample space and feature

space which can be thought of as follows:

parameter space → sample space → feature space

One can think of samples as living in a natural space, but for pattern recognition

purposes we tend to extract a small number of features, so each image is represented

by these. Starting from any given sample or samples, we can say that we extract

features from the sample(s), and that we infer parameters of generation for the

5



sample(s). Given that, you can imagine three different ways to generate data 1)

take the sample and add noise (sample space), 2) change the generating parameters

and generate new samples (parameter space), and 3) modify the individual features

(feature space).

As we explored methods for generating synthetic data we saw that some methods

were naturally more suited to one of these three spaces. In our work, we will

concentrated on parameter space or feature space. As we will see later, much of the

prior work has concentrated either on adding data in sample space, or is limited to

feature space. As part of our research, one of our intentions was to formalize and

explain the use of parameter space.

Given two real images, we wanted to identify a continuum in some parameter space

with the properties that image one is generated by some value (say a) of the param-

eter, which we can estimate, and image two is generated by some other value (say

b) of the same parameter. All images generated by values in between a and b can

occur in real images, and therefore should be recognized correctly by our system.

Note that we do not speak of probabilities in this context, just possibilities, so this

argument sounds like a primitive uniform likelihood function.

6



Chapter 2

Literature Review

We have researched four topics, choosing to summarize papers which concern 1)

image transformation methods, 2) boosting methods, 3) theoretical papers and 4)

relevant papers from other disciplines, such as a subset of papers from the software

testing and engineering fields. Among the papers are also some interesting stud-

ies of the problem of imbalanced training sets and papers that measure classifier

improvements as a function of sample size.

2.1 Image Transformation Methods

Most of the first group of papers use the addition of synthetic data in their exper-

iments to test various aspects of pattern recognition. Several of them use parame-

terized image degradation methods which are applied to existing samples to create

new samples. Several of the applications use interpolation to determine the parame-

ters to be applied. However, none of the experiments use interpolation to create the

original samples. Among the domains explored are handwritten lines of text, indi-

vidual Japanese Kanji characters, and the generation of synthetic features derived

from the domains of medical cell samples and satellite images.

Varga, T. and Bunke, H. [VH03]

The performance of a recognition system is strongly affected by the size and quality

7



2.1. IMAGE TRANSFORMATION METHODS

of the training data (Baird 2000). In an effort to further investigate this assertion, the

authors have conducted experiments to examine under what circumstances a larger

and more varied training set improves the accuracy of handwriting recognition sys-

tems. The paper discusses how synthetic generation of new training samples can be

achieved through perturbation of, or interpolation between the original samples.

The authors maintain that the use of synthetic training data doesn’t necessarily lead

to an improvement of the recognition rate, because even though the variability of the

training set improves, leading to a potentially higher recognition rate, the synthetic

training data may bias a recognizer towards unnatural handwriting styles. The paper

examines the use of parameters which govern aspects of handwriting style such as

slant, the number of Gaussians used for distribution estimations, distortion strength,

and training set size. Each geometrical transformation is controlled by a continuous

nonlinear function (based on the cosine) which determines the strength of the trans-

formation at each horizontal or vertical coordinate position of the textline. Shear-

ing and vertical scaling are performed with respect to the lower baseline, as well as

thinning, thickening and greyscale operations using a perturbation model.

In their experiment, the authors investigated the effects of three parameters when

using a Hidden Markov Model (HMM) [RA89] based cursive handwriting rec-

ognizer. The first parameter was the number of Gaussian components, while the

second parameter was the distortion strength. The number of natural textlines in

the training set was the third parameter. A better recognition rate was anticipated

as the size of the training was increased. The experimenters tested training sets of

81, 162, 243 and 324 textlines, as well as both six Gaussians and single Gaussians.

The authors found that single Gaussians caused greater variation in recognition

rates than six Gaussians, possibly because unnatural looking synthetic textlines in

the training set may cause serious damage in the parameter estimation. Also, they

found that for larger training sets, the positive effect of adding synthetic data be-

comes smaller, and the negative effect of unnatural looking textlines dominates.

They conclude that a sufficiently large number of parameters in the HMM output

8



2.1. IMAGE TRANSFORMATION METHODS

distribution is vital, so unnatural looking synthetic textlines cannot cause damage

in the estimation of parameters in the training phase. Furthermore, they found that

when using larger training sets with great variability, only rather weak distortions

could be expected to produce improvements in the recognition rate.

In our work, we also vary the distortion of the synthetic data. While we did not vary

the size of the training sets we did alter the makeup of the training sets, that is to

say the percentage of synthetic data versus non-synthetic, or naturally found data.

The authors also varied the features they chose, in their case 6 versus 1 Gaussian.

Chawla, N., Bowyer, K., Hall, L. and Kegelmeyer, W. [CH02]

The cost of misclassifying an abnormal (interesting) example as a normal example

is often much higher than the cost of the reverse. Undersampling of the majority

(most frequent or normal) class has been proposed as a good means of increasing

the sensitivity of a classifier to the minority (less frequent or abnormal) class. The

authors use a combination of over-sampling the minority class and under-sampling

the majority class to achieve better classifier performance. They also create syn-

thetic minority class examples. As the minority class is over-sampled by increasing

amounts, the effect is to identify similar but more specific regions in the feature

space as the decision region for the minority class. The authors describe exper-

iments on nine different datasets which vary in their size and class proportions.

Some examples are a diabetes dataset, A yeast anticancer drug screen, and a forest

cover cartographic dataset.

The authors maintain that if you merely replicate the minority class, the decision

region for the minority class becomes very specific and will cause new splits in

the decision tree, leading to overfitting. Instead they propose to over-sample the

minority class by creating synthetic examples, rather than over-sampling with re-

placement. They generate synthetic examples in a less application-specific manner,

by operating in ‘feature space’ rather than ‘data space’.

Here is an example of their algorithm: If the amount of oversampling is 200%, two

9



2.1. IMAGE TRANSFORMATION METHODS

neighbors from the five nearest neighbors are chosen and one sample is generated

in the direction of each neighbor from the original sample. Synthetic samples are

generated by taking the difference vector between the feature vector(sample) under

consideration and its nearest neighbor. They multiply this difference by a random

number between 0 and 1, and add it to the feature vector under consideration. This

causes the selection of a random point along the line segment between two specific

features.

They claim that by applying a combination of under-sampling and over-sampling,

the initial bias of the learner towards the negative (majority) class is reversed in

favor of the positive (minority) class.

Unlike this work, in which the authors generate synthetic samples in feature space,

we have chosen to generate our synthetic samples by interpolation in parameter

space. In other words, we modify the generating parameters to produce our syn-

thetic samples. Additionally, we do not have minority and majority class, as in our

domain the classes may occur with similar frequency.

Varga, T. and Bunke, H. [VH04]

This paper makes the point that the performance of a handwriting recognition sys-

tem is strongly affected by the size and quality of the training data. As in their

previous paper, the authors emphasize that the classifier that is trained on the most

data wins, a viewpoint with which we agree.

The authors discuss the fact that synthetic generation of new training samples can

be achieved in different ways, such as interpolation between the original samples.

Most existing methods are related to isolated character recognition. In this work,

the authors tested the use of continuous nonlinear functions that control a class of

familiar geometrical transformations applied on an existing handwritten text line.

Thinning and thickening operations were also used.

Variation in handwriting is due to letter shape variation and also the large vari-

ety of writing instruments. Their perturbation model incorporates some parameters

10



2.1. IMAGE TRANSFORMATION METHODS

with a range of possible values, from which a random value is picked each time

before distorting a textline. The authors conducted a series of experiments to com-

pare improvements by expansion of the training set with synthetic textlines versus

expansion of the training set with natural textlines only.

Our work differs from this in that we use training sets all of the same size. In our

experiments we test the effects of replacing much of the naturally occurring data

with synthetic samples. We also interpolate between the original samples, in part

methodically and systematically, and in part randomly.

Ho, T. K. and Baird, H. S. [HB97]

In this paper, the authors present three studies that rely on synthetic data generated

pseudo-randomly in accordance with an explicit stochastic model of document im-

age degradations. The authors maintain that the image data sets used to train and

test classifiers are often gathered unsystematically without following a published

protocol. Among the drawbacks with using these databases are that the image col-

lections are often unsystematic, not extensible, and much too small. Thus, they

focus on an explicit, quantitative, stochastic model of degradations that occur in

images of documents as a result of the physics of printing and imaging to generate

test samples.

The authors use a parameterized model of document image defects to generate

documents. Among the parameters are size, spatial sampling rate, blur, sensitivities

among the pixels sensors (sens) and variations of jitter. Their generator creates one

image when the value of each parameter is fixed and when sens and jitt (jitter) are

zero. The effects of pixel sensitivity and jitter are randomized per pixel. By sam-

pling pseudo-randomly from this multivariate distribution, they are able to generate

an indefinitely long sequence of distorted images for a given prototype. This model

is designed to produce shape distortions similar to those occurring in real-world

document images.

Given their essentially unlimited source of training samples and sufficient memory,

11



2.1. IMAGE TRANSFORMATION METHODS

they can drive down the error rate of the classifier to approach the Bayes risk (this is

the irreducible error rate of a particular recognition problem given a set of features)

[DU01] . The authors pose the idea that if the quality of training sets, rather than

classification methodology was the determining factor in achieving higher accuracy,

then one might choose to devote more effort to improving the quality of training

sets.

One of the types of classifiers the authors use to test their ideas is the nearest

neighbors because the asymptotic error rate is bounded above by twice the Bayes

risk. Using their generated data, they found that the number of errors quickly de-

creases until 60,000 or so prototypes are used under normalized Hamming distance

[HA50]. Likewise, using decision trees, they found that an increase in training sam-

ples helps improve the generalization power of the trees. They believe that as long

as the training data are representative and sufficiently many, a wide range of clas-

sifier technologies can be trained to equally high accuracies. They have also found

that there is little overlap among the errors made by the classifiers, suggesting that

further improvements might be possible through combining their results. They be-

lieve that classification methods are needed that can take advantage of unlimited

training samples obtained through a precise problem definition.

They have found that evaluation on synthetic images has several advantages, de-

fect parameters are known precisely for the test data, comprehensive and uniform

coverage of the range of defects is achievable, the test can be automated, and the

sample size is not limited by the costs of manual truthing. However, in their evalu-

ation they have assumed that all symbols and all defects in the interesting range are

equally probable, while in reality, those probabilities vary, which need to be taken

into account when accuracies are projected to realistic page images.

In our work, we utilize the same parameterized model of document image defects.

We have extended this work by generating synthetic images of individual charac-

ters on which we can apply the document image defects. By using our synthetic

character generation model along with the document image defect generator we are
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able to systematically and repeatedly create a set of images on which to conduct

our experiments.

Sun, J., Hotta, Y. and Naoi, Y. K. S. [SU04]

The recognition rate for highly degraded characters is still a bottleneck for most

OCR machines. The authors maintain that this is because most feature extraction

methods are based on binarization. Binarization removes the noise while preserv-

ing the structural information of the characters. Unfortunately, as the degradation

is increased, structure information is lost as this information can be embedded in

the noise. The authors propose a new feature extraction method based on a dual

eigenspace decomposition which is used along with degradation model.

They generate low resolution character images of Japanese Kanji characters using a

video degradation model, common in facial recognition systems, based on perspec-

tive transformation and super-sampling. A mask is generated for creating synthetic

images, and by controlling parameters such as size of scene plane, view point dis-

tance, and focal length, characters with different degradation levels are generated

and rendered.

In their experiments with the dual eigenspace method of feature extraction, the

authors have obtained better results than with other methods such as contour direc-

tional feature and principal component analysis.

The primary concern of this paper is with the results obtained using their new fea-

ture extraction method, however the use of the degradation model in this experiment

was of more interest to us. As in our experiments, the authors apply a parame-

terized degradation model to individual, normalized characters in several specific

fonts. Our work, however, differs in that we also generated characters in new fonts

created by interpolating between existing fonts.

Cano, J., Perez-Cortes, J., Arlandis, J. and Llobet, R. [CL02]

The authors examine the expansion of the training set by synthetic generation of

handwritten uppercase letters via deformations of natural images. They performed
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extensive experiments adding distorted characters to the training set and the results

were compared to directly adding new natural samples to the set of prototypes. The

authors used the kNN rule because of its good results, ease of use, and theoretical

properties.

The temporal cost of a kNN method can be reduced by reducing the number of

prototypes (editing, and condensing, etc.) without degrading classification power,

or alternatively, by using a fast nearest neighbors search algorithm. The power of

reducing the number of prototypes resides in the smoother discrimination surfaces

created by eliminating redundant and noisy prototypes. Cleaner discrimination sur-

faces reduce the risk of overtraining.

The authors maintain that in most pattern recognition applications, there is no need

to guarantee that the exact nearest neighbor has been found. Since the temporal

cost of the classification grows approximately with the logarithm of the size of the

training set (slowly), an interesting approach to improving the accuracy while keep-

ing high recognition speeds, is to insert new prototypes by performing controlled

deformations on the characters to insert them into a larger training set. In this work,

they perform experiments to validate that approach.

They test four kinds of transformations, slant and shrink to account for geometric

distortions, and erosion and dilation to deal with different writing implements, etc.

All transformations were applied to the original binary images. They found that

the insertion of artificially slanted, eroded and dilated images produced significant

improvements, however, the inclusion of shrunken images did not. The authors also

found that the best value of k seemed to only gradually increase as the database

grew.

The authors performed another experiment to test whether the addition of real data

instead of ‘deformed’ images is preferable. In their experiment they found that this

is indeed so, however, real data can only be added if if the additional images are

available.
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This work is similar to several of the other papers in that image degradation param-

eters are used to transform original, existing images. Unlike our work, parameters

are not used to generate entirely new font types.

Mori, M., Suzuki, A., Shio, A. and Ohtsuka, S. [MO00]

In the recognition of handwritten characters, increasing the number of training sam-

ples increases the recognition performance since the training samples can cover

wider variations in deformation. The authors propose using, for each category of

samples, the pattern correspondence between the training samples and a template

pattern. The template is derived from the average of all training samples of the

same category.

Once the authors have determined a template, they set a standard displacement

path for each pixel pairing between a sample and the template. They create new

displacement paths by varying the standard ones with a variation parameter. Using a

value of 1 as a parameter generates a pattern that is almost identical to the template.

Minus values yield distortion away from the template.

Their results indicate that the recognition rate increases as the number of the train-

ing samples increases. Prior to adding generated samples to the original ones, they

test which training samples were recognized using a dictionary holding only gen-

erated samples. Generated samples that degraded recognition performance were

removed, and the remaining samples were used in the experiment.

Their results show that a slight degree of distortion can improve recognition, how-

ever large levels of distortion (both positive and negative) lower the recognition rate.

The addition of generated samples yields 40-50% of the improvement achieved by

doubling the number of original samples. Deforming the samples away from the

template can degrade recognition performance. They reason that all samples that

are deformed towards the template lie inside the class boundary in the feature space,

and some may describe the boundary in more detail. On the other hand, samples

deformed away from the template may cross the true class boundary and lead to
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recognition error. In other words, a generated sample that leads to correct recog-

nition of original samples does not always contribute to correct recognition of test

samples and vice versa. They feel that a better method of selecting samples to be

used in the training is needed.

Training samples that are deformed towards the template might be thought of as

interpolated between the sample and the template. Samples that are deformed away

from the template might then be thought of as extrapolated. It is not surprising, but

very interesting, that performance degrades as the new samples approach and even

cross the class boundaries. This is one reason why we have chosen not to attempt

to explore whether extrapolation is safe. Our work deals with interpolated samples

also, however the interpolations are between two fonts and not a sample and a

template. Our work also differs in that deformations are applied to the generated

samples.

2.2 Boosting and Imbalanced Data Sets

This next group of papers speaks about methods used to change the composition of

classes in the training sets. In some cases there are too many samples of one class

(the majority class), and two few of another class (the minority class). This might

happen in a domain such as the recognition of relatively rare cancer cells among

normal cells. In these cases, the authors might attempt to balance out the data sets

by adding more of the relatively rare data samples. Alternatively they may remove

samples from the majority class. In several of the papers, samples are removed from

data sets because they are outliers, outside their true class boundaries. By removing

them, better performance can be obtained from the classifier.

Guo, H. and Viktor, H. [GV04a]

Boosting is an ensemble method (ensembles are sets of individually trained classi-

fiers whose predictions are combined to classify new instances) in which the perfor-

mance of weak classifiers is improved by focusing on hard examples, those which
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are difficult to classify or examples on which the classifier frequently fails. The

output is combined using weighted voting. Boosting concentrates on classifying

the hard examples correctly.

In this paper on boosting methods, the authors maintain that boosting frequently

suffers from over-emphasizing the hard training examples. In their experiments,

they first identify hard examples, and keep the weight of each seed, with the seed

example to be used for assigning proper weight to the synthetic examples generated.

The mean value and variance of attribute A, with respect to class C is determined

and the distribution of the values of A is constrained by generating values without

changing the original mean value or the variance of the attribute. The mean and

variance produce a fixed range of values for the attribute to be assigned to the new

sample.

In these experiments, the authors seem to concentrate on the generation of data

based on the minority class. They discuss in great detail their method of generat-

ing new samples and the precautions they have taken to insure that the mean and

variance of the new attributes do not vary from those of the original.

The authors concentrate on generating the new samples in feature space, by varying

the attributes of the features of the original samples. They have attempted to insure

that the resulting values are similar to the real or original samples by using the

mean and variance as constraints. In this way, it is much more likely that these

new samples could be found in nature. In our work, by way of contrast, we have

concentrated on generating the samples in parameter space, and have shown that

such samples could actually occur in the real world by generating the actual sample

images.

Viktor, H. and Guo, H. [VG04]

In this later work, the authors aim to generate additional synthetic instances to add

to the original training set. Training samples are sorted by ‘hardness’, or difficulty,

and then a subset of the minority class is selected as seeds, as well as a subset of
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the majority class. The authors define nominal or discrete attributes, and continu-

ous ones. For nominal attributes, they choose N values for each seed in training set

i.e., to reflect the distribution of discrete probability means contained in the original

training attribute with respect to the particular class. Using continuous attributes,

the data generation produces N attribute values chosen by considering the range

[min, max] of the original attribute values with respect to the seed class. Before

training, the total weights of the examples in different classes are rebalanced, forc-

ing boosting to focus on hard as well as minority class examples. They include

tables which show that their method improves performance.

In this work, the authors generate synthetic samples by varying the attributes of the

features selected from the training set samples. Minority and majority class exam-

ples are generated separately based on the distribution of attributes in the original

samples.

Again, this work differs from ours in that the authors create new examples of data

in feature space. The results from the first classifier are ranked and new samples

are created by selecting certain samples as seeds from which the attributes are se-

lected. These attributes are varied to produce new samples to be used in training

the subsequent classifier. Unlike our work, in which interpolation is accomplished

smoothly over a range of parameters, each attribute appears to be treated separately

from every other attribute with no consideration of how its adjustment might ef-

fect the value of the other attributes in a real-life sample. They do not discuss how

to prevent a combination of attributes from being generated which could never be

found in the real world.

Gou, H. and Viktor, H. [GV04b]

This paper is a continuation of the experiments started in above two works. Using

their method, the hard examples are used to separately generate synthetic exam-

ples for the majority and minority classes. The authors maintain that their results

indicate that their approach produces high predictions against both minority and

majority classes.
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First they separately identify hard examples and generate synthetic examples for the

minority as well as the majority classes. Secondly, they generate synthetic exam-

ples with bias information toward the hard examples on which the next component

classifier in the boosting procedures needs to focus.

In one example, for a Hepatitis data set, they identify 27 hard examples, 2 corre-

sponding to the majority class and 25 from the minority class. The high occurrence

of examples from the minority class is due to the fact that, for imbalanced data

sets, the minority class is harder to learn. They used a parameter N to specify the

amount of synthetically generated examples, and it was set to 100, 300, and 500,

respectively. In their experiment, in many cases the improvement for the minority

class was quite significant.

They conclude that additional synthetic data provides complementary knowledge

for the learning process, and also that rebalancing the class frequencies alleviates

the classifiers’ learning bias toward the majority class. They state that rebalancing

the total weight distribution of different classes forces the boosting algorithm to

focus on the hard examples as well as rare examples, and also that the synthetic

data prevent boosting from over-emphasizing the hard examples. In this paper, the

authors discuss in much more detail their algorithm for generating the synthetic

samples and provide examples of the seeds and some of their features.

As before, this work deals with the generation of the synthetic samples in feature

space as opposed to sample or parameter space, unlike our work in which we gen-

erate the samples by varying the generating parameters.

Mao, J. and Mohiuddin, K.M. [MM97]

These authors examine boosting techniques used in conjunction with synthetic

training data to classify characters. They point out that boosting algorithms re-

quires an ‘oracle’ to produce a large number of independent training patterns. They

define boosting and introduce three document degradation models in their boost-

ing algorithm, affine transformations (translation, scaling, rotation and shearing),
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a nonlinear deformation (in which they pad the size-normalized character bitmap

with a 2-pixel wide boundary and then subject each pixel in the image to a dis-

placement), and a the noise model. In the noise model, a black-white flip occurs

independently at each pixel

They run an experiment in which they created three new sets of data for training

(27636 characters), validation(12,000) and test(12,000). In an ‘epoch’, they go

through the entire training set in a random order and use either the original pattern

(with ‘weight’ .5) or one of three degradation models (with weight .167 for any of

the three). At the end of five epochs, the network is evaluated on the validation

data set and the weights corresponding to the best accuracy on the validation set are

finally selected. The process is repeated 10 times for each classifier.

In this work, the authors compare the accuracy of different types of classifiers,

boosting ensembles, standard ensemble and a single network, and do not perform

any testing the whether or not the addition of the of synthetic data is helpful. This

paper was interesting to us in that it described the use of synthetic data in a series

of experiments designed to test the performance of boosting algorithms.

Japkowicz, N. [JA00]

The class imbalance problem corresponds to domains for which one class is rep-

resented by a large number of examples while the other is represented by a few.

This is encountered by a large number of domains and can cause a significant bot-

tleneck in the performance attainable by standard learning methods which assume

a balanced distribution of classes. This paper discusses the question of whether

imbalances are always damaging.

The author compares three methods of re-balancing the classes and investigates

which methods work best on what types of imbalances. In the first method, the

class represented by small data sets gets oversampled, while in the second, the class

represented by the large data set is undersampled. The third method ignores one of
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the two classes and uses a recognition-based scheme in place of a discrimination-

based one. An artificial domain was created in order to better control the various

domain characteristics. The domains were created with one-dimensional inputs in

the [0-1] range which were associated with one of two classes.

The best results were obtained by the undersampling method, particularly if the

number of training samples was large and the data was not complex. The author

maintains that future research should concentrate on finding ways to decrease the

complexity of imbalanced domains and re-balance the imbalanced domains even if

that means decreasing the overall size of the training set. Oversampling is generally

less accurate than random resampling and random downsizing. The results indicate

that it is better to learn how to recognize the majority class than the minority one.

While this paper does not directly touch on our research in the area of generation

of synthetic data, it does raise some interesting questions regarding the addition of

new samples to create balanced data sets. The methods employed in these experi-

ments involve re-sampling the same data points two and sometimes three times. We

propose that perhaps better results might be achieved by creating entirely new data

points within the minority class.

Sanchez, J. S., Barandela, R., Marques, A. I., Alejo, R. and Badenas, J. [SB02]

This paper describes how to improve the quality of training sets by eliminating

mislabeled and atypical samples, or outliers. An outlier is traditionally defined as a

prototype that does not follow the same model as the rest of the data. They maintain

that a quality training set can be seen as a data set without outliers. Consequently

the decision boundaries will be much simpler.

In many practical situations the asymptotic classification error rate of the kNN rule

(tending to optimal Bayes as k → ∞) cannot be achieved because of weakness

or imperfections in the training set. The process of cleaning overlapping among

classes, and removing outliers is called editing. Koplowitz and Brown (1981) pro-

posed a scheme in which some samples are discarded and some are re-labeled. An
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alternative to this is generating new samples to replace the original training set.

The authors describe an algorithm called Depuration, used to remove suspicious

samples from the training set and change the class labels of some instances. They

use the concept of the nearest centroid which takes into account not only the prox-

imity of prototypes to the given sample, but also their symmetrical distribution

around it. They also suggest that future work address the potential of using their

editing technique on training sets in which one class is more represented than an-

other.

Although the authors speak about generating new samples to replace samples in the

original training set, the do not actually discuss algorithms to do so. They discuss

methods to re-label existing samples, in essence moving them from one class to

another, They also describe methods they have used to pick samples to be discarded

from the training set.

This work differs from ours in that the authors are reducing the training set by

eliminating samples near the boundaries, while we are increasing our training set

by introducing samples within the boundaries. By using interpolation we insure

that our samples fall well within the boundaries of the existing classes.

Jiang, Y. and Zhou, Z. [JZ04]

The authors point out that a kNN classifier is bounded by twice the Bayes error at

worst, but this theoretical behavior can hardly be obtained because kNN is sensitive

to outliers and noise contained in the training data set. This paper extends the

work of the above paper which uses editing approaches such as the Depuration

algorithm. This algorithm consists of removing some ‘suspicious’ training samples

while changing the class labels of other samples. This is interesting, but risky. The

authors propose using neural network ensembles to edit the training data sets for

the kNN classifiers, and either removing data samples or relabeling, but not both

together.
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The paper discusses tests performed comparing the three methods, removal, rela-

beling, and depuration. It finds that best results are achieved by the removal of

suspicious training samples.

In contrast to this study, our work adds samples which are well within the class

boundaries. It would be interesting to observe the effects of a combination of adding

interpolated samples along with removing outliers.

2.3 Theoretical issues.

The papers in this section address various novel ideas which have influenced our

work, some more heavily than others. Several of the papers emphasize the im-

portance of adding more and varied data to training sets, an idea with which we

heartily agree. Knuth’s paper describing the Metafont system of font generation, in

particular, has provided a framework for much of our work.

Lopresti, D and Nagy, G. [LN01]

This paper discusses whether ground-truth is fixed, unique and static, or relative

and approximate. The authors say the stochastic models can be used to generate

synthetic data for experimentation. For example, appropriately calibrated character

defect models can produce multitudes of patterns.

The model is in some sense an idealized representation of the digital object, and

one could argue that instead of the object, we model the intent of its maker.

The authors point out some of the intrinsic ambiguities of the ground truthing pro-

cess. For example, in the University of Washington database (UW1), over 1000

images were made available to the international community. It is interesting to

note, that UW1 was oriented towards preventing data entry errors, and making sure

there is a single, unique representation for every entity in the dataset. It does not

allow for the possibility of multiple legitimate interpretations. There is one master

arbiter to reconcile differences in the zoning process. The zoning process involves
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the segmentation of a page into logical parts such as columns, titles, etc. This makes

the data entirely appropriate for the applications UW1 was intended for, but may

not be easily extensible for ground-truthing for more complex document analysis

tasks.

In addition, the authors maintain that the effort required to prepare ground truth is

almost always the limiting factor on the size of experiments. For instance, in the

preparation of the UW1 database the ground truth was carefully constructed using

a double data entry, double reconciliation procedure. In the final stage, a single per-

son took the results from the two reconcilers and performed a final reconciliation.

Each page required roughly six person-hours to produce.

Some questions they propose are: Is sufficient to have just one version of the

ground-truth when the input admits more than one interpretation? Who is to de-

cide whether a ground-truth is correct? What kinds of experiments could confirm

that a proffered ground-truth is appropriate for the task at hand? What is the mini-

mal context necessary for a ground-truthing task? Do elements of the ground truth

have to be labeled with regard to their importance in some intrinsic hierarchy?

This article directly touches on our work by its emphasis on the difficulty and care

necessary to prepare ground truth. If we agree that the more carefully prepared

training data we use, the better the classifier performance, then we should be look-

ing for methods of easily constructing reliable training data. One such method

might be interpolating between already existing training data to create new, unseen

samples.

Simard, P. Y., LeCun, Y. A., Decker, J. S. and Victorri, B. [SV98]

The authors state that classification techniques can be divided into two camps, ac-

cording to the number of parameters they require – there are the “memory-based”

algorithms, which use a compact representation of the training set, and the “learn-

ing” techniques, which require adjustments of a comparatively small number of

parameters during training.
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The main idea in memory-based algorithms is to approximate the surface of possi-

ble transforms of a pattern by its tangent plane at the pattern. With learning-based

algorithms, rather than trying to keep a representation of the training set, it is possi-

ble to compute the classification function by learning a set of parameters from the

finite training set.

With tangent distance, two sets of curves are constructed representing sets of points

obtained by applying some chosen transformations on the samples. Tangent spaces

are then constructed for the curves. Assuming that the working space has more

dimensions than the number of chosen transformations then the tangent spaces do

not intersect and the tangent distance is uniquely defined. Finding the minimum

distance between the tangent spaces is then a simple least squares problem.

The authors find that the best strategy is to extract features first, smooth the features,

and then compute the tangent distance on the smoothed features. They keep a

pool of all the prototypes which could potentially be the k nearest neighbors of the

unclassified pattern. Next, the distance D1 between all the samples in the pool and

the unclassified pattern is calculated along with a classification and a confidence

score. If the confidence is good enough, say better than C1, the classification is

complete; otherwise the k closest samples are kept while the remaining samples are

discarded. The reduced pool is passed to the next stage. In tangent propagation, the

invariance is incorporated directly into a classification function.

They conclude that the main reason for the success of their methods is the ability

to incorporate a priori knowledge into the distance measure. A smart preprocess-

ing enables them to measure the Tangent Distance in a more appropriate feature

space instead of the original pixel space. Additionally, Tangent Vectors and the

prototypes can be learned from the training data rather than chosen a priori. It is

straightforward to derive a batch or on-line algorithm to train the tangent vectors.

The main advantage of Tangent Distance is that it is a modification of a standard

distance measure to allow it to incorporate a priori knowledge that is specific to the
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problem. However, the two drawbacks of tangent distance are its memory and com-

putational requirements. The authors state that tangent propagation can be used for

learning - instead of learning a classification function from examples of its values;

one can use information about its derivatives. To a first approximation, using tan-

gent distance or tangent propagation is like having a much larger database. If the

database were plenty large to begin with, tangent distance or tangent propagation

would not improve the performance.

This novel approach to classification differs from our approach in that they use the

existing samples and a priori knowledge to find the closest match. They liken their

algorithm to having a much larger database, unlike our approach in which we actu-

ally enlarge the variety of training samples which is available to the classifier. The

authors admit that their approach has the disadvantage of requiring much memory

and computational power.

Smith, S. J., Bourgoin, M. O., Sims, K. and Voorhees, H. L. [SV94]

This article addresses the notion that statistical techniques may achieve superior

performance on a wide range of perceptual tasks, compared to the artificial intelli-

gence (AI) approaches. Such methods include gradient descent search for relative

weightings of penstroke and other features.

The authors discuss a conference which was sponsored by the National Institute of

Standards and Technology (NIST) at which twenty-nine groups came together to

compare the performance of their OCR systems on a common set of segmented

handwritten characters. The results showed that in general, systems that were

trained only on the Census database had poorer performance than those trained

on data sets which incorporated large additional databases. However, their system,

which used the kNN algorithm and three metrics, Hamming (counts of number of

mismatched pixels), pixel distance, and a penstroke feature metric, performed sur-

prisingly well.

Additionally, the authors found that in their experiments, for every tenfold increase

26



2.3. THEORETICAL ISSUES.

in database size the error rate was cut by half or more, although the performance

seemed to be leveling off slightly for larger database sizes. They point out that if

the database is large enough it will include all possible samples and will only fail to

perform perfectly due to errors or noise in the database. They postulate that there

is good reason to believe that performance will continue to improve as the training

database grows even larger, suggesting that researchers might better spend their

time collecting data than writing code.

In our research we increase the variety of data available to the classifier as opposed

to just adding more of the same data. In this way we include more samples that may

not have been previously found in the real world data. Although it is beneficial to

increase the database size, it is also important to include a large variety of samples,

a task which is made easier with interpolation in parameter space.

Hofstadter, D. and McGraw, G. [HM93]

Hofstadter’s Letter Spirit cognitive science project attempts to understand the cre-

ative process of artistic letter-design; how the 26 lowercase letters of the roman

alphabet can be rendered in different but internally coherent styles. The authors

started with seed letters and attempted to generate the rest of the alphabet automat-

ically in such a way that all letters share the same style or spirit.

The authors insist that for a design algorithm to be called creative, it must 1) make

its own decisions, 2) have rich knowledge, 3) have concepts and their interrelations

which are not static, 4) must perform at a deep conceptual level, 5) be able to judge

its own output, and lastly, 6) converge iteratively on a satisfactory solution.

In this paper, the term letter-concept is used to refer to the most abstract idea for

drawing a letter. Next, a letter-plan or specification of how each role should be

realized is drawn up. Lastly, the letterform, or actual shape is drawn upon the

paper. The conceptual pieces into which a letter is broken in the mind’s eye are its

roles. The stylistic appropriateness of a shape is judged in terms of how the roles

are filled, or in other words, how norms are violated. They ask how letters in a given
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style are related to one another and discuss the concepts of categorical sameness

(possessed by instances of a single letter in various styles), and stylistic sameness

(possessed by instances of various letters in a single style).

In this work, the authors speak of having generated 600 gridfonts so far. The pro-

cess of gridfont creation is governed by the interrelatedness of letter categories.

Modeling the ability to find conflicts, diagnose them, and convert the diagnoses

into reasonable suggestions for solutions is a key aspect of the project. The au-

thors maintain that this temporally-extended serial process of integration and grad-

ual tightening of internal consistency is an indispensable part of true creativity.

The work of Letter Spirit is carried out by four program modules: (1) the Imaginer,

whose job is to make suggestions regarding roles, (2) the Drafter, which attempts to

implement the roles concretely, (3) the Examiner which takes the grid-letter speci-

fication and determines which of the 26 letter-categories it belongs to, and (4) the

Adjudicator which is concerned with stylistic consistency. We direct the reader to

the referenced work for the details of the implementation.

The authors state that a system which can recognize letters in many typefaces that

it has never seen or been trained on has yet to be developed. In an effort to address

this problem, we attempt to create just such a system, one which is both safe and

effective, by using existing fonts to create interpolated samples which have never

been seen.

Knuth, D. E. [KN86]

Donald Knuth developed virtual fonts to assist those who had been struggling with

interfaces between differing font conventions. His Metafont is a way to specify a

mapping from TEX’s notion of a font character to a device’s capabilities for print-

ing. Knuth describes 62 parameters, which divide naturally into several groups, that

define a Computer Modern typeface.

Among the parameters are those which define vertical measurements, overshoot, or

how much a character descends or ascends above the height, one parameter which
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defines width, and four additional parameters for finer adjustments. There are also

parameters which define the darkness or weight, for both upper and lower case,

stem corrections, and the softness of corners in letter shapes. Serifs and arms and

diagonal strokes can also be varied by other parameters.

In addition, there are numeric parameters to describe characteristics such as slant

and bowl thickness, as well as true/false parameters such as square dots and low asterisk.

Knuth states that many of these parameters depend on each other in subtle ways so

that you cannot obtain a good font by selecting 62 values at random. Proper bal-

ance between parameters such as curve and stem is very important. In fact certain

minimum conditions must be satisfied or the resultant font will not be pleasing. For

example, the asc height must always be larger than the x height and stem weights

must not be less than the corner diameters. The parameters for fine adjustments

should be very small. Additionally, he points out that the program will fail at very

low resolutions, or those with fewer than 100 pixels per inch.

In our work, we use Knuth’s Metafont system to create new fonts by interpolation.

Proper balance is maintained among the parameters, because we smoothly interpo-

late among the parameter values. For example, if the asc height is larger than the

x height in the starting fonts, they will continue to be so in the interpolations, as

they are increased or decreased proportionately to each other. In this fashion, we

create new fonts which have never been seen in the real world, but shich are still

highly legible.

2.4 Other Relevant Issues

The next two papers deal with issues which are relevant to our topic. The first of

the papers, while not directly addressing classifiers, gives some broad guidelines for

software testing and test design in general. The second paper in this section deals

directly with the question of which statistical test is appropriate to our experiment

and how to design an experiment to employ our chosen statistic.
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Zhu, H., Hall, P. and May, J. [ZM97]

Software testing has been formalized over the years in an effort to provide consis-

tency and structure for deciding when a program is correct. We believe that the

same sort of rigor in defining training samples would be useful. Questions such as

“When does a training set provide adequate coverage?” “What sort of data should

be included in a training set?” and “When can you trust a training strategy?” should

be formalized so that consistent answers can be expected.

In this paper, the authors address the question of “what is a test criterion?”. They

define several types of testing as follows:

• Statement coverage: In software testing practice, testers are often required to

generate test cases to execute every statement in the program at least once. A

test case is an input on which the program under test is executed during testing.

A test set is a set of test cases for testing a program. The requirement of

executing all the statements in the program under test is an adequacy criterion.

The percentage of the statements exercised by testing is a measurement of the

adequacy.

• Branch coverage criterion requires that all control transfers in the program

under test are exercised during testing.

• Path coverage requires that all execution paths from the program’s entry to its

exit are executed during testing.

• Mutation adequacy plants some artificial faults into the program to check if

they are detected by the test. If a “mutant” (program with a planted fault) and

the original program produce different outputs on at least one test case, the

fault is detected, and the mutant is “dead”. The percentage of dead mutants

compared to the number of mutants that are not equivalent to the original

program is called the mutation score, or mutation adequacy.

Additional terms defined:
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Reliability requires that a test criterion always produce consistent test results. Va-

lidity requires that the test always produce a meaningful approach. However, it was

soon recognized that there is no computable criterion that satisfies the two require-

ments and hence they are not practically applicable.

A test data adequacy criterion is considered to be a stopping rule that determines

whether sufficient testing has been done that it can be stopped.

• Following a set of guidelines, one can produce a set of test cases by an al-

gorithm which generates a test set from the software under test and its own

specification. Such an algorithm may involve random sampling among many

adequate test sets. Mathematically speaking, test case selection criteria are

generators, that is, functions that produce a class of test sets from the program

under test and the specification.

• The second role that an adequacy criterion plays is to determine the observa-

tions that should be made during the testing process. Before the testing, the

objectives of that testing should be known and agreed upon and set in terms

that can be measured.

Categories of test data adequacy criteria:

1. Specification based – specifies required testing in terms of identified fea-

tures of the specification

2. Program-based, specify test requirements in terms of the program under

test.

3. Random or statistical testing (select according to the usage of the soft-

ware) in which test cases are sampled at random according to a probabil-

ity distribution over the input space.

The author discuss three basic approaches to testing:

• Structural (coverage of a particular set of elements – program or specifica-

tion), fault-based (focus on detecting faults in the software) and error-based
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(check error-prone points). In structural testing, a test set is said to satisfy

the decision coverage criterion if for every condition there is at least one test

case such that the condition has value true when evaluated, and there is also

at least one test case such that the condition has value false. Criteria can be

redefined to obtain finite applicability by only requiring the coverage of fea-

sible elements. There are two main roles a specification can play in software

testing; to provide the necessary information to check whether the output of

the program is correct, and also to provide information to select test case and

to measure test adequacy. It is important to remember that only a finite subset

of the paths can be checked during testing. The problem is therefore to choose

which paths should be exercised.

• In fault based testing, error seeding is a method by which artificial faults are

introduced into the program under test in some suitable random fashion un-

known to the tester. This can show weakness in the testing. The first step in

mutation analysis is the construction of a collection of alternative programs

that differ from the original in some fashion. Each “mutant” is then executed

on each member of the test set, stopping either when an element of the test set

is found which on which the mutant(s) and the program produce different re-

sponses, or when the test set is exhausted. If a large proportion of the mutants

live (i.e. do not stop) then it is clear that on the basis of the test data alone,

we have no more reason to believe that the program is correct than to believe

that any of the live mutants are correct. Mutation analysis systematically and

automatically generates a large number of mutants. Measuring the adequacy

of software testing by mutation analysis is expensive. In perturbation testing,

we are concerned with possible functional differences between the program

under test and the hypothetical correct program. The adequacy of a test set

is decided by its ability to limit the error space defined in terms of a set of

functions.

• In error-based adequacy criteria, the software input space is partitioned either

according to the program or the specifications. One method, NX1 domain
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testing requires N test cases to be selected on the borders in an N-dimensional

space, and one test case just off the border. A stricter criterion is the N X

N criterion, which requires N test cases off the border. The focal point of

boundary analysis is to test if the borders of a subdomain are correct. N X

1 will detect an error of parallel shift of the border, while N X N will detect

parallel shift and rotation of linear borders. (see algorithm in article)

Fault detecting ability is one of the most direct measures of the effectiveness of test

adequacy criteria. The methods to compare test adequacy criteria are (1) statistical

experiment, (2) simulation, and (3) formal analysis. Duran and Ntafos compared

100 simulated random test cases to 50 simulated partition test cases, and concluded

random testing was superior. Performing 100 random tests was less expensive that

50 partition tests. However, confidence is more difficult to achieve for random

testing than for partition testing, which they showed by computing the upper bounds

in the two cases.

In the design of our experiments we have attempted to adhere to the practices de-

fined above. We have made our system reliable and insured that our test sets pro-

duce consistent results (that is to say, every time our classifier is tested on the same

test set using the same training set, the results are consistent and repeatable). The

objectives of our testing were known and agreed upon prior to testing, and were

measurable and identifiable.

Dietterich, T. G. [DI98]

In this example the authors consider the single-domain case in which the primary

goal is usually to find the best classifier and estimate its accuracy on future exam-

ples. In any particular application, the goal is usually to choose the best classifier

from some set of available classifiers.

If we have a large set of data, then one can set some of it aside to serve as a test

set for evaluating classifiers and much simpler statistical methods can be applied
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in this case. However, in most situations, the amount of data is limited, thus, one

needs to use it all as input to the learning algorithm and some form of resampling

(cross-validation or bootstrap) must be used to perform the statistical analysis.

The authors make the assumption that all data points are drawn independently from

a fixed probability distribution defined by the particular application problem

The authors pose 9 statistical questions, as follows

1. Suppose we are given a large sample of data and a classifier C. The classifier

C may have been constructed using part of the data, but there is enough data

remaining for a separate test set. Hence, we can measure the accuracy of C on

the test set and construct a binomial confidence interval.

2. Suppose we are given a small data set S and suppose we apply algorithm A to

S to construct classifier C, how accurately will C classify new examples?

3. Given two classifiers Ca and Cb and enough data for a separate test set, deter-

mine which classifier will be more accurate on new test examples.

4. Given two classifiers, Ca and Cb produced by feeding a small data set S to

two learning algorithms, A and B, which classifier will be more accurate in

classifying new examples?

5. Given a learning algorithm A and a large set of data, what is the accuracy of

the classifiers produced by A when trained on new training sets of a specified

size?

6. Given a learning algorithm A and a small data set S what is the accuracy of

the classifiers produced by A when A is trained on new training sets of the

same size as S?

7. Given two learning algorithms A and B and a large data set S, which algorithm

will produce more accurate classifiers when trained on data sets of a specified

size m?
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8. Given two learning algorithms A and B and a small data set S, which algorithm

will produce more accurate classifiers when trained on data sets of the same

size as S?

9. Given two learning algorithms A and B and data sets from several domains,

which algorithm will produce more accurate classifiers when trained on ex-

amples from new domains?

The authors state that questions 1, 2, 5 and 6 can all be rephrased in terms of

determining the expected log loss of a classifier or algorithm, while questions 3,

4, 7 and 8 can be rephrased in terms of determining which predictor or algorithm

has the smaller mean squared error. Question 1 can be addressed by constructing

a confidence interval based on the normal or t distribution (depending on the size

of the set). Question 3 can be addressed by constructing a confidence interval for

the expected difference. Analysis of variance techniques have been developed for

questions 5 and 7, however appropriate statistical tests are not well established for

the small sample questions (2, 4, 6 and 8).

To design and evaluate statistical tests, the authors maintain that the first step is to

identify the sources of variation that must be controlled by each test. For the case

they are considering, there are 4 sources of variation

1. First there is random variation in the selection of the test data that is used

to evaluate the learning algorithms. On any particular randomly-drawn test

data set, one classifier may outperform another, even though on the whole

population the two would perform identically. This is particularly a problem

for small test sets.

2. Selection of the training data is the second source of random variation. On

any particular randomly-drawn training data set, one classifier may outper-

form another, even though on the average, the two algorithms have the same

accuracy. Even small changes to the training set may cause large changes in

the classifier produced by a learning algorithm.
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3. There may be internal randomness in the learning algorithm, for example,

random starting weights in forward-feed neural networks.

4. Lastly, there may be random classification error. If a fixed fraction, n of

the test data points are randomly mislabeled, then no learning algorithm can

achieve an error rate of less than n.

A good statistical test should conclude that two algorithms are different if and only

if their percentage of correct classifications would be different, on the average,

when trained on a training set of a given fixed size and tested on all data points

in the populations.

The paper goes on to describe 5 statistical tests bearing on question 8 (Given two

learning algorithms and a small data set S, which algorithm will produce more

accurate classifiers when trained on data sets of the same size as S?) The tests are

as follows:

1. McNemar’s test

2. a test for the difference of two proportions

3. the resampled t test

4. cross-validated t test

5. 5x2cv test or 5-fold cross validation

A simulation study is performed to measure the probability that each will incor-

rectly detect a difference when there is no difference (Type I error). In an applixa-

tion setting, a sample S is drawn randomly from X according to a fixed probability

distribution D. A collection of training examples is constructed by labeling each

x ∈ S according to f(x). A learning algorithm A takes as input a set of training

examples R and outputs classifier f. The true error rate of that classifier is the prob-

ability that f will misclassify an example drawn randomly from X according to D.

In practice this error rate is estimated by taking sample S and subdividing it into a

training set R and a test set T. The error rate of f on T provides an estimate of the

true error rate of f on population X.
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The null hypothesis is that for a randomly drawn training set R of fixed size, the two

algorithms will have the same error rate on a test example randomly drawn from X,

where all random draws are made according to distribution D.

The authors found that the Type I error of the resampled t test was unacceptably

bad and the test was expensive computationally so they did not study it further.

The difference-of-proportions test also had high type I error, which would be un-

acceptable in some cases, but it is cheap to evaluate so they retained it for further

study.

To obtain a better evaluation of the four remaining tests, the authors next conducted

a set of experiments using real learning algorithms on realistic data sets. They tested

question 8 above.

The authors found that McNemar’s test, the cross-validated t test and the 5x2cv test

all had acceptable levels of Type I error. The differences- of-proportions test had

the lowest Type I error.

However, if the goal is to detect whether there is a difference between two learning

algorithms, then the power, or the probability that a statistical test will reject the

null hypothesis when it is false, is also important. The authors found that the cross-

validated t test was the most powerful followed by the 5x2cv test. They suggest

that if the goal is to be confident that there is no difference between two algorithms,

then the cross-validated t test is the best choice, even though its Type I error is

unacceptable.

Each of the statistical tests also has other shortcomings. For example, the derivation

of the 5x2cv test requires a large number of independence assumptions that are

known to be violated. McNemar’s and the difference-of-proportions tests do not

measure all the important sources of variation. Because of this, the authors suggest

that all the statistical tests should be viewed as approximate, heuristic tests, and

not as rigorously correct statistical methods. Based on their results, the authors

recommend either the 5x2cv or McNemar’s test for situations in which the learning
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algorithm can only be run once. They conclude that the resampled t, which is

currently the most popular test, should never be used.

After careful consideration of this article, we discarded the resampled t test as our

design. We initially chose McNemar’s test because of its low Type I error. Our

goal was, in fact, to detect if there is a difference between our two classifiers, and

thus power was important. McNemar’s test is not as powerful as some of the other

tests, but we felt that it was adequate for our experiments. As will be seen later, we

actually found that the χ2 was sufficient for our purposes, and simpler to implement.
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Chapter 3

Questions We Explored

We make some claims about testing regarding reliability and validity. We explored

what is the criterion for success, for example, we say that “No failure rate gets

worse” using our interpolated data.

We have also said that a synthetic image may occur, and there is no compelling

argument that it cannot occur. However, we are also merely guessing how often it

occurs and in fact it may never occur. If so, then we have trained on samples not

drawn from the underlying distribution. Additionally, what if the trainable classi-

fier is sensitive to the balance between real and synthetic samples in that the more

synthetic samples are used, the less well it will perform on real samples? 1

One of the problems is that no one can agree on the parameters to use, and no one

can collect a truly representative set of samples. We have attempted to craft an

airtight argument that such generated images represent the underlying distribution

and thus our classifier ought to handle them.

George Nagy has objected to the use of training data that are highly correlated,

i.e. duplicative, and one question we took into account is whether the training data

1And what, ultimately, is the difference between ”real” and ”synthetic” data? Is your data real while

mine is synthetic? Suppose the history of collection of a data set is lost: if it were originally synthetic, now

mere ignorance of that fact makes it real.
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were independent. To address this, we used random variables in the generation

of our interpolated samples. Our efforts reflect an attempt to model the behavior

of a sequence of independent samples drawn from an underlying, incompletely

understood distribution.

This thesis attempts to address the following serious methodological problem in

supervised classification: It is highly problematic and often unfeasibly expensive to

collect and assign ground truth to a sufficiently large representative set of training

data.

The approach this thesis takes is as follows. Given a set of real data samples, we

automatically synthesize new samples complete with ground truth that are guaran-

teed also to be representative. We have attempted to make precise our claim that the

resulting synthetic data are representative. While we do not claim that every syn-

thetic datum must naturally occur, we do argue that it should be classified correctly

as if it could have occurred.

Issues we have explored include

• Formalizing a methodology for the generation and use of synthetic data in

training and testing classifiers.

1. What makes a synthetic datum “safe” for use in training? When is classi-

fication improved by adding it to the training set?

2. We have explored methods for training on synthetic data that is guaran-

teed never to increase confusion between any two categories.

3. We have researched the use of parameter space in the generation of inter-

polated data by running a series of carefully crafted experiments.

(a) Given two points in parameter space we explored if it always safe to

interpolate between them (i.e. by forming convex combinations)?

(b) Generalizing to a set of more than two points, we tested when it is it

safe to generate convex combinations within the set?
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4. We have investigated Knuth’s Metafont system for generating typefaces

as a concrete example of a richly parameterized model for shape. We

have addressed the following questions.

(a) Is it possible to train a classifier that will correctly distinguish char-

acters, say e and c, across all typefaces within the Metafont system,

while using only synthetic data?

(b) We have investigated uses of Baird’s document image degradation

model together with Metafont to provide a generating model for Latin

alphabet shapes over a wide range of image characters.

5. Note that this thesis is not about the design of classifiers, so we have

just picked one that seems as good as any other, the nearest neighbor

classifiers.

6. We have exerted ourselves to unearth evidence that under certain circum-

stances a classifier trained on synthetic data can produce results superior

to one trained only on real data.
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Chapter 4

A Small Scale Proof of Principle

Experiment

We devised a small experiment to investigate if there is some minimum “seed” size

of real data training points which, when interpolated in feature space, will give

improved results. Our hypothesis was that classifier performance of the synthetic

training data would increase as the seed size increased, however, at some point it

would improve less rapidly until it approached the performance of the real data.

To test this hypothesis, we created an experiment in which the data to be classified

consisted of small image files labeled as “reddish”, “blueish” or “greenish” by an

outside observer. The image files were of one color apiece, each one having the

three color components, (R,G,B) which ranged from zero to one. That is to say,

each pixel in the image file had the same RGB value.

The experiment was designed to produce approximately 100 samples per color class

(reddish, blueish, or greenish), which were randomly divided into a training and a

test set. Much variation was introduced in the experiment, as the colors had a

broad range in hue, intensity and saturation, and many of the colors were in fact not

actually red, blue or green, but yellow, purple, etc. It was up to the observer to pick

the closest of the three choices.
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The steps of the experiment follow:

• A human observer labeled each of 300 image files, or “swatches”, as either

“reddish”, “blueish”, or “greenish”. Each color swatch was displayed as a

rectangle of a single color having its’ red, green and blue components (real

numbers ranging from 0 to 1) chosen at random. The observer’s answer was

recorded along with the color component values for each image. The end

result of this step was a list of samples consisting of three real numbers (red,

green, and blue), and a choice of “reddish”, “blueish”, or “greenish” (RG or

B character).

• The image files were divided randomly into two groups, a training set and a

test set. Each set had at least 150 samples with approximately 1/3 reddish, 1/3

blueish, and 1/3 greenish.

• The classifier was trained on the previously labeled training set, and tested us-

ing a “Nearest Neighbors” classifier on the test set for three features defined as

the ratio of red/(red+green+blue), green/(red+green+blue) and blue/(red+green+blue).

The results were recorded. This step resulted in an error rate of .144.

• A “seed” sample of the training data was chosen at random, for example three

samples each from among the training points labeled as reddish, blueish, and

greenish. Training data was generated by interpolation among this seed data

using the following algorithm.

Steps of Experiment

1. For each color type (R,G and B), choose n seed points

2. For each of the n seed points of that color, randomly choose n weights

w(i) which sum to 1

3. Multiply each seed point, s(i) by its weight w(i) using standard linear

algebra

4. Calculate the new point, t, by summing s(i)w(i) over the n points

5. Repeat steps 2-4 to obtain each training points needed for each color
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6. Choose n more seed points for the next color and repeat steps 2-5

Figure 4.1: Training Points with Convex Space

• Since the weights sum to one, this creates a convex space enclosed by the

training points.

• Enough training data was generated to arrive back at 50 training samples.

For example, three samples for the “seeds” the program generated 47 training

samples per color class.

• The classifier was again used on the test set using the interpolated data as

training samples instead of the real data. The experiment was repeated ten

times apiece for specific seed sizes ranging from three to 45 with the error

rates averaged by seed size.

• An additional experiment was conducted using 10 seed samples to generate

training sample sets ranging between 20 and 200. Once again the training sets

were tested 10 times apiece and the resulting error rates averaged by training

set size. Charts from both experiments are shown and discussed below.
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Results (number of misclassified test samples) by “seed size” are shown on the

chart below.

Figure 4.2: Error Rate by Seed Size

It is interesting to note that the error rate trended downward from when going from

three to 15 seeds. The error rate more or less levels off at 25.

We had hypothesized that the error rate of the interpolated data would approach the

true error rate, but never reach it, and indeed, the fact that it appears to dip below the

line may be merely attributable to the fact that we happened to randomly choose 25

good test points for our ten runs of that seed size. Further experimentation should

show whether or not the error rate truly drops below that of the real data at some

point.

Results from our experiment with different training set sizes generated from 10

seed points are shown in the chart below.
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Figure 4.3: Error Rate for 10 Seeds

In this experiment, we had expected that as the size of the training set increased,

the error rate would be driven down. Surprisingly, this did not happen, nor did it

happen when the experiment was conducted with 20 seeds.

Perhaps these results may have occurred because of the subjective nature of the

data classification. Some of the data points may have been very far apart, due to the

fact that some colors such as gray had to be labeled as either “reddish”, “blueish”

or “greenish”, when in fact they might conceivably have been any of the three.

This might have led to several training points very close to or actually outside of

the edges of the selection boundaries, with labels that were somewhat suspect. If

these points were chosen for interpolation, conceivably the errors could be actually

magnified by the generation of a larger training set. It thus might be preferable to

cull the training points close to the edges of the decision areas before applying our

interpolation algorithm.

Conclusion

We do believe that the results, particularly from the first experiment are quite
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promising. In particular, the experiment shows that it is possible, at least in a lim-

ited feature space, to interpolate data from real data, thus increasing the size of the

training data. The error rate from the interpolated data was not extremely greater

than that of the real data, and at times even appeared to fall below it.

While it was somewhat of a surprise that the error rate did not fall off with the

generation of a larger training set, we believe that more experimentation would

lead to a better sense of why that did not occur, and perhaps lead to better rules to

apply before generating the data.

We direct your attention to the following page, in which we include sample confu-

sion matrices for the interpolated data (sample individual test runs). In each table,

the first row of numbers shows how many of the red samples were classified as red,

green or blue. The second row shows how many of the green samples were classi-

fied as red, green or blue, while the last row shows how many of the blue samples

were classified as red, green and blue. Correctly classified samples are counted in

the (0,0), (1,1), and (2,2) cells which form the diagonal of the confusion matrix..

Table 1.

CONFUSION TABLE

Nearest Neighbor Results for

”Real Training Data”

Classified As: R G B Error Type II

True Class

R 35 5 3 8

G 4 47 4 8

B 6 1 55 7

Error Type I 10 6 7 23

Error Rate 0.144

Table 2.
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CONFUSION TABLE

Nearest Neighbor Results for

25 randomly picked training points

Classified As: R G B Error Type II

True Class

R 32 5 6 11

G 3 47 5 8

B 4 2 56 6

Error Type I 7 7 11 25

Error Rate 0.156

Table 3.

CONFUSION TABLE

Nearest Neighbor Results for

3 randomly picked training points

Classified As: R G B Error Type II

True Class

R 26 5 12 17

G 3 50 2 5

B 2 4 56 6

Error Type I 5 9 14 28

Error Rate 0.175
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Chapter 5

Design of a Family of Experiments

5.1 Purpose

We were interested in seeing whether or not interpolation in parameter space was safe

and effective in the context of supervised classification. To the best of our knowledge,

interpolation has never even been attempted in parameter space. Our research uncovered

several examples of interpolation in sample space, in which new samples were created by

altering already existing images of characters. We also found examples of interpolation in

feature space, in which certain features of samples were measured to create feature points,

after which new features points were created by interpolating between the values of these

feature points. One of the ideas we wanted to test was whether or not it was possible or

practical to create interpolations in parameter space, by altering the generating parameters

of our samples.

Once we had created such samples, we then wanted to test whether an interpolated train-

ing set created in parameter space is safe and effective in classifying samples both created

from the original parameters as well as new samples created from our interpolated param-

eters.

We chose Knuth’s Metafont system as a starting point in the creation of our interpolated
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5.1. PURPOSE

samples. Since the Metafont system is parameter-driven, in that it uses 62 different pa-

rameters to programmatically create a font, we felt it would provide a rich framework for

generating our interpolated samples. By interpolating between specific Metafont param-

eters, for two or more fonts, we would be able to create new, previously unseen, fonts.

However, not all of the Metafont fonts use every parameter, so it was important to choose

carefully so that each of our starting fonts used the same set of parameters. For our se-

ries of experiments, all the starting fonts were from the Computer Modern family of fonts.

Once we saw that we were able to actually create interpolated fonts we tested whether

samples created by these interpolations were safe and effective by performing a series of

experiments. In describing our experiments the first, or starting, typefaces will be referred

to as pure. These are well known, standard typefaces created from original Knuth’s Meta-

font type styles which are widely used. Existing classifiers have been trained on them.

The next set of typefaces we call interpolated. These typefaces have been created by

interpolating between the parameters used to create the pure typefaces. They may never

have been used but are legible and could be used.

First we tested whether a classifier trained on a set of images generated from interpolated

typeface styles performed as well as a classifier trained on a same-size set of images gen-

erated from pure type styles when tested on pure test samples. It is important to note that

the tests were performed with training sets of the same size. In this way improvements

in performance could not be attributed merely to the fact that more training samples were

involved. This tested the safety of our algorithm. We wanted to be sure that we did not

lose accuracy by the introduction of the interpolated test samples.

Next we wanted to see whether our classifier trained on the set of interpolated training

images performed better than the classifier trained on pure styles when tested on inter-

polated samples. Again, it is important to note that the training sets were the same size

for each of the tests. This tested the efficacy of our algorithm when tested on images

previously unseen among our test samples and not among the traditional fonts, but which

could possibly occur.
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Our purpose in designing this family of experiments involving pure and interpolated type

styles is thus three-fold. First we wanted to discover if it is possible to create interpola-

tions in parameter space. Secondly we wished to explore if the use of these interpolations

is safe, at the very least in a controlled set of experiments. And thirdly, we wanted to

determine if there is at least one instance of circumstances in which the use of samples

created with the interpolated parameters leads to better performance.

The first three sets of experiments involved interpolations between two typefaces, while

the remaining set of experiments implemented an interpolation among three typefaces.

The first experiment used interpolations between CMR (Computer Modern Roman) and

CMSS (Computer Modern Sans Serif), testing the letters e and c. The letters e and c

were created using Knuth’s Metafont with the fonts CMR (Computer Modern Roman)

and CMSS (Computer Modern Sans Serif).

Nine interpolations between CMR and CMSS were constructed by smoothly interpolating

the parameters used in creating both CMR and CMSS. Below is an example showing the

letters in CMR, nine interpolations, and finally CMSS. Each of the nine interpolations

uses successively more CMSS than CMR. For instance, the second character is 90% CMR

and 10% CMSS, while the tenth character is 10% CMR and 90% CMSS. The letters thus

vary smoothly from CMR to CMSS.

The second set of experiment tested a similar interpolation between CMR and CMFF

(Computer Modern Funny Font), also on the letters c and e. The third set tested the let-

ters i and j with the CMR and CMFF fonts, while the fourth set of experiments tested

a three-way interpolation between CMR, CMFF, and CMSSI (Computer Modern Sans

Serif Italic) fonts on the letters c and e.

Each set of experiments had approximately 12 tests involving differing degrees of blur,

intensity, and brightness. Each test compared the performance of pure versus mixed (in-

terpolated) training sets on both pure and mixed test sets. Some of the tests in each set

51



5.2. DESCRIPTION OF THE AUTOMATION

Figure 5.1: Letters e and c and their Interpolations

took test data from within the entire range of interpolated samples, while some took all

the interpolated data from the midpoint between the two fonts. We have included seven

of the most interesting tests from each set of experiments along with their results.

5.2 Description of the Automation

5.2.1 Font Creation

A Metafont program was created to interpolate between two or more fonts from the Com-

puter Modern Roman families of fonts. I will discuss the case of a two-font interpolation.

First, the parameter values were listed for each font and differences between the same

parameter in each font were calculated. Since we were creating nine interpolations, the

difference was divided by 10 and one tenth of this value was added to or subtracted from

the first font until we arrived at the second font. Boolean values were either True or False.

One example of a Boolean parameter would be the Serifs parameter (Serifs = True or

Serifs = False). If both fonts had True, the interpolations were also True. If one was False
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and one was True, the first half of the interpolations was set to False, while the second

half were set to True and vice versa. A Metafont program was used to create the fonts

and once they were created, LaTeX was used to create an image of the letters c and e (or

i and j) as a .png file.

5.2.2 Test Set Creation

The IDMGEN [BA92] program created by Henry Baird as an image defect model gener-

ator was used to generate the images of a letter in a selected font. The program is given an

image of an isolated character in PNG format, from which it generates a series of the same

character in text-line format in an ascii file. The text characters are pseudo-randomly dis-

torted using a quantitative model of the printing and imaging process. Alternatively the

program will read/write HSLC, an enhanced HSL format developed by the DICE project

at Lehigh. The details of this file format are beyond the scope of this dissertation, however

the interested reader is referred to the website at snake-eyes.cse.lehigh.edu for details. The

HSLC files are easily converted to PNG files for better display of the character images by

using the DICE project utilities.

A parameter for seed (-S) is input at the start of each letter generation run to set the

pseudo-random number generator and produce an image of a character. Input parameters

are used to generate scalar random variables with defined distributions which are applied

to the generated images. The interested reader may find the details of these parameters

in the article referenced above. We briefly summarize below three of the parameters we

used in our experiment to generate our images.

• BLURRING: This represents the point-spread (or impulse response) function of

the combined printing and imaging process. In the IDMGEN implementation it is

modeled as a circularly-symmetric Gaussian filter with a standard error of /textit-

blur in units of output pixel size. The value of blur is passed to the program as the -e

parameter, with its first argument being the blurring value, while the second argu-

ment is the variance from the blurring value during the pseudo-random generation

process.
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(default: -e.7,.9; Values greater than .7 will therefore produce more blurred charac-

ters).

• THRESHOLD: This parameter models binarization as a test on each pixel: if the

pixel intensity is greater than the threshold, the pixel is black. The threshold pa-

rameter is passed into the IDMGEN program as the -t parameter. Again, its first

argument is the threshold value while the second is the variance.

(default: -t.25,.125; This default is halfway between the expected intensities at a

black pixel just off center of a 1-pixel-wide line, and the white pixel next to it).

• SENSITIVITY: The sensitivity parameter randomizes each pixel’s photo-receptor

sensitivity in two stages. For each pixel, a sensitivity adjustment is chosen ran-

domly, distributed normally, with mean 0 and standard error equal to the parameter,

and then added to each pixel’s intensity or brightness before the threshold test. The

sensitivity parameter is passed to IDMGEN as the -s parameter. As before, the first

argument is the sensitivity value while the second is its variance.

(default: -s.125,.125)

Our end result was a series of images with variations in blur, brightness and intensity,

some very readable, and some greatly distorted. Each of the experiments within a series of

fonts used different values of -s, -t, and -e to control its sensitivity, threshold and blurring.

The greater the values for each of the first parameters, the more potentially distorted the

characters were. The greater the value of the second variable for each parameter, the

larger the variance from the ideal character for each individual image.

.

5.2.3 Automation of Results

For each experiment, test results were placed in text files in experimental subdirectories.

A single shell script was created which used multiple TeX file templates, graphics, textual

experiment descriptions, and the test results themselves to generate a formatted four or
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five page summary of the experimental results into a final TeX file. All the statistical tests

were automatically performed and evaluated in this process as well.

5.3 Steps of the Experiment

The first set of experiments is described in detail below while the remaining sets of ex-

periments follow similar steps. The experiments differ in the amount of blur, distortion,

variance from the ideal pattern, letters chosen, fonts interpolated, and various other ways.

5.3.1 Step 1:

Four hundred samples of the letter c and four hundred samples of the letter e were gen-

erated using the IDMGEN program described above. For the first group of experiments,

the ideal prototype of each of the training samples was a machine print type form of these

letters in Knuth’s CMR (Computer Modern Roman) typeface (800 samples total).

Additionally, four hundred samples of the letter c and four hundred samples of the letter

e were generated using the IDMGEN program and a machine print type form of the letter

e and the letter c in Knuth’s CMSS (Computer Modern Sans Serif) typeface as the ideal

prototype (800 samples total). This provided a training set of 1600 samples, equally

divided between CMR and CMSS.

Figure 5.2: Pure Samples
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A kNN Classifier was trained to differentiate between two characters using the CMR

and CMSS training sets. The classifier was then tested on a test set consisting of 200

CMR samples and 200 CMSS samples. Rates of accuracy for the 400 test samples were

recorded.

5.3.2 Step 2:

Next, Ten sets of 80 samples of the letter c and ten sets of 80 samples of the letter e were

generated using the IDMGEN program. The ideal prototype of each of the ten sets was

as follows; a machine print type form of the letter e and a machine print type form of the

letter c in Knuth’s CMR (Computer Modern Roman) typeface for the first set, a machine

print type form of the letter e and a machine print type form of the letter c in Knuth’s

CMSS (Computer Modern Sans Serif) typeface for the second set, a machine print type

form consisting of an interpolation which is 90 percent CMR and 10 percent CMSS for

the third set, and so on until the last set which consists of an interpolation which is 10

percent CMR and 90 percent CMSS. The final result of this process is a training set con-

sisting of 160 CMR samples, 160 CMSS samples, and 1280 interpolated samples for a

total of 1600 mostly interpolated training samples.

The classifier was trained on the above samples and then tested on the same 400 test sam-

ples from the first part of the experiment (step 1.) Rates of accuracy were recorded.

This tested whether the classifier which has been trained on interpolated data performed

equally well on pure samples as a classifier trained on only pure data.

5.3.3 Step 3:

Next, Ten sets of 20 samples of the letter c and ten sets of 20 samples of the letter e were

generated using the IDMGEN program. The ideal prototype of each of the ten sets was

as follows; a machine print type form of the letter e and a machine print type form of the

letter c in Knuth’s CMR (Computer Modern Roman) typeface for the first set, a machine
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Figure 5.3: Interpolated Samples

print type form of the letter e and a machine print type form of the letter c in Knuth’s

CMSS (Computer Modern Sans Serif) typeface for the second set, a machine print type

form consisting of an interpolation which is 90 percent CMR and 10 percent CMSS for

the third set, and so on until the last set which consists of an interpolation which is 10 per-

cent CMR and 90 percent CMSS. The final result of this process was a test set consisting

of 40 CMR samples, 40 CMSS samples, and 320 interpolated samples for a total of 400

mostly interpolated test samples.

A classifier was next trained to distinguish between e’s and c’s by using the same samples

as in step 1 (pure font types), and tested on the interpolated samples described above.

Rates of accuracy were recorded.
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This tested how well the classifier which has been trained on only pure fonts performs

when it is tested on interpolated fonts.

5.3.4 Step 4:

A classifier was next trained on the same samples as in step 2 (interpolated data), and

tested on the interpolated test set from step 3. Rates of accuracy were recorded.

This tested how well a classifier performs when it has been trained on interpolated data

and tested on interpolated data.

5.4 Summary of the Design:

• A = pure data (CMR and CMSS fonts)

• B = interpolated data (interpolated fonts)

A classifier was next trained on the same samples as in step 2 (interpolated data), and

tested on the interpolated test set from step 3. Rates of accuracy were recorded.

Two hypotheses were proposed and tested using the χ2 statistic. Although McNemar’s

test (Dieterrich, T.G.) has more power, we decided that the χ2 was sufficient for our

purposes, and simpler to implement.

5.5 Hypothesis 1:

AB is trained on only pure data and tested on mostly interpolated data. BB is trained and

tested on interpolated data. We expect that BB will perform significantly better than AB.

Therefore our null hypothesis is that AB will perform at least as well as BB. This part of

the experiment speaks to the performance or strength of our algorithm.

58



5.6. STATISTIC 1:

Figure 5.4: Test Matrix

The areas of interest in this part of our experiment are the differences between AB and

BB.

5.6 Statistic 1:

We choose a χ2 test for our experiment. Recall that in AB the classifier is trained on pure

data, while BB is trained on interpolated data. Both AB and BB are tested on previously

interpolated samples. In this test, the null hypothesis is that AB will perform at least

as well as BB. If the null hypothesis is rejected then our classifier trained on mostly

interpolated data has performed better than the classifier trained on only pure data and we

can say that our interpolated classifier is better at classifying interpolated data.

To apply the χ2 test, we have constructed two training sets SA , and SB and one test set

T. We train our classifier in AB on sample SA and our classifier in BB on sample SB.

yielding classifiers f̂A and f̂B . We then test these classifiers on the test set T. For each

example x ∈ T , we record how it was classified and construct the following contingency
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table:

number of samples correct number of samples misclassified

correctly classified by f̂A misclassified by f̂A

correctly classified by f̂B misclassified by f̂B

We will use the notation

n00 n01

n10 n11

where n = n00 + n01 and n = n10 + n11 are the total number of examples in the test set

T and nii is the observed count for each type of test. [DI98]

Under the null hypothesis, if AB performs as well as BB then the error rate for BB is

greater than or equal to the error rate for AB, n11 >= n01. The test is based on a χ2

test for goodness-of-fit that compares the distribution of counts expected under the null

hypothesis to the observed counts. The expected counts under the null hypothesis are well

known and they are as follows.

(n00 + n01) ∗ (n00 + n10)/
∑

nij (n00 + n01) ∗ (n01 + n11)/
∑

nij

(n10 + n11) ∗ (n00 + n10)/
∑

nij (n10 + n11) ∗ (n01 + n11)/
∑

nij

The following statistic is used. Yate’s correction for continuity is used if the number

observed in a cell is less than 5.

∑ (oij − eij)
2

eij

If the null hypothesis is correct, then the probability that this quantity is greater than

χ2
1,0.95 = 3.84 is less than 0.05. So we would reject the null hypothesis in favor of the

alternative hypothesis that BB performs better than AB when tested on the particular

training set C.
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5.7 Hypothesis 2:

AA is trained and tested on pure data. BA is trained on mostly interpolated data and tested

on pure data. We would hope that BA would not perform significantly worse than AA. If

this is the case, we have shown that in our experiment, training on interpolated data does

not “hurt” the classifier in the identification of pure data. In this way we are testing if our

algorithm is “safe”. Our null hypothesis is that BA and AA have the same accuracy and

we would hope that the null hypothesis holds.

The areas of interest in this part of the experiment is the difference between AA and BA.

5.8 Statistic 2:

We choose a χ2 test for our experiment. Recall that in AA the classifier is trained on pure

data, while BA is trained on mostly interpolated data. Both AA and BA are tested only

on pure samples. For this test, the null hypothesis is that AA and BA perform equally. If

our null hypothesis is not rejected then we can say that training on interpolated data does

not appear to “hurt” the classifier in the identification of pure data.

To apply the χ2 test, we have constructed two training sets SA , and SB and one test set

T. We train our classifier in AA on sample SA and our classifier in BA on sample SB.

yielding classifiers f̂A and f̂B . We then test these classifiers on the test set T. For each

example x ∈ T , we record how it was classified and construct the following contingency

table:

number of samples correct number of samples misclassified

correctly classified by f̂A misclassified by f̂A

correctly classified by f̂B misclassified by f̂B

We will use the notation
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n00 n01

n10 n11

where n = n00 + n01 and n = n10 + n11 are the total number of examples in the test set

T and nii is the observed count for each type of test. [DI98]

Under the null hypothesis, if the two algorithms have the same error rate, n00 = n01.

The test is based on a χ2 test for goodness-of-fit that compares the distribution of counts

expected under the null hypothesis to the observed counts. The expected counts under the

null hypothesis are well known and they are as follows.

(n00 + n01) ∗ (n00 + n10)/
∑

nij (n00 + n01) ∗ (n01 + n11)/
∑

nij

(n10 + n11) ∗ (n00 + n10)/
∑

nij (n10 + n11) ∗ (n01 + n11)/
∑

nij

The following statistic is used. Yate’s correction for continuity is used if the number

observed in a cell is less than 5.

∑ (oij − eij)
2

eij

If the null hypothesis is not rejected, then the probability that this quantity is greater than

χ2
1,0.95 = 3.84 is less than 0.05. If this quantity is less than 3.84 we would not reject the

null hypothesis which states that the two algorithms have the same performance when

trained on the particular training set C.
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Chapter 6

Experiments

6.1 CMR and CMSS C and E Experiments

Our first set of experiments was performed using a serifed and a sans-serif font as the

basis of our interpolations.

6.1.1 Experimental Description

For this experiment, the default parameters were used. The images for both test and train-

ing data were only slightly blurred as were the interpolated samples. The test interpolated

data was taken from the entire range between the real CMR and CMSS fonts.

Percentage Typeface Mix of Training characters:

Following is a graphical representation of the types of data for this particular experiment.

Recall that the end characters use real fonts while the in-between characters are mixtures

ranging from 10-90% of each font.

Training Data.
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6.1. CMR AND CMSS C AND E EXPERIMENTS

Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp 10 10 10 10 10 ** 10 10 10 10 10

The generating parameters and number of samples for the training data from this typeface

model and this image quality model are below.

Parameters

Training data:

Pure Parameters: default parameters

Pure Seed: no seed

Number Samples: 1600

Interpolated Parameters: default parameters

Interpolated Seed: numb (0-10)

Number Samples: 1600

Percentage Typeface Mix of Test characters:

Following is a graphical representation of the types of test data for this particular experi-

ment.

Test Data.
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Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp 10 10 10 10 10 ** 10 10 10 10 10

The generating parameters and number of test samples for the test data for this typeface

model from this image quality model are below.

Parameters

Test data:

Pure parameters: default parameters

Pure Seed: no seed

Number Samples: 400

Interpolated Parameters: default parameters

Interpolated Seed: numb (0-10)

Number Samples: 400
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6.1. CMR AND CMSS C AND E EXPERIMENTS

Samples chosen to illustrate data used

Pure Training Samples Interpolated Training Samples

Pure Test Samples Interpolated Test Samples

Samples of Data with closest match

The following samples are of misclassified letters where possible. The first character is

the test sample, while the second is its nearest neighbor.
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6.1. CMR AND CMSS C AND E EXPERIMENTS

pure/pure e’s

pure/pure c’s

interp/pure e’s

interp/pure c’s

pure/interp e’s

pure/interp c’s

interp/interp e’s

interp/interp c’s

Error Rates ( e’s / c’s = tot misclassified out of 200)

TEST ON

Pure(A) Itrp(B)

TRAIN ON

Pure(A) e: 0
0

e: 1
1

c: 0 c: 0

Itrp(B) e: 0
0

e: 0
0

c: 0 c: 0

Hypothesis 1:

We claim that BB, the classifier trained on a mixture of pure and interpolated data will

do better than AB, the one trained on the pure only data when tested on Interpolated data.

The null hypothesis is therefore that AB will perform at least as well as BB, that is to say

that the error rate for AB will be less than or equal to the error rate for BB. This means

that the observed error rates o2 <= o4. The actual observed counts are below.
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6.1. CMR AND CMSS C AND E EXPERIMENTS

Right Wrong

TRAIN ON

Pure(A) o1 399 o2 1

e1 399 e2 1

Itrp(B) o3 400 o4 0

e3 399 e4 1

As explained earlier, the result of our test is χ2 = 1.0. Since this result is not greater than

or equal to 3.84 we can not reject the null hypothesis in favor of the hypothesis that the

classifier BB performs better than classifer AB when tested on interpolated data.

Hypothesis 2:

We claim that BA, the classifier trained on the mixture of pure and interpolated training

data will do at least as well as AA, the classifier trained on only pure data when tested on

pure test data. The null hypothesis is that AA and BA will perform equally, thus the two

classifiers should have the same error rates. This means that the observed error rates are

equal, that is, o2 = o4. If we do not reject the null hypothesis then we have some support

for our claim that they perform equally.

Right Wrong

TRAIN ON

Pure(A) o1 400 o2 0

e1 400 e2 0

Itrp(B) o3 400 o4 0

e3 400 e4 0

Clearly there is no difference between the performances of the classifiers so we can not

reject the null hypothesis in favor of the hypothesis that the classifier has a different per-

formance when trained on the training sets A and B.
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6.1. CMR AND CMSS C AND E EXPERIMENTS

Conclusions:

For this experiment, both classifiers did equally well when tested on the interpolated data

as well as the real data. In fact, both were practically perfect! The test was not interesting,

as the e’s and c’s were too easily distinguished.

6.1.2 Experimental Description

For this experiment, the generated samples were slighlty more blurred and had a slight

amount of noise added. Training was performed as before while the test interpolated data

was taken from the entire range between the real CMR and CMSS fonts.

Percentage Typeface Mix of Training characters:

Following is a graphical representation of the types of data for this particular experiment.

Recall that the end characters use real fonts while the in-between characters are mixtures

ranging from 10-90% of each font.

Training Data.

Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp 10 10 10 10 10 ** 10 10 10 10 10

The generating parameters and number of samples for the training data from this typeface

model and this image quality model are below.
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Parameters

Training data:

Pure Parameters: -e1.0,1.1 -t.15,.125 -s.130,.125

Pure Seed: no seed

Number Samples: 1600

Interpolated Parameters: -e1.0,1.1 -t.15,.125 -s.130,.125

Interpolated Seed: numb(0-10)

Number Samples: 1600

Percentage Typeface Mix of Test characters:

Following is a graphical representation of the types of test data for this particular experi-

ment.

Test Data.

Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp 10 10 10 10 10 ** 10 10 10 10 10

The generating parameters and number of test samples for the test data for this typeface

model from this image quality model are below.
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Parameters

Test data:

Pure Parameters: -e1.0,1.1 -t.15,.125 -s.130,.125

Pure Test Seed: no seed

Number Samples: 400

Interpolated Test data: -e1.0,1.1 -t.15,.125 -s.130,.125

Interpolated Test Seed: numb(0-10)

Number Samples: 400

Samples chosen to illustrate data used

Pure Training Samples Interpolated Training Samples

Pure Test Samples Interpolated Test Samples
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Samples of Data with closest match

The following samples are of misclassified letters where possible. The first character is

the test sample, while the second is its nearest neighbor.

pure/pure e’s

pure/pure c’s

interp/pure e’s

interp/pure c’s

pure/interp e’s

pure/interp c’s

interp/interp e’s

interp/interp c’s

Error Rates ( e’s / c’s = tot misclassified out of 200)

TEST ON

Pure(A) Itrp(B)

TRAIN ON

Pure(A) e: 0
0

e: 0
0

c: 0 c: 0

Itrp(B) e: 0
1

e: 0
0

c: 1 c: 0

Hypothesis 1:

We claim that BB, the classifier trained on a mixture of pure and interpolated data will

do better than AB, the one trained on the pure only data when tested on Interpolated data.
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The null hypothesis is therefore that AB will perform at least as well as BB, that is to say

that the error rate for AB will be less than or equal to the error rate for BB. This means

that the observed error rates o2 <= o4. The actual observed counts are below.

Right Wrong

TRAIN ON

Pure(A) o1 400 o2 0

e1 400 e2 0

Itrp(B) o3 400 o4 0

e3 400 e4 0

Clearly there is no difference between the performances of the classifiers so we can not

reject the null hypothesis in favor of the hypothesis that the classifier BB performs better

than classifer AB when tested on interpolated data.

Hypothesis 2:

We claim that BA, the classifier trained on the mixture of pure and interpolated training

data will do at least as well as AA, the classifier trained on only pure data when tested on

pure test data. The null hypothesis is that AA and BA will perform equally, thus the two

classifiers should have the same error rates. This means that the observed error rates are

equal, that is, o2 = o4. If we do not reject the null hypothesis then we have some support

for our claim that they perform equally.

Right Wrong

TRAIN ON

Pure(A) o1 400 o2 0

e1 399 e2 1

Itrp(B) o3 399 o4 1

e3 399 e4 1
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As explained earlier, the result of our test is χ2 = 1.0. Since this result is not greater than

3.84 we can not reject the null hypothesis in favor of the hypothesis that the classifier has

a different performance when trained on the training sets A and B.

Conclusions:

For this experiment, once again, both classifiers did well on all data so that the results

were not interesting. There was only one error. It was decided that more distortion and

blurring should be added. All classifiers did equally well on all data.

6.1.3 Experimental Description

For this experiment, the generated samples were greatly blurred, and had a large amount

of noise added. A seed of 2 was added to the real data so that it was randomized differently

from the interpolated data. Training was performed as before while the test interpolated

data was taken from the entire range between the real CMR and CMSS fonts.

Percentage Typeface Mix of Training characters:

Following is a graphical representation of the types of data for this particular experiment.

Recall that the end characters use real fonts while the in-between characters are mixtures

ranging from 10-90% of each font.

Training Data.
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Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp 10 10 10 10 10 ** 10 10 10 10 10

The generating parameters and number of samples for the training data from this typeface

model and this image quality model are below.

Parameters

Training data:

Pure Parameters: -e2.0,2.1 -t.4,.4 -s.4,.4130

Pure Seed: -S2

Number Samples: 1600

Interpolated Parameters: -e2.0,2.1 -t.4,.4 -s.4,.4130

Interpolated Seed: numb(0-10)

Number Samples: 1600

Percentage Typeface Mix of Test characters:

Following is a graphical representation of the types of test data for this particular experi-

ment.

Test Data.
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Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp 10 10 10 10 10 ** 10 10 10 10 10

The generating parameters and number of test samples for the test data for this typeface

model from this image quality model are below.

Parameters

Test data:

Pure Parameters: -e2.0,2.1 -t.4,.4 -s.4,.4130

Pure Seed: -S2

Number Samples: 400

Interpolated Parameters: -e2.0,2.1 -t.4,.4 -s.4,.4130

Interpolated Seed: numb(0-10)

Number Samples: 400
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Samples chosen to illustrate data used

Pure Training Samples Interpolated Training Samples

Pure Test Samples Interpolated Test Samples

Samples of Data with closest match

The following samples are of misclassified letters where possible. The first character is

the test sample, while the second is its nearest neighbor.
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pure/pure e’s

pure/pure c’s

interp/pure e’s

interp/pure c’s

pure/interp e’s

pure/interp c’s

interp/interp e’s

interp/interp c’s

Error Rates ( e’s / c’s = tot misclassified out of 200)

TEST ON

Pure(A) Itrp(B)

TRAIN ON

Pure(A) e: 33
74

e: 29
62

c: 41 c: 33

Itrp(B) e: 23
69

e: 31
72

c: 46 c: 41

Hypothesis 1:

We claim that BB, the classifier trained on a mixture of pure and interpolated data will

do better than AB, the one trained on the pure only data when tested on Interpolated data.

The null hypothesis is therefore that AB will perform at least as well as BB, that is to say

that the error rate for AB will be less than or equal to the error rate for BB. This means

that the observed error rates o2 <= o4. The actual observed counts are below.
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Right Wrong

TRAIN ON

Pure(A) o1 338 o2 62

e1 333 e2 67

Itrp(B) o3 328 o4 72

e3 333 e4 67

As explained earlier, the result of our test is χ2 = 0.88. Since this result is not greater

than or equal to 3.84 we can not reject the null hypothesis in favor of the hypothesis that

the classifier BB performs better than classifer AB when tested on interpolated data.

Hypothesis 2:

We claim that BA, the classifier trained on the mixture of pure and interpolated training

data will do at least as well as AA, the classifier trained on only pure data when tested on

pure test data. The null hypothesis is that AA and BA will perform equally, thus the two

classifiers should have the same error rates. This means that the observed error rates are

equal, that is, o2 = o4. If we do not reject the null hypothesis then we have some support

for our claim that they perform equally.

Right Wrong

TRAIN ON

Pure(A) o1 326 o2 74

e1 328 e2 72

Itrp(B) o3 331 o4 69

e3 328 e4 72

As explained earlier, the result of our test is χ2 = 0.20. Since this result is not greater

than 3.84 we can not reject the null hypothesis in favor of the hypothesis that the classifier

has a different performance when trained on the training sets A and B.
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Conclusions:

For this experiment, the results were more interesting. Both classifiers did badly when

tested on the interpolated data as well as the real data. The data was so distorted that

letters were difficult to recognize by either classifier. However, the classifier trained on

interpolated data did not do any worse when tested on the real data. Interestingly, the

classifier trained on the interpolated data did slightly better on the real and slightly worse

on the interpolated data, however not significantly so.

6.1.4 Experimental Description

For this experiment, the generated samples were greatly blurred, and had a large amount

of noise added. However, the variance was limited to half of what it was in the previous

experiment. Real training data had a seed of 5, while the real test data had a seed of 11.

The interpolated training data had a variable seed, however the interpolated test data had

a different variable seed. Training was performed as before while the test interpolated

data was taken from the entire range between the real CMR and CMSS fonts.

Percentage Typeface Mix of Training characters:

Following is a graphical representation of the types of data for this particular experiment.

Recall that the end characters use real fonts while the in-between characters are mixtures

ranging from 10-90% of each font.

Training Data.
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Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp 10 10 10 10 10 ** 10 10 10 10 10

The generating parameters and number of samples for the training data from this typeface

model and this image quality model are below.

Parameters

Training data:

Pure Parameters: -e2.0,1.1 -t.4,.2 -s.4,.2

Pure Seed: -S5

Number Samples: 1600

Interpolated Parameters: -e2.0,1.1 -t.4,.2 -s.4,.2

Interpolated Seed: Snumb (0-10)

Number Samples: 1600

Percentage Typeface Mix of Test characters:

Following is a graphical representation of the types of test data for this particular experi-

ment.

Test Data.
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Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp 10 10 10 10 10 ** 10 10 10 10 10

The generating parameters and number of test samples for the test data for this typeface

model from this image quality model are below.

Parameters

Test data:

Pure Parameters: -e2.0,1.1 -t.4,.2 -s.4,.2

Pure Seed: -S11

Number Samples: 400

Interpolated Parameters: -e2.0,1.1 -t.4,.2 -s.4,.2

Interpolated Test Seed: numb * 3 (0, 3, 6....30)

Number Samples: 400
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Samples chosen to illustrate data used

Pure Training Samples Interpolated Training Samples

Pure Test Samples Interpolated Test Samples

Samples of Data with closest match

The following samples are of misclassified letters where possible. The first character is

the test sample, while the second is its nearest neighbor.
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pure/pure e’s

pure/pure c’s

interp/pure e’s

interp/pure c’s

pure/interp e’s

pure/interp c’s

interp/interp e’s

interp/interp c’s

Error Rates ( e’s / c’s = tot misclassified out of 200)

TEST ON

Pure(A) Itrp(B)

TRAIN ON

Pure(A) e: 30
44

e: 47
60

c: 14 c: 13

Itrp(B) e: 27
43

e: 32
42

c: 16 c: 10

Hypothesis 1:

We claim that BB, the classifier trained on a mixture of pure and interpolated data will

do better than AB, the one trained on the pure only data when tested on Interpolated data.

The null hypothesis is therefore that AB will perform at least as well as BB, that is to say

that the error rate for AB will be less than or equal to the error rate for BB. This means

that the observed error rates o2 <= o4. The actual observed counts are below.
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Right Wrong

TRAIN ON

Pure(A) o1 340 o2 60

e1 349 e2 51

Itrp(B) o3 358 o4 42

e3 349 e4 51

As explained earlier, the result of our test is χ2 = 3.62. Since this result is not greater

than or equal to 3.84 we can not reject the null hypothesis in favor of the hypothesis that

the classifier BB performs better than classifer AB when tested on interpolated data.

Hypothesis 2:

We claim that BA, the classifier trained on the mixture of pure and interpolated training

data will do at least as well as AA, the classifier trained on only pure data when tested on

pure test data. The null hypothesis is that AA and BA will perform equally, thus the two

classifiers should have the same error rates. This means that the observed error rates are

equal, that is, o2 = o4. If we do not reject the null hypothesis then we have some support

for our claim that they perform equally.

Right Wrong

TRAIN ON

Pure(A) o1 356 o2 44

e1 356 e2 44

Itrp(B) o3 357 o4 43

e3 356 e4 44

As explained earlier, the result of our test is χ2 = 0.2. Since this result is not greater than

3.84 we can not reject the null hypothesis in favor of the hypothesis that the classifier has

a different performance when trained on the training sets A and B.
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Conclusions:

For this experiment, both classifiers did equally when tested on the real data. They each

misclassified about 10 per cent of the samples. The classifier trained on the interpolated

data did somewhat better than the one trained on the real data when tested on the interpo-

lated data, however not significantly so. It is possible that with the choice of a stronger

statistic that these results might have been significant.

6.1.5 Experimental Description

For this experiment, the generated samples were greatly blurred, and had a large amount

of noise added. However, variance was decreased to slightly above the default levels.

Seeds were kept the same as in the last test. Training was performed as before while the

test interpolated data was taken from the entire range between the real CMR and CMSS

fonts.

Percentage Typeface Mix of Training characters:

Following is a graphical representation of the types of data for this particular experiment.

Recall that the end characters use real fonts while the in-between characters are mixtures

ranging from 10-90% of each font.

Training Data.
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Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp 10 10 10 10 10 ** 10 10 10 10 10

The generating parameters and number of samples for the training data from this typeface

model and this image quality model are below.

Parameters

Training data:

Pure Parameters: -e2.0,1.1 -t.4,.125 -s.4,.125

Pure Seed: -S5

Number Samples: 1600

Interpolated Parameters: -e2.0,1.1 -t.4,.125 -s.4,.125

Interpolated Seed: numb(0-10)

Number Samples: 1600

Percentage Typeface Mix of Test characters:

Following is a graphical representation of the types of test data for this particular experi-

ment.

Test Data.

Pure 50 ** ** ** ** ** ** ** ** ** 50
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Interp 10 10 10 10 10 ** 10 10 10 10 10

The generating parameters and number of test samples for the test data for this typeface

model from this image quality model are below.

Parameters

Test data:

Real Parameters: -e2.0,1.1 -t.4,.125 -s.4,.125

Real Test Seed: -S11

Number Samples: 400

Interpolated Parameters: -e2.0,1.1 -t.4,.125 -s.4,.125

Interpolated Seed: numb * 2 (0,2,4...20)

Number Samples: 400
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Samples chosen to illustrate data used

Pure Training Samples Interpolated Training Samples

Pure Test Samples Interpolated Test Samples

Samples of Data with closest match

The following samples are of misclassified letters where possible. The first character is

the test sample, while the second is its nearest neighbor.
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pure/pure e’s

pure/pure c’s

interp/pure e’s

interp/pure c’s

pure/interp e’s

pure/interp c’s

interp/interp e’s

interp/interp c’s

Error Rates ( e’s / c’s = tot misclassified out of 200)

TEST ON

Pure(A) Itrp(B)

TRAIN ON

Pure(A) e: 35
41

e: 60
64

c: 6 c: 4

Itrp(B) e: 42
45

e: 32
39

c: 3 c: 7

Hypothesis 1:

We claim that BB, the classifier trained on a mixture of pure and interpolated data will

do better than AB, the one trained on the pure only data when tested on Interpolated data.

The null hypothesis is therefore that AB will perform at least as well as BB, that is to say

that the error rate for AB will be less than or equal to the error rate for BB. This means

that the observed error rates o2 <= o4. The actual observed counts are below.
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Right Wrong

TRAIN ON

Pure(A) o1 336 o2 64

e1 348 e2 52

Itrp(B) o3 361 o4 39

e3 348 e4 52

As explained earlier, the result of our test is χ2 = 6.90. Since this result is greater than or

equal to 3.84 we can reject the null hypothesis in favor of the hypothesis that the classifier

BB performs better than classifer AB when tested on interpolated data.

Hypothesis 2:

We claim that BA, the classifier trained on the mixture of pure and interpolated training

data will do at least as well as AA, the classifier trained on only pure data when tested on

pure test data. The null hypothesis is that AA and BA will perform equally, thus the two

classifiers should have the same error rates. This means that the observed error rates are

equal, that is, o2 = o4. If we do not reject the null hypothesis then we have some support

for our claim that they perform equally.

Right Wrong

TRAIN ON

Pure(A) o1 359 o2 41

e1 357 e2 43

Itrp(B) o3 355 o4 45

e3 357 e4 43

As explained earlier, the result of our test is χ2 = 0.20. Since this result is not greater

than 3.84 we can not reject the null hypothesis in favor of the hypothesis that the classifier

has a different performance when trained on the training sets A and B.
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Conclusions:

For this experiment, both classifiers performed equally when tested on the real data. When

tested on the interpolated data, the classifier trained on real data did significantly worse

than the one trained on the interpolated data.

6.1.6 Experimental Description

For this experiment, the generated samples were greatly blurred, and had a large amount

of noise added. However, variance was slight. This differed from the last experiment in

that the interpolated training samples were all taken from the midpoint between CMR and

CMSS.

Percentage Typeface Mix of Training characters:

Following is a graphical representation of the types of data for this particular experiment.

Recall that the end characters use real fonts while the in-between characters are mixtures

ranging from 10-90% of each font.

Training Data.

Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp 10 10 10 10 10 00 10 10 10 10 10
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The generating parameters and number of samples for the training data from this typeface

model and this image quality model are below.

Parameters

Training data:

Pure Parameters: -e2.0,1.1 -t.4,.125 -s.4,.125

Pure Seed: -S12

Number Samples: 1600

Interpolated Parameters: -e2.0,1.1 -t.4,.125 -s.4,.125

Interpolated Seed: numb(0-10)

Number Samples: 1600

Percentage Typeface Mix of Test characters:

Following is a graphical representation of the types of test data for this particular experi-

ment.

Test Data.

Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp ** ** ** ** * 100 ** ** ** ** **

The generating parameters and number of test samples for the test data for this typeface

model from this image quality model are below.
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Parameters

Test data:

Real Parameters: -e2.0,1.1 -t.4,.125 -s.4,.125

Real Test Seed: -S5

Number Samples: 400

Interpolated Parameters: -e2.0,1.1 -t.4,.125 -s.4,.125

Interpolated Seed: -S5

Number Samples: 400

Samples chosen to illustrate data used

Pure Training Samples Interpolated Training Samples

Pure Test Samples Interpolated Test Samples
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Samples of Data with closest match

The following samples are of misclassified letters where possible. The first character is

the test sample, while the second is its nearest neighbor.

pure/pure e’s

pure/pure c’s

interp/pure e’s

interp/pure c’s

pure/interp e’s

pure/interp c’s

interp/interp e’s

interp/interp c’s

Error Rates ( e’s / c’s = tot misclassified out of 200)

TEST ON

Pure(A) Itrp(B)

TRAIN ON

Pure(A) e: 50
52

e: 76
79

c: 2 c: 3

Itrp(B) e: 35
40

e: 70
71

c: 5 c: 1

Hypothesis 1:

We claim that BB, the classifier trained on a mixture of pure and interpolated data will

do better than AB, the one trained on the pure only data when tested on Interpolated data.
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The null hypothesis is therefore that AB will perform at least as well as BB, that is to say

that the error rate for AB will be less than or equal to the error rate for BB. This means

that the observed error rates o2 <= o4. The actual observed counts are below.

Right Wrong

TRAIN ON

Pure(A) o1 321 o2 79

e1 325 e2 75

Itrp(B) o3 329 o4 71

e3 325 e4 75

As explained earlier, the result of our test is χ2 = 0.50. Since this result is not greater

than or equal to 3.84 we can not reject the null hypothesis in favor of the hypothesis that

the classifier BB performs better than classifer AB when tested on interpolated data.

Hypothesis 2:

We claim that BA, the classifier trained on the mixture of pure and interpolated training

data will do at least as well as AA, the classifier trained on only pure data when tested on

pure test data. The null hypothesis is that AA and BA will perform equally, thus the two

classifiers should have the same error rates. This means that the observed error rates are

equal, that is, o2 = o4. If we do not reject the null hypothesis then we have some support

for our claim that they perform equally.

Right Wrong

TRAIN ON

Pure(A) o1 348 o2 52

e1 354 e2 46

Itrp(B) o3 360 o4 40

e3 354 e4 46
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As explained earlier, the result of our test is χ2 = 1.76. Since this result is not greater

than 3.84 we can not reject the null hypothesis in favor of the hypothesis that the classifier

has a different performance when trained on the training sets A and B.

Conclusions:

For this experiment, the interpolated classifier did slightly better on the pure data, as well

as the interpolated data, however not significantly so.

6.1.7 Experimental Description

For this experiment, the generated samples were less blurred, and had a moderate amount

of noise added. The varience was less than the last experiment. Training was performed

as before and the experiment took the test interpolated data entirely from the midpoint

between the real CMR and CMFF fonts.

Percentage Typeface Mix of Training characters:

Following is a graphical representation of the types of data for this particular experiment.

Recall that the end characters use real fonts while the in-between characters are mixtures

ranging from 10-90% of each font.

Training Data.
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Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp 10 10 10 10 10 00 10 10 10 10 10

The generating parameters and number of samples for the training data from this typeface

model and this image quality model are below.

Parameters

Training data:

Pure Parameters: -e1.8,1.0 -t.3,.110 -s.3,.11

Pure Seed: -S12

Number Samples: 1600

Interpolated Parameters: -e1.8,1.0 -t.3,.11 -s.3,.11

Interpolated Seed: numb (0-10)

Number Samples: 1600

Percentage Typeface Mix of Test characters:

Following is a graphical representation of the types of test data for this particular experi-

ment.

Test Data.

Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp ** ** ** ** * 100 ** ** ** ** **
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The generating parameters and number of test samples for the test data for this typeface

model from this image quality model are below.

Parameters

Test data:

Real Test data: -e1.8,1.0 -t.3,.110 -s.3,.11

Real Seed: -S5

Number Samples: 400

Interpolated Test data: -e1.8,1.0 -t.3,.11 -s.3,.11

Interpolated Test Seed: -S5

Number Samples: 400
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Samples chosen to illustrate data used

Pure Training Samples Interpolated Training Samples

Pure Test Samples Interpolated Test Samples

Samples of Data with closest match

The following samples are of misclassified letters where possible. The first character is

the test sample, while the second is its nearest neighbor.
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pure/pure e’s

pure/pure c’s

interp/pure e’s

interp/pure c’s

pure/interp e’s

pure/interp c’s

interp/interp e’s

interp/interp c’s

Error Rates ( e’s / c’s = tot misclassified out of 200)

TEST ON

Pure(A) Itrp(B)

TRAIN ON

Pure(A) e: 6
6

e: 23
23

c: 0 c: 0

Itrp(B) e: 7
7

e: 10
10

c: 0 c: 0

Hypothesis 1:

We claim that BB, the classifier trained on a mixture of pure and interpolated data will

do better than AB, the one trained on the pure only data when tested on Interpolated data.

The null hypothesis is therefore that AB will perform at least as well as BB, that is to say

that the error rate for AB will be less than or equal to the error rate for BB. This means

that the observed error rates o2 <= o4. The actual observed counts are below.
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Right Wrong

TRAIN ON

Pure(A) o1 377 o2 23

e1 383 e2 17

Itrp(B) o3 390 o4 10

e3 383 e4 17

As explained earlier, the result of our test is χ2 = 5.20. Since this result is greater than or

equal to 3.84 we can reject the null hypothesis in favor of the hypothesis that the classifier

BB performs better than classifer AB when tested on interpolated data.

Hypothesis 2:

We claim that BA, the classifier trained on the mixture of pure and interpolated training

data will do at least as well as AA, the classifier trained on only pure data when tested on

pure test data. The null hypothesis is that AA and BA will perform equally, thus the two

classifiers should have the same error rates. This means that the observed error rates are

equal, that is, o2 = o4. If we do not reject the null hypothesis then we have some support

for our claim that they perform equally.

Right Wrong

TRAIN ON

Pure(A) o1 394 o2 6

e1 393 e2 7

Itrp(B) o3 393 o4 7

e3 393 e4 7

As explained earlier, the result of our test is χ2 = 0.14. Since this result is not greater

than 3.84 we can not reject the null hypothesis in favor of the hypothesis that the classifier

has a different performance when trained on the training sets A and B.
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Conclusions:

For this experiment, the classifier trained on interpolated data did significantly better than

the one trained on real data only. Both classifiers did equally well when tested on the real

samples.

6.1.8 CMR-CMSS Test Group Results

Following is a graphical illustration of our results. In this particular series of tests, in-

terpolated data was safe in every instance, as shown by the results of hypothesis 2. The

classifier trained on interpolated data was better in two instances, test 5 (greatly blurred,

little variance, full range) and test 7 (slightly blurred, little variance, midpoint).

In looking at the chart, we see that both classsifiers did so well on the first two tests

that there was no difference. By making the characters more distorted, with high variance,

both classifiers had a much more difficult time classifying the characters. In many cases,

the greatly blurred characters would be difficult for a human to distinguish as well. Test

7 is a more realistic test. In this case, the characters are only slightly blurred. All the

characters, however, are taken from the midpoint of the interpolations between the two

fonts.

Based on the results of these tests we decided to experiment on interpolations between

two more varied fonts.
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Figure 6.1: CMR-CMSS e and c Experimental Results

Hypothesis 1 Hypothesis 2
Errors Statistic Errors Statistic

IMAGE QUALITY RANGE AB BB χ2 Rej AA BA χ2 Rej

normal full 0 1 1.00 no 0 0 0.00 no
slightly blurred full 0 0 0.00 no 0 1 1.00 no
greatly blurred, high variance full 62 72 .88 no 74 69 .20 no
greatly blurred, some variance full 60 42 3.62 no 44 43 .20 no
greatly blurred, little variance full 64 39 6.90 yes 41 45 .20 no
greatly blurred, little variance mid 79 71 .50 no 52 40 1.76 no
slightly blurred, little variance mid 23 10 5.20 yes 6 7 1.40 no

6.2 CMR and CMFF C and E Experiments

We next thought it would be interesting to pick two more dis-similar fonts to use as the

basis for our interpolations.

6.2.1 Experimental Description

For this experiment, the default parameters were used. The images for both test and train-

ing data were only slightly blurred as were the interpolated samples. The test interpolated

data was taken from the entire range between the real CMR and CMFF fonts.

Percentage Typeface Mix of Training characters:

Following is a graphical representation of the types of data for this particular experiment.

Recall that the end characters use real fonts while the in-between characters are mixtures

ranging from 10-90% of each font.

Training Data.
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Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp 10 10 10 10 10 00 10 10 10 10 10

The generating parameters and number of samples for the training data from this typeface

model and this image quality model are below.

Parameters

Training data:

Pure Parameters: default parameters

Pure Seed: no seed

Number Samples: 1600

Interpolated Parameters: default parameters

Interpolated Seed: numb (0-10)

Number Samples: 1600

Percentage Typeface Mix of Test characters:

Following is a graphical representation of the types of test data for this particular experi-

ment.

Test Data.
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Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp 10 10 10 10 10 00 10 10 10 10 10

The generating parameters and number of test samples for the test data for this typeface

model from this image quality model are below.

Parameters

Test data:

Pure parameters: default parameters

Pure Seed: no seed

Number Samples: 400

Interpolated Parameters: default parameters

Interpolated Seed: numb (0-10)

Number Samples: 400
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Samples chosen to illustrate data used

Pure Training Samples Interpolated Training Samples

Pure Test Samples Interpolated Test Samples

Samples of Data with closest match

The following samples are of misclassified letters where possible. The first character is

the test sample, while the second is its nearest neighbor.
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pure/pure e’s

pure/pure c’s

interp/pure e’s

interp/pure c’s

pure/interp e’s

pure/interp c’s

interp/interp e’s

interp/interp c’s

Error Rates ( e’s / c’s = tot misclassified out of 200)

TEST ON

Pure(A) Itrp(B)

TRAIN ON

Pure(A) e: 0
0

e: 23
23

c: 0 c: 0

Itrp(B) e: 0
0

e: 4
4

c: 0 c: 0

Hypothesis 1:

We claim that BB, the classifier trained on a mixture of pure and interpolated data will

do better than AB, the one trained on the pure only data when tested on Interpolated data.

The null hypothesis is therefore that AB will perform at least as well as BB, that is to say

that the error rate for AB will be less than or equal to the error rate for BB. This means

that the observed error rates o2 <= o4. The actual observed counts are below.
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Right Wrong

TRAIN ON

Pure(A) o1 377 o2 23

e1 386 e2 14

Itrp(B) o3 396 o4 4

e3 386 e4 14

As explained earlier, the result of our test is χ2 = 10.71. Since this result is greater than or

equal to 3.84 we can reject the null hypothesis in favor of the hypothesis that the classifier

BB performs better than classifer AB when tested on interpolated data.

Hypothesis 2:

We claim that BA, the classifier trained on the mixture of pure and interpolated training

data will do at least as well as AA, the classifier trained on only pure data when tested on

pure test data. The null hypothesis is that AA and BA will perform equally, thus the two

classifiers should have the same error rates. This means that the observed error rates are

equal, that is, o2 = o4. If we do not reject the null hypothesis then we have some support

for our claim that they perform equally.

Right Wrong

TRAIN ON

Pure(A) o1 400 o2 0

e1 400 e2 0

Itrp(B) o3 400 o4 0

e3 400 e4 0

Clearly there is no difference between the performances of the classifiers so we can not

reject the null hypothesis in favor of the hypothesis that the classifier has a different per-

formance when trained on the training sets A and B.
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Conclusions:

For this experiment, both classifiers did equally well when tested on the pure data. In

fact, they each performed perfectly. When tested on the interpolated data, however, the

classifier trained on the pure data did much worse than the one trained on the interpolated

data. In fact, it misclassified 23 of the e’s and none of the c’s. The classifier trained on the

interpolated data performed significantly better when tested on the interpolated samples.

6.2.2 Experimental Description

For this experiment, the generated samples were slighlty more blurred and had a slight

amount of noise added. Training was performed as before while the test interpolated data

was taken from the entire range between the real CMR and CMFF fonts.

Percentage Typeface Mix of Training characters:

Following is a graphical representation of the types of data for this particular experiment.

Recall that the end characters use real fonts while the in-between characters are mixtures

ranging from 10-90% of each font.

Training Data.

Pure 50 ** ** ** ** ** ** ** ** ** 50
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Interp 10 10 10 10 10 ** 10 10 10 10 10

The generating parameters and number of samples for the training data from this typeface

model and this image quality model are below.

Parameters

Training data:

Pure Parameters: -e1.0,1.1 -t.15,.125 -s.130,.125

Pure Seed: no seed

Number Samples: 1600

Interpolated Parameters: -e1.0,1.1 -t.15,.125 -s.130,.125

Interpolated Seed: numb(0-10)

Number Samples: 1600

Percentage Typeface Mix of Test characters:

Following is a graphical representation of the types of test data for this particular experi-

ment.

Test Data.

Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp 10 10 10 10 10 ** 10 10 10 10 10
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The generating parameters and number of test samples for the test data for this typeface

model from this image quality model are below.

Parameters

Test data:

Pure Parameters: -e1.0,1.1 -t.15,.125 -s.130,.125

Pure Test Seed: no seed

Number Samples: 400

Interpolated Test data: -e1.0,1.1 -t.15,.125 -s.130,.125

Interpolated Test Seed: numb(0-10)

Number Samples: 400
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Samples chosen to illustrate data used

Pure Training Samples Interpolated Training Samples

Pure Test Samples Interpolated Test Samples

Samples of Data with closest match

The following samples are of misclassified letters where possible. The first character is

the test sample, while the second is its nearest neighbor.
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pure/pure e’s

pure/pure c’s

interp/pure e’s

interp/pure c’s

pure/interp e’s

pure/interp c’s

interp/interp e’s

interp/interp c’s

Error Rates ( e’s / c’s = tot misclassified out of 200)

TEST ON

Pure(A) Itrp(B)

TRAIN ON

Pure(A) e: 0
0

e: 15
18

c: 0 c: 3

Itrp(B) e: 1
2

e: 2
3

c: 1 c: 1

Hypothesis 1:

We claim that BB, the classifier trained on a mixture of pure and interpolated data will

do better than AB, the one trained on the pure only data when tested on Interpolated data.

The null hypothesis is therefore that AB will perform at least as well as BB, that is to say

that the error rate for AB will be less than or equal to the error rate for BB. This means

that the observed error rates o2 <= o4. The actual observed counts are below.
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Right Wrong

TRAIN ON

Pure(A) o1 382 o2 18

e1 389 e2 11

Itrp(B) o3 397 o4 3

e3 389 e4 11

As explained earlier, the result of our test is χ2 = 7.93. Since this result is greater than or

equal to 3.84 we can reject the null hypothesis in favor of the hypothesis that the classifier

BB performs better than classifer AB when tested on interpolated data.

Hypothesis 2:

We claim that BA, the classifier trained on the mixture of pure and interpolated training

data will do at least as well as AA, the classifier trained on only pure data when tested on

pure test data. The null hypothesis is that AA and BA will perform equally, thus the two

classifiers should have the same error rates. This means that the observed error rates are

equal, that is, o2 = o4. If we do not reject the null hypothesis then we have some support

for our claim that they perform equally.

Right Wrong

TRAIN ON

Pure(A) o1 400 o2 0

e1 399 e2 1

Itrp(B) o3 398 o4 2

e3 399 e4 1

As explained earlier, the result of our test is χ2 = 0.00. Since this result is not greater

than or equal to 3.84 we can not reject the null hypothesis in favor of the hypothesis that

the classifier has a different performance when trained on the training sets A and B.
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Conclusions:

For this experiment, once again, both classifiers did well on the pure data with no signif-

icant difference. The classifier trained on interpolated data did significantly better when

tested on the interpolated data than the one trained only on the pure data.

6.2.3 Experimental Description

For this experiment, the generated samples were greatly blurred, and had a large amount

of noise added. A seed of 2 was added to the real data so that it was randomized differently

from the interpolated data. Training was performed as before while the test interpolated

data was taken from the entire range between the real CMR and CMFF fonts.

Percentage Typeface Mix of Training characters:

Following is a graphical representation of the types of data for this particular experiment.

Recall that the end characters use real fonts while the in-between characters are mixtures

ranging from 10-90% of each font.

Training Data.

Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp 10 10 10 10 10 ** 10 10 10 10 10
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The generating parameters and number of samples for the training data from this typeface

model and this image quality model are below.

Parameters

Training data:

Pure Parameters: -e2.0,2.1 -t.4,.4 -s.4,.4130

Pure Seed: -S2

Number Samples: 1600

Interpolated Parameters: -e2.0,2.1 -t.4,.4 -s.4,.4130

Interpolated Seed: numb(0-10)

Number Samples: 1600

Percentage Typeface Mix of Test characters:

Following is a graphical representation of the types of test data for this particular experi-

ment.

Test Data.

Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp 10 10 10 10 10 ** 10 10 10 10 10

The generating parameters and number of test samples for the test data for this typeface

model from this image quality model are below.
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Parameters

Test data:

Pure Parameters: -e2.0,2.1 -t.4,.4 -s.4,.4130

Pure Seed: -S2

Number Samples: 400

Interpolated Parameters: -e2.0,2.1 -t.4,.4 -s.4,.4130

Interpolated Seed: numb(0-10)

Number Samples: 400

Samples chosen to illustrate data used

Pure Training Samples Interpolated Training Samples

Pure Test Samples Interpolated Test Samples
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Samples of Data with closest match

The following samples are of misclassified letters where possible. The first character is

the test sample, while the second is its nearest neighbor.

pure/pure e’s

pure/pure c’s

interp/pure e’s

interp/pure c’s

pure/interp e’s

pure/interp c’s

interp/interp e’s

interp/interp c’s

Error Rates ( e’s / c’s = tot misclassified out of 200)

TEST ON

Pure(A) Itrp(B)

TRAIN ON

Pure(A) e: 33
91

e: 42
102

c: 58 c: 60

Itrp(B) e: 22
83

e: 38
106

c: 61 c: 68

Hypothesis 1:

We claim that BB, the classifier trained on a mixture of pure and interpolated data will

do better than AB, the one trained on the pure only data when tested on Interpolated data.
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The null hypothesis is therefore that AB will perform at least as well as BB, that is to say

that the error rate for AB will be less than or equal to the error rate for BB. This means

that the observed error rates o2 <= o4. The actual observed counts are below.

Right Wrong

TRAIN ON

Pure(A) o1 298 o2 102

e1 296 e2 104

Itrp(B) o3 294 o4 106

e3 296 e4 104

As explained earlier, the result of our test is χ2 = 0.8. Since this result is not greater than

or equal to 3.84 we can not reject the null hypothesis in favor of the hypothesis that the

classifier BB performs better than classifer AB when tested on interpolated data.

Hypothesis 2:

We claim that BA, the classifier trained on the mixture of pure and interpolated training

data will do at least as well as AA, the classifier trained on only pure data when tested on

pure test data. The null hypothesis is that AA and BA will perform equally, thus the two

classifiers should have the same error rates. This means that the observed error rates are

equal, that is, o2 = o4. If we do not reject the null hypothesis then we have some support

for our claim that they perform equally.

Right Wrong

TRAIN ON

Pure(A) o1 309 o2 91

e1 313 e2 87

Itrp(B) o3 317 o4 83

e3 313 e4 87
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As explained earlier, the result of our test is χ2 = 0.46. Since this result is not greater

than 3.84 we can not reject the null hypothesis in favor of the hypothesis that the classifier

has a different performance when trained on the training sets A and B.

Conclusions:

Both classifiers did badly when tested on the interpolated data as well as the pure data.

The data was so distorted that letters were difficult to recognize by either classifier. Nei-

ther classifier did significantly different on either of the types of test data, possibly because

the letters were so distorted.

6.2.4 Experimental Description

For this experiment, the generated samples were greatly blurred, and had a large amount

of noise added. However, the variance was limited to half of what it was in the previous

experiment. Real training data had a seed of 5, while the real test data had a seed of 11.

The interpolated training data had a variable seed, while the interpolated test data had

a different seed. Training was performed as before while the test interpolated data was

taken from the entire range between the real CMR and CMFF fonts.

Percentage Typeface Mix of Training characters:

Following is a graphical representation of the types of data for this particular experiment.

Recall that the end characters use real fonts while the in-between characters are mixtures

ranging from 10-90% of each font.

Training Data.
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Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp 10 10 10 10 10 ** 10 10 10 10 10

The generating parameters and number of samples for the training data from this typeface

model and this image quality model are below.

Parameters

Training data:

Pure Parameters: -e2.0,1.1 -t.4,.2 -s.4,.2

Pure Seed: -S5

Number Samples: 1600

Interpolated Parameters: -e2.0,1.1 -t.4,.2 -s.4,.2

Interpolated Seed: Snumb (0-10)

Number Samples: 1600

Percentage Typeface Mix of Test characters:

Following is a graphical representation of the types of test data for this particular experi-

ment.

Test Data.
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Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp 10 10 10 10 10 ** 10 10 10 10 10

The generating parameters and number of test samples for the test data for this typeface

model from this image quality model are below.

Parameters

Test data:

Pure Parameters: -e2.0,1.1 -t.4,.2 -s.4,.2

Pure Seed: -S11

Number Samples: 400

Interpolated Parameters: -e2.0,1.1 -t.4,.2 -s.4,.2

Interpolated Test Seed: numb * 3 (0, 3, 6....30)

Number Samples: 400
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Samples chosen to illustrate data used

Pure Training Samples Interpolated Training Samples

Pure Test Samples Interpolated Test Samples

Samples of Data with closest match

The following samples are of misclassified letters where possible. The first character is

the test sample, while the second is its nearest neighbor.
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pure/pure e’s

pure/pure c’s

interp/pure e’s

interp/pure c’s

pure/interp e’s

pure/interp c’s

interp/interp e’s

interp/interp c’s

Error Rates ( e’s / c’s = tot misclassified out of 200)

TEST ON

Pure(A) Itrp(B)

TRAIN ON

Pure(A) e: 47
65

e: 68
84

c: 18 c: 16

Itrp(B) e: 54
73

e: 56
83

c: 19 c: 27

Hypothesis 1:

We claim that BB, the classifier trained on a mixture of pure and interpolated data will

do better than AB, the one trained on the pure only data when tested on Interpolated data.

The null hypothesis is therefore that AB will perform at least as well as BB, that is to say

that the error rate for AB will be less than or equal to the error rate for BB. This means

that the observed error rates o2 <= o4. The actual observed counts are below.
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Right Wrong

TRAIN ON

Pure(A) o1 316 o2 84

e1 316 e2 84

Itrp(B) o3 317 o4 83

e3 316 e4 84

As explained earlier, the result of our test is χ2 = 0.1. Since this result is not greater than

or equal to 3.84 we can not reject the null hypothesis in favor of the hypothesis that the

classifier BB performs better than classifer AB when tested on interpolated data.

Hypothesis 2:

We claim that BA, the classifier trained on the mixture of pure and interpolated training

data will do at least as well as AA, the classifier trained on only pure data when tested on

pure test data. The null hypothesis is that AA and BA will perform equally, thus the two

classifiers should have the same error rates. This means that the observed error rates are

equal, that is, o2 = o4. If we do not reject the null hypothesis then we have some support

for our claim that they perform equally.

Right Wrong

TRAIN ON

Pure(A) o1 335 o2 65

e1 331 e2 69

Itrp(B) o3 327 o4 73

e3 331 e4 69

As explained earlier, the result of our test is χ2 = 0.54. Since this result is not greater

than 3.84 we can not reject the null hypothesis in favor of the hypothesis that the classifier

has a different performance when trained on the training sets A and B.
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Conclusions:

For this experiment, both classifiers did equally when tested on the pure data. They

each misclassified more than 15 per cent of the samples. Once again, the letters were so

distorted that they were difficult for either classifer to recognize. The classifier trained

on the interpolated data did somewhat better than the one trained on the pure data when

tested on the interpolated data, however not significantly so.

6.2.5 Experimental Description

For this experiment, the generated samples were greatly blurred, and had a large amount

of noise added. However, variance was decreased to slightly above the default levels.

Seeds were kept the same as in the last test. Training was performed as before while the

test interpolated data was taken from the entire range between the real CMR and CMFF

fonts.

Percentage Typeface Mix of Training characters:

Following is a graphical representation of the types of data for this particular experiment.

Recall that the end characters use real fonts while the in-between characters are mixtures

ranging from 10-90% of each font.

Training Data.
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Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp 10 10 10 10 10 ** 10 10 10 10 10

The generating parameters and number of samples for the training data from this typeface

model and this image quality model are below.

Parameters

Training data:

Pure Parameters: -e2.0,1.1 -t.4,.125 -s.4,.125

Pure Seed: -S5

Number Samples: 1600

Interpolated Parameters: -e2.0,1.1 -t.4,.125 -s.4,.125

Interpolated Seed: numb(0-10)

Number Samples: 1600

Percentage Typeface Mix of Test characters:

Following is a graphical representation of the types of test data for this particular experi-

ment.

Test Data.

Pure 50 ** ** ** ** ** ** ** ** ** 50
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Interp 10 10 10 10 10 ** 10 10 10 10 10

The generating parameters and number of test samples for the test data for this typeface

model from this image quality model are below.

Parameters

Test data:

Real Parameters: -e2.0,1.1 -t.4,.125 -s.4,.125

Real Test Seed: -S11

Number Samples: 400

Interpolated Parameters: -e2.0,1.1 -t.4,.125 -s.4,.125

Interpolated Seed: numb * 2 (0,2,4...20)

Number Samples: 400
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Samples chosen to illustrate data used

Pure Training Samples Interpolated Training Samples

Pure Test Samples Interpolated Test Samples

Samples of Data with closest match

The following samples are of misclassified letters where possible. The first character is

the test sample, while the second is its nearest neighbor.
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pure/pure e’s

pure/pure c’s

interp/pure e’s

interp/pure c’s

pure/interp e’s

pure/interp c’s

interp/interp e’s

interp/interp c’s

Error Rates ( e’s / c’s = tot misclassified out of 200)

TEST ON

Pure(A) Itrp(B)

TRAIN ON

Pure(A) e: 53
58

e: 68
81

c: 5 c: 13

Itrp(B) e: 50
64

e: 51
57

c: 14 c: 6

Hypothesis 1:

We claim that BB, the classifier trained on a mixture of pure and interpolated data will

do better than AB, the one trained on the pure only data when tested on Interpolated data.

The null hypothesis is therefore that AB will perform at least as well as BB, that is to say

that the error rate for AB will be less than or equal to the error rate for BB. This means

that the observed error rates o2 <= o4. The actual observed counts are below.
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Right Wrong

TRAIN ON

Pure(A) o1 319 o2 81

e1 331 e2 69

Itrp(B) o3 343 o4 57

e3 331 e4 69

As explained earlier, the result of our test is χ2 = 5.2. Since this result is greater than or

equal to 3.84 we can reject the null hypothesis in favor of the hypothesis that the classifier

BB performs better than classifer AB when tested on interpolated data.

Hypothesis 2:

We claim that BA, the classifier trained on the mixture of pure and interpolated training

data will do at least as well as AA, the classifier trained on only pure data when tested on

pure test data. The null hypothesis is that AA and BA will perform equally, thus the two

classifiers should have the same error rates. This means that the observed error rates are

equal, that is, o2 = o4. If we do not reject the null hypothesis then we have some support

for our claim that they perform equally.

Right Wrong

TRAIN ON

Pure(A) o1 342 o2 58

e1 339 e2 61

Itrp(B) o3 336 o4 64

e3 339 e4 61

As explained earlier, the result of our test is χ2 = 0.32. Since this result is not greater

than 3.84 we can not reject the null hypothesis in favor of the hypothesis that the classifier

has a different performance when trained on the training sets A and B.
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Conclusions:

For this experiment, both classifiers performed equally when tested on the pure data.

When tested on the interpolated data, the classifier trained on pure data did significantly

worse than the one trained on the interpolated data. This is in line with the results from

the same experiment performed on the CMR-CMSS interpolations.

6.2.6 Experimental Description

For this experiment, the generated samples were greatly blurred, and had a large amount

of noise added. However, variance was slight. This differed from the last experiment in

that the interpolated samples were all taken from the midpoint between CMR and CMFF.

Percentage Typeface Mix of Training characters:

Following is a graphical representation of the types of data for this particular experiment.

Recall that the end characters use real fonts while the in-between characters are mixtures

ranging from 10-90% of each font.

Training Data.

Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp 10 10 10 10 10 00 10 10 10 10 10
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The generating parameters and number of samples for the training data from this typeface

model and this image quality model are below.

Parameters

Training data:

Pure Parameters: -e2.0,1.1 -t.4,.125 -s.4,.125

Pure Seed: -S12

Number Samples: 1600

Interpolated Parameters: -e2.0,1.1 -t.4,.125 -s.4,.125

Interpolated Seed: numb(0-10)

Number Samples: 1600

Percentage Typeface Mix of Test characters:

Following is a graphical representation of the types of test data for this particular experi-

ment.

Test Data.

Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp ** ** ** ** * 100 ** ** ** ** **

The generating parameters and number of test samples for the test data for this typeface

model from this image quality model are below.

134



6.2. CMR AND CMFF C AND E EXPERIMENTS

Parameters

Test data:

Real Parameters: -e2.0,1.1 -t.4,.125 -s.4,.125

Real Test Seed: -S5

Number Samples: 400

Interpolated Parameters: -e2.0,1.1 -t.4,.125 -s.4,.125

Interpolated Seed: -S5

Number Samples: 400

Samples chosen to illustrate data used

Pure Training Samples Interpolated Training Samples

Pure Test Samples Interpolated Test Samples
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Samples of Data with closest match

The following samples are of misclassified letters where possible. The first character is

the test sample, while the second is its nearest neighbor.

pure/pure e’s

pure/pure c’s

interp/pure e’s

interp/pure c’s

pure/interp e’s

pure/interp c’s

interp/interp e’s

interp/interp c’s

Error Rates ( e’s / c’s = tot misclassified out of 200)

TEST ON

Pure(A) Itrp(B)

TRAIN ON

Pure(A) e: 67
70

e: 66
74

c: 3 c: 8

Itrp(B) e: 39
53

e: 40
56

c: 14 c: 16

Hypothesis 1:

We claim that BB, the classifier trained on a mixture of pure and interpolated data will

do better than AB, the one trained on the pure only data when tested on Interpolated data.

136



6.2. CMR AND CMFF C AND E EXPERIMENTS

The null hypothesis is therefore that AB will perform at least as well as BB, that is to say

that the error rate for AB will be less than or equal to the error rate for BB. This means

that the observed error rates o2 <= o4. The actual observed counts are below.

Right Wrong

TRAIN ON

Pure(A) o1 326 o2 74

e1 335 e2 65

Itrp(B) o3 344 o4 56

e3 335 e4 65

As explained earlier, the result of our test is χ2 = 2.96. Since this result is not greater

than or equal to 3.84 we can not reject the null hypothesis in favor of the hypothesis that

the classifier BB performs better than classifer AB when tested on interpolated data.

Hypothesis 2:

We claim that BA, the classifier trained on the mixture of pure and interpolated training

data will do at least as well as AA, the classifier trained on only pure data when tested on

pure test data. The null hypothesis is that AA and BA will perform equally, thus the two

classifiers should have the same error rates. This means that the observed error rates are

equal, that is, o2 = o4. If we do not reject the null hypothesis then we have some support

for our claim that they perform equally.

Right Wrong

TRAIN ON

Pure(A) o1 330 o2 70

e1 338 e2 62

Itrp(B) o3 347 o4 53

e3 338 e4 62
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As explained earlier, the result of our test is χ2 = 2.74. Since this result is not greater

than 3.84 we can not reject the null hypothesis in favor of the hypothesis that the classifier

has a different performance when trained on the training sets A and B.

Conclusions:

For this experiment, both classifiers did equally badly when tested on the real data. They

also did equally badly on the interpolated data. Most likely the samples are so distorted

that neither classifier could recognize them. Since the interpolated samples were all taken

from the midpoint between CMR and CMFF they were very different from what the

classifiers had been trained on.

6.2.7 Experimental Description

For this experiment, the generated samples were less blurred, and had a moderate amount

of noise added. The varience was less than the last experiment. Training was performed

as before and the experiment took the test interpolated data entirely from the midpoint

between the real CMR and CMFF fonts.

Percentage Typeface Mix of Training characters:

Following is a graphical representation of the types of data for this particular experiment.

Recall that the end characters use real fonts while the in-between characters are mixtures

ranging from 10-90% of each font.

Training Data.
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Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp 10 10 10 10 10 00 10 10 10 10 10

The generating parameters and number of samples for the training data from this typeface

model and this image quality model are below.

Parameters

Training data:

Pure Parameters: -e1.8,1.0 -t.3,.110 -s.3,.11

Pure Seed: -S12

Number Samples: 1600

Interpolated Parameters: -e1.8,1.0 -t.3,.11 -s.3,.11

Interpolated Seed: numb (0-10)

Number Samples: 1600

Percentage Typeface Mix of Test characters:

Following is a graphical representation of the types of test data for this particular experi-

ment.

Test Data.
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Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp ** ** ** ** * 100 ** ** ** ** **

The generating parameters and number of test samples for the test data for this typeface

model from this image quality model are below.

Parameters

Test data:

Real Test data: -e1.8,1.0 -t.3,.110 -s.3,.11

Real Seed: -S5

Number Samples: 400

Interpolated Test data: -e1.8,1.0 -t.3,.11 -s.3,.11

Interpolated Test Seed: -S5

Number Samples: 400
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Samples chosen to illustrate data used

Pure Training Samples Interpolated Training Samples

Pure Test Samples Interpolated Test Samples

Samples of Data with closest match

The following samples are of misclassified letters where possible. The first character is

the test sample, while the second is its nearest neighbor.
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pure/pure e’s

pure/pure c’s

interp/pure e’s

interp/pure c’s

pure/interp e’s

pure/interp c’s

interp/interp e’s

interp/interp c’s

Error Rates ( e’s / c’s = tot misclassified out of 200)

TEST ON

Pure(A) Itrp(B)

TRAIN ON

Pure(A) e: 7
8

e: 48
49

c: 1 c: 1

Itrp(B) e: 9
10

e: 5
16

c: 1 c: 11

Hypothesis 1:

We claim that BB, the classifier trained on a mixture of pure and interpolated data will

do better than AB, the one trained on the pure only data when tested on Interpolated data.

The null hypothesis is therefore that AB will perform at least as well as BB, that is to say

that the error rate for AB will be less than or equal to the error rate for BB. This means

that the observed error rates o2 <= o4. The actual observed counts are below.
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Right Wrong

TRAIN ON

Pure(A) o1 351 o2 49

e1 367 e2 33

Itrp(B) o3 384 o4 16

e3 367 e4 33

As explained earlier, the result of our test is χ2 = 17.97. Since this result is greater than or

equal to 3.84 we can reject the null hypothesis in favor of the hypothesis that the classifier

BB performs better than classifer AB when tested on interpolated data.

Hypothesis 2:

We claim that BA, the classifier trained on the mixture of pure and interpolated training

data will do at least as well as AA, the classifier trained on only pure data when tested on

pure test data. The null hypothesis is that AA and BA will perform equally, thus the two

classifiers should have the same error rates. This means that the observed error rates are

equal, that is, o2 = o4. If we do not reject the null hypothesis then we have some support

for our claim that they perform equally.

Right Wrong

TRAIN ON

Pure(A) o1 392 o2 8

e1 391 e2 9

Itrp(B) o3 390 o4 10

e3 391 e4 9

As explained earlier, the result of our test is χ2 = 0.22. Since this result is not greater

than 3.84 we can not reject the null hypothesis in favor of the hypothesis that the classifier

has a different performance when trained on the training sets A and B.
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Conclusions:

For this experiment, both classifiers did much better when tested on both the pure and the

interpolated data. The classifier trained on interpolated data did significantly better than

the one trained on pure data only when tested on the interpolated data. Both classifiers

did equally well when tested on the pure samples.

6.2.8 CMR-CMFF Test Group Results

In this set of experiments we can see that the classifier trained on the mixed (pure and

interpolated) samples did much better when tested on the interpolated samples. In cases

where the samples were normal and slightly blurred this classfier greatly outperformed

the one trained on pure samples only. As the data became more distorted the performance

of both classifiers fell off and neither did well. When the classifiers were tested on the

pure samples, neither outperformed the other to any significant degree.

Figure 6.2: CMR-CMFF e and c Experimental Results

Hypothesis 1 Hypothesis 2
Errors Statistic Errors Statistic

Image Quality Range AB BB χ2 Rej AA BA χ2 Rej

normal full 23 4 10.71 yes 0 0 0.00 no
slightly blurred full 18 3 7.93 yes 0 2 0.00 no
greatly blurred, high variance full 102 106 .80 no 91 83 .46 no
greatly blurred, some variance full 84 83 .10 no 65 73 .54 no
greatly blurred, little variance full 81 57 5.20 yes 58 64 .32 no
greatly blurred, little variance mid 74 56 2.96 no 70 53 2.74 no
slightly blurred, little variance mid 49 16 17.97 yes 8 10 .22 no
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6.3 CMR and CMFF I and J Experiments

We next decided to extend our experiments by examining the letter pair i/j. We wanted to

see if our findings for the e/c pairs carried over to this letter pair.

6.3.1 Experimental Description

For this experiment, the default parameters were used. The images for both test and train-

ing data were only slightly blurred as were the interpolated samples. The test interpolated

data was taken from the entire range between the real CMR and CMFF fonts.

Percentage Typeface Mix of Training characters:

Following is a graphical representation of the types of data for this particular experiment.

Recall that the end characters use real fonts while the in-between characters are mixtures

ranging from 10-90% of each font.

Training Data.

Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp 10 10 10 10 10 00 10 10 10 10 10

The generating parameters and number of samples for the training data from this typeface

model and this image quality model are below.
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Parameters

Training data:

Pure Parameters: default parameters

Pure Seed: no seed

Number Samples: 1600

Interpolated Parameters: default parameters

Interpolated Seed: numb (0-10)

Number Samples: 1600

Percentage Typeface Mix of Test characters:

Following is a graphical representation of the types of test data for this particular experi-

ment.

Test Data.

Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp 10 10 10 10 10 00 10 10 10 10 10

The generating parameters and number of test samples for the test data for this typeface

model from this image quality model are below.
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Parameters

Test data: Pure parameters: default parameters

Pure Seed: no seed

Number Samples: 400

Interpolated Parameters: default parameters

Interpolated Seed: numb (0-10)

Number Samples: 400

Samples chosen to illustrate data used

Pure Training Samples Interpolated Training Samples

Pure Test Samples Interpolated Test Samples
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Samples of Data with closest match

The following samples are of misclassified letters where possible. The first character is

the test sample, while the second is its nearest neighbor.

pure/pure j’s

pure/pure i’s

interp/pure j’s

interp/pure i’s

pure/interp j’s

pure/interp i’s

interp/interp j’s

interp/interp i’s

Error Rates ( j’s / i’s = tot misclassified out of 200)

TEST ON

Pure(A) Itrp(B)

TRAIN ON

Pure(A) j: 0
0

j: 0
0

i: 0 i: 0

Itrp(B) j: 0
1

j: 0
0

i: 1 i: 0
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Hypothesis 1:

We claim that BB, the classifier trained on a mixture of pure and interpolated data will

do better than AB, the one trained on the pure only data when tested on Interpolated data.

The null hypothesis is therefore that AB will perform at least as well as BB, that is to say

that the error rate for AB will be less than or equal to the error rate for BB. This means

that the observed error rates o2 <= o4. The actual observed counts are below.

Right Wrong

TRAIN ON

Pure(A) o1 400 o2 0

e1 400 e2 0

Itrp(B) o3 400 o4 0

e3 400 e4 0

Clearly there is no difference between the performances of the classifiers so we can not

reject the null hypothesis in favor of the hypothesis that the classifier BB performs better

than classifer AB when tested on interpolated data.

Hypothesis 2:

We claim that BA, the classifier trained on the mixture of pure and interpolated training

data will do at least as well as AA, the classifier trained on only pure data when tested on

pure test data. The null hypothesis is that AA and BA will perform equally, thus the two

classifiers should have the same error rates. This means that the observed error rates are

equal, that is, o2 = o4. If we do not reject the null hypothesis then we have some support

for our claim that they perform equally.
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Right Wrong

TRAIN ON

Pure(A) o1 400 o2 0

e1 399 e2 1

Itrp(B) o3 399 o4 1

e3 399 e4 1

As explained earlier, the result of our test is χ2 = 1.0. Since this result is not greater than

3.84 we can not reject the null hypothesis in favor of the hypothesis that the classifier has

a different performance when trained on the training sets A and B.

Conclusions:

For this experiment, both classifiers did equally well when tested on the pure data as well

as the interpolated data. There were no significant differences in the performances of the

classifiers.

6.3.2 Experimental Description

For this experiment, the generated samples were slighlty more blurred and had a slight

amount of noise added. Training was performed as before while the test interpolated data

was taken from the entire range between the real CMR and CMFF fonts.

Percentage Typeface Mix of Training characters:

Following is a graphical representation of the types of data for this particular experiment.

Recall that the end characters use real fonts while the in-between characters are mixtures

ranging from 10-90% of each font.

Training Data.

150



6.3. CMR AND CMFF I AND J EXPERIMENTS

Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp 10 10 10 10 10 ** 10 10 10 10 10

The generating parameters and number of samples for the training data from this typeface

model and this image quality model are below.

Parameters

Training data:

Pure Parameters: -e1.0,1.1 -t.15,.125 -s.130,.125

Pure Seed: no seed

Number Samples: 1600

Interpolated Parameters: -e1.0,1.1 -t.15,.125 -s.130,.125

Interpolated Seed: numb(0-10)

Number Samples: 1600

Percentage Typeface Mix of Test characters:

Following is a graphical representation of the types of test data for this particular experi-

ment.

Test Data.
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Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp 10 10 10 10 10 ** 10 10 10 10 10

The generating parameters and number of test samples for the test data for this typeface

model from this image quality model are below.

Parameters

Test data:

Pure Parameters: -e1.0,1.1 -t.15,.125 -s.130,.125

Pure Test Seed: no seed

Number Samples: 400

Interpolated Test data: -e1.0,1.1 -t.15,.125 -s.130,.125

Interpolated Test Seed: numb(0-10)

Number Samples: 400
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Samples chosen to illustrate data used

Pure Training Samples Interpolated Training Samples

Pure Test Samples Interpolated Test Samples

Samples of Data with closest match

The following samples are of misclassified letters where possible. The first character is

the test sample, while the second is its nearest neighbor.
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pure/pure j’s

pure/pure i’s

interp/pure j’s

interp/pure i’s

pure/interp j’s

pure/interp i’s

interp/interp j’s

interp/interp i’s

Error Rates ( j’s / i’s = tot misclassified out of 200)

TEST ON

Pure(A) Itrp(B)

TRAIN ON

Pure(A) j: 0
2

j: 0
1

i: 2 i: 1

Itrp(B) j: 0
3

j: 0
1

i: 3 i: 1

Hypothesis 1:

We claim that BB, the classifier trained on a mixture of pure and interpolated data will

do better than AB, the one trained on the pure only data when tested on Interpolated data.

The null hypothesis is therefore that AB will perform at least as well as BB, that is to say

that the error rate for AB will be less than or equal to the error rate for BB. This means

that the observed error rates o2 <= o4. The actual observed counts are below.
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Right Wrong

TRAIN ON

Pure(A) o1 399 o2 1

e1 399 e2 1

Itrp(B) o3 399 o4 1

e3 399 e4 1

As explained earlier, the result of our test is χ2 = 2.0. Since this result is not greater than

or equal to 3.84 we can not reject the null hypothesis in favor of the hypothesis that the

classifier BB performs better than classifer AB when tested on interpolated data.

Hypothesis 2:

We claim that BA, the classifier trained on the mixture of pure and interpolated training

data will do at least as well as AA, the classifier trained on only pure data when tested on

pure test data. The null hypothesis is that AA and BA will perform equally, thus the two

classifiers should have the same error rates. This means that the observed error rates are

equal, that is, o2 = o4. If we do not reject the null hypothesis then we have some support

for our claim that they perform equally.

Right Wrong

TRAIN ON

Pure(A) o1 398 o2 2

e1 397 e2 3

Itrp(B) o3 397 o4 3

e3 397 e4 3

As explained earlier, the result of our test is χ2 = 0.33. Since this result is not greater

than 3.84 we can not reject the null hypothesis in favor of the hypothesis that the classifier

has a different performance when trained on the training sets A and B.
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Conclusions:

For this experiment, once again, both classifiers did well on the pure data with no signifi-

cant difference. There was no siginificant difference in their performance on the interpo-

lated data.

6.3.3 Experimental Description

For this experiment, the generated samples were greatly blurred, and had a large amount

of noise added. A seed of 2 was added to the real data. Training was performed as before

while the test interpolated data was taken from the entire range between the real CMR

and CMFF fonts.

Percentage Typeface Mix of Training characters:

Following is a graphical representation of the types of data for this particular experiment.

Recall that the end characters use real fonts while the in-between characters are mixtures

ranging from 10-90% of each font.

Training Data.

Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp 10 10 10 10 10 ** 10 10 10 10 10
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The generating parameters and number of samples for the training data from this typeface

model and this image quality model are below.

Parameters

Training data:

Pure Parameters: -e2.0,2.1 -t.4,.4 -s.4,.4130

Pure Seed: -S2

Number Samples: 1600

Interpolated Parameters: -e2.0,2.1 -t.4,.4 -s.4,.4130

Interpolated Seed: numb(0-10)

Number Samples: 1600

Percentage Typeface Mix of Test characters:

Following is a graphical representation of the types of test data for this particular experi-

ment.

Test Data.

Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp 10 10 10 10 10 ** 10 10 10 10 10

The generating parameters and number of test samples for the test data for this typeface

model from this image quality model are below.
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Parameters

Test data:

Pure Parameters: -e2.0,2.1 -t.4,.4 -s.4,.4130

Pure Seed: -S2

Number Samples: 400

Interpolated Parameters: -e2.0,2.1 -t.4,.4 -s.4,.4130

Interpolated Seed: numb(0-10)

Number Samples: 400

Samples chosen to illustrate data used

Pure Training Samples Interpolated Training Samples

Pure Test Samples Interpolated Test Samples
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Samples of Data with closest match

The following samples are of misclassified letters where possible. The first character is

the test sample, while the second is its nearest neighbor.

pure/pure j’s

pure/pure i’s

interp/pure j’s

interp/pure i’s

pure/interp j’s

pure/interp i’s

interp/interp j’s

interp/interp i’s

Error Rates ( j’s / i’s = tot misclassified out of 200)

TEST ON

Pure(A) Itrp(B)

TRAIN ON

Pure(A) j: 15
83

j: 16
71

i: 68 i: 55

Itrp(B) j: 20
96

j: 13
65

i: 76 i: 52
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Hypothesis 1:

We claim that BB, the classifier trained on a mixture of pure and interpolated data will

do better than AB, the one trained on the pure only data when tested on Interpolated data.

The null hypothesis is therefore that AB will perform at least as well as BB, that is to say

that the error rate for AB will be less than or equal to the error rate for BB. This means

that the observed error rates o2 <= o4. The actual observed counts are below.

Right Wrong

TRAIN ON

Pure(A) o1 329 o2 71

e1 332 e2 68

Itrp(B) o3 335 o4 65

e3 332 e4 68

As explained earlier, the result of our test is χ2 = 0.30. Since this result is not greater

than or equal to 3.84 we can not reject the null hypothesis in favor of the hypothesis that

the classifier BB performs better than classifer AB when tested on interpolated data.

Hypothesis 2:

We claim that BA, the classifier trained on the mixture of pure and interpolated training

data will do at least as well as AA, the classifier trained on only pure data when tested on

pure test data. The null hypothesis is that AA and BA will perform equally, thus the two

classifiers should have the same error rates. This means that the observed error rates are

equal, that is, o2 = o4. If we do not reject the null hypothesis then we have some support

for our claim that they perform equally.
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Right Wrong

TRAIN ON

Pure(A) o1 317 o2 83

e1 310 e2 90

Itrp(B) o3 304 o4 96

e3 310 e4 90

As explained earlier, the result of our test is χ2 = 1.20. Since this result is not greater

than 3.84 we can not reject the null hypothesis in favor of the hypothesis that the classifier

has a different performance when trained on the training sets A and B.

Conclusions:

Both classifiers did badly when tested on the interpolated data as well as the pure data.

The data was so distorted that letters were difficult to recognize by either classifier. Nei-

ther classifier did significantly different on either of the types of test data, possibly because

the letters were so distorted.

6.3.4 Experimental Description

For this experiment, the generated samples were greatly blurred, and had a large amount

of noise added. However, the variance was limited to half of what it was in the previous

experiment. Real training data had a seed of 5, while the real test data had a seed of 11.

The interpolated training data had a variable seed, and the interpolated training data had a

different variable seed. Training was performed as before while the test interpolated data

was taken from the entire range between the real CMR and CMFF fonts.

Percentage Typeface Mix of Training characters:

Following is a graphical representation of the types of data for this particular experiment.

Recall that the end characters use real fonts while the in-between characters are mixtures

ranging from 10-90% of each font.
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Training Data.

Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp 10 10 10 10 10 ** 10 10 10 10 10

The generating parameters and number of samples for the training data from this typeface

model and this image quality model are below.

Parameters

Training data:

Pure Parameters: -e2.0,1.1 -t.4,.2 -s.4,.2

Pure Seed: -S5

Number Samples: 1600

Interpolated Parameters: -e2.0,1.1 -t.4,.2 -s.4,.2

Interpolated Seed: Snumb (0-10)

Number Samples: 1600

Percentage Typeface Mix of Test characters:

Following is a graphical representation of the types of test data for this particular experi-

ment.

Test Data.
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Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp 10 10 10 10 10 ** 10 10 10 10 10

The generating parameters and number of test samples for the test data for this typeface

model from this image quality model are below.

Parameters

Test data:

Pure Parameters: -e2.0,1.1 -t.4,.2 -s.4,.2

Pure Seed: -S11

Number Samples: 400

Interpolated Parameters: -e2.0,1.1 -t.4,.2 -s.4,.2

Interpolated Test Seed: numb * 3 (0, 3, 6....30)

Number Samples: 400
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Samples chosen to illustrate data used

Pure Training Samples Interpolated Training Samples

Pure Test Samples Interpolated Test Samples

Samples of Data with closest match

The following samples are of misclassified letters where possible. The first character is

the test sample, while the second is its nearest neighbor.
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pure/pure j’s

pure/pure i’s

interp/pure j’s

interp/pure i’s

pure/interp j’s

pure/interp i’s

interp/interp j’s

interp/interp i’s

Error Rates ( j’s / i’s = tot misclassified out of 200)

TEST ON

Pure(A) Itrp(B)

TRAIN ON

Pure(A) j: 10
94

j: 12
72

i: 84 i: 60

Itrp(B) j: 8
93

j: 10
64

i: 85 i: 54

Hypothesis 1:

We claim that BB, the classifier trained on a mixture of pure and interpolated data will

do better than AB, the one trained on the pure only data when tested on Interpolated data.

The null hypothesis is therefore that AB will perform at least as well as BB, that is to say

that the error rate for AB will be less than or equal to the error rate for BB. This means

that the observed error rates o2 <= o4. The actual observed counts are below.
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Right Wrong

TRAIN ON

Pure(A) o1 328 o2 72

e1 332 e2 68

Itrp(B) o3 336 o4 64

e3 332 e4 68

As explained earlier, the result of our test is χ2 = 0.54. Since this result is not greater

than or equal to 3.84 we can not reject the null hypothesis in favor of the hypothesis that

the classifier BB performs better than classifer AB when tested on interpolated data.

Hypothesis 2:

We claim that BA, the classifier trained on the mixture of pure and interpolated training

data will do at least as well as AA, the classifier trained on only pure data when tested on

pure test data. The null hypothesis is that AA and BA will perform equally, thus the two

classifiers should have the same error rates. This means that the observed error rates are

equal, that is, o2 = o4. If we do not reject the null hypothesis then we have some support

for our claim that they perform equally.

Right Wrong

TRAIN ON

Pure(A) o1 306 o2 94

e1 306 e2 94

Itrp(B) o3 307 o4 93

e3 306 e4 94

As explained earlier, the result of our test is χ2 = 0.1. Since this result is not greater than

3.84 we can not reject the null hypothesis in favor of the hypothesis that the classifier has

a different performance when trained on the training sets A and B.
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Conclusions:

For this experiment, both classifiers did equally when tested on the pure data. They each

misclassified about 25 per cent of the samples. The classifier trained on the interpolated

data did somewhat better than the one trained on the real data when tested on the interpo-

lated data, however not significantly so.

6.3.5 Experimental Description

For this experiment, the generated samples were greatly blurred, and had a large amount

of noise added. However, variance was decreased to slightly above the default levels.

Seeds were kept the same as in the last test. Training was performed as before while the

test interpolated data was taken from the entire range between the real CMR and CMFF

fonts.

Percentage Typeface Mix of Training characters:

Following is a graphical representation of the types of data for this particular experiment.

Recall that the end characters use real fonts while the in-between characters are mixtures

ranging from 10-90% of each font.

Training Data.
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Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp 10 10 10 10 10 ** 10 10 10 10 10

The generating parameters and number of samples for the training data from this typeface

model and this image quality model are below.

Parameters

Training data:

Pure Parameters: -e2.0,1.1 -t.4,.125 -s.4,.125

Pure Seed: -S5

Number Samples: 1600

Interpolated Parameters: -e2.0,1.1 -t.4,.125 -s.4,.125

Interpolated Seed: numb(0-10)

Number Samples: 1600

Percentage Typeface Mix of Test characters:

Following is a graphical representation of the types of test data for this particular experi-

ment.

Test Data.

Pure 50 ** ** ** ** ** ** ** ** ** 50
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Interp 10 10 10 10 10 ** 10 10 10 10 10

The generating parameters and number of test samples for the test data for this typeface

model from this image quality model are below.

Parameters

Test data:

Real Parameters: -e2.0,1.1 -t.4,.125 -s.4,.125

Real Test Seed: -S11

Number Samples: 400

Interpolated Parameters: -e2.0,1.1 -t.4,.125 -s.4,.125

Interpolated Seed: numb * 2 (0,2,4...20)

Number Samples: 400
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Samples chosen to illustrate data used

Pure Training Samples Interpolated Training Samples

Pure Test Samples Interpolated Test Samples

Samples of Data with closest match

The following samples are of misclassified letters where possible. The first character is

the test sample, while the second is its nearest neighbor.
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pure/pure j’s

pure/pure i’s

interp/pure j’s

interp/pure i’s

pure/interp j’s

pure/interp i’s

interp/interp j’s

interp/interp i’s

Error Rates ( j’s / i’s = tot misclassified out of 200)

TEST ON

Pure(A) Itrp(B)

TRAIN ON

Pure(A) j: 5
85

j: 4
58

i: 80 i: 54

Itrp(B) j: 2
87

j: 4
53

i: 85 i: 49

Hypothesis 1:

We claim that BB, the classifier trained on a mixture of pure and interpolated data will

do better than AB, the one trained on the pure only data when tested on Interpolated data.

The null hypothesis is therefore that AB will perform at least as well as BB, that is to say

that the error rate for AB will be less than or equal to the error rate for BB. This means

that the observed error rates o2 <= o4. The actual observed counts are below.
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Right Wrong

TRAIN ON

Pure(A) o1 342 o2 58

e1 344 e2 56

Itrp(B) o3 347 o4 53

e3 344 e4 56

As explained earlier, the result of our test is χ2 = 0.26. Since this result is not greater

than or equal to 3.84 we can not reject the null hypothesis in favor of the hypothesis that

the classifier BB performs better than classifer AB when tested on interpolated data.

Hypothesis 2:

We claim that BA, the classifier trained on the mixture of pure and interpolated training

data will do at least as well as AA, the classifier trained on only pure data when tested on

pure test data. The null hypothesis is that AA and BA will perform equally, thus the two

classifiers should have the same error rates. This means that the observed error rates are

equal, that is, o2 = o4. If we do not reject the null hypothesis then we have some support

for our claim that they perform equally.

Right Wrong

TRAIN ON

Pure(A) o1 315 o2 85

e1 314 e2 86

Itrp(B) o3 313 o4 87

e3 314 e4 86

As explained earlier, the result of our test is χ2 = 0.2. Since this result is not greater than

3.84 we can not reject the null hypothesis in favor of the hypothesis that the classifier has

a different performance when trained on the training sets A and B.
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Conclusions:

For this experiment, both classifiers performed equally when tested on the pure data as

well as when tested on the interpolated data.

6.3.6 Experimental Description

For this experiment, the generated samples were greatly blurred, and had a large amount

of noise added. However, variance was slight. This differed from the last experiment in

that the interpolated samples were all taken from the midpoint between CMR and CMFF.

Percentage Typeface Mix of Training characters:

Following is a graphical representation of the types of data for this particular experiment.

Recall that the end characters use real fonts while the in-between characters are mixtures

ranging from 10-90% of each font.

Training Data.

Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp 10 10 10 10 10 00 10 10 10 10 10

The generating parameters and number of samples for the training data from this typeface

model and this image quality model are below.
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Parameters

Training data:

Pure Parameters: -e2.0,1.1 -t.4,.125 -s.4,.125

Pure Seed: -S12

Number Samples: 1600

Interpolated Parameters: -e2.0,1.1 -t.4,.125 -s.4,.125

Interpolated Seed: numb(0-10)

Number Samples: 1600

Percentage Typeface Mix of Test characters:

Following is a graphical representation of the types of test data for this particular experi-

ment.

Test Data.

Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp ** ** ** ** * 100 ** ** ** ** **

The generating parameters and number of test samples for the test data for this typeface

model from this image quality model are below.
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Parameters

Test data:

Real Parameters: -e2.0,1.1 -t.4,.125 -s.4,.125

Real Test Seed: -S5

Number Samples: 400

Interpolated Parameters: -e2.0,1.1 -t.4,.125 -s.4,.125

Interpolated Seed: -S5

Number Samples: 400

Samples chosen to illustrate data used

Pure Training Samples Interpolated Training Samples

Pure Test Samples Interpolated Test Samples
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Samples of Data with closest match

The following samples are of misclassified letters where possible. The first character is

the test sample, while the second is its nearest neighbor.

pure/pure j’s

pure/pure i’s

interp/pure j’s

interp/pure i’s

pure/interp j’s

pure/interp i’s

interp/interp j’s

interp/interp i’s

Error Rates ( j’s / i’s = tot misclassified out of 200)

TEST ON

Pure(A) Itrp(B)

TRAIN ON

Pure(A) j: 3
86

j: 8
59

i: 83 i: 51

Itrp(B) j: 5
97

j: 2
44

i: 92 i: 42
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Hypothesis 1:

We claim that BB, the classifier trained on a mixture of pure and interpolated data will

do better than AB, the one trained on the pure only data when tested on Interpolated data.

The null hypothesis is therefore that AB will perform at least as well as BB, that is to say

that the error rate for AB will be less than or equal to the error rate for BB. This means

that the observed error rates o2 <= o4. The actual observed counts are below.

Right Wrong

TRAIN ON

Pure(A) o1 341 o2 59

e1 348 e2 52

Itrp(B) o3 356 o4 44

e3 348 e4 52

As explained earlier, the result of our test is χ2 = 2.49. Since this result is not greater

than or equal to 3.84 we can not reject the null hypothesis in favor of the hypothesis that

the classifier BB performs better than classifer AB when tested on interpolated data.

Hypothesis 2:

We claim that BA, the classifier trained on the mixture of pure and interpolated training

data will do at least as well as AA, the classifier trained on only pure data when tested on

pure test data. The null hypothesis is that AA and BA will perform equally, thus the two

classifiers should have the same error rates. This means that the observed error rates are

equal, that is, o2 = o4. If we do not reject the null hypothesis then we have some support

for our claim that they perform equally.
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Right Wrong

TRAIN ON

Pure(A) o1 314 o2 86

e1 308 e2 92

Itrp(B) o3 303 o4 97

e3 308 e4 92

As explained earlier, the result of our test is χ2 = 0.85. Since this result is not greater

than 3.84 we can not reject the null hypothesis in favor of the hypothesis that the classifier

has a different performance when trained on the training sets A and B.

Conclusions:

For this experiment, both classifiers did equally badly when tested on the pure data. They

also did equally badly on the interpolated data. The classifier trained on interpolated data

did slightly better than the one trained on pure data, but not significantly so.

6.3.7 Experimental Description

For this experiment, the generated samples were less blurred, and had a moderate amount

of noise added. The varience was less than the last experiment. Training was performed

as before and the experiment took the test interpolated data entirely from the midpoint

between the real CMR and CMFF fonts.

Percentage Typeface Mix of Training characters:

Following is a graphical representation of the types of data for this particular experiment.

Recall that the end characters use real fonts while the in-between characters are mixtures

ranging from 10-90% of each font.

Training Data.
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Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp 10 10 10 10 10 00 10 10 10 10 10

The generating parameters and number of samples for the training data from this typeface

model and this image quality model are below.

Parameters

Training data:

Pure Parameters: -e1.8,1.0 -t.3,.110 -s.3,.11

Pure Seed: -S12

Number Samples: 1600

Interpolated Parameters: -e1.8,1.0 -t.3,.11 -s.3,.11

Interpolated Seed: numb (0-10)

Number Samples: 1600

Percentage Typeface Mix of Test characters:

Following is a graphical representation of the types of test data for this particular experi-

ment.

Test Data.
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Pure 50 ** ** ** ** ** ** ** ** ** 50

Interp ** ** ** ** * 100 ** ** ** ** **

The generating parameters and number of test samples for the test data for this typeface

model from this image quality model are below.

Parameters

Test data:

Real Test data: -e1.8,1.0 -t.3,.110 -s.3,.11

Real Seed: -S5

Number Samples: 400

Interpolated Test data: -e1.8,1.0 -t.3,.11 -s.3,.11

Interpolated Test Seed: -S5

Number Samples: 400
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Samples chosen to illustrate data used

Pure Training Samples Interpolated Training Samples

Pure Test Samples Interpolated Test Samples

Samples of Data with closest match

The following samples are of misclassified letters where possible. The first character is

the test sample, while the second is its nearest neighbor.
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pure/pure j’s

pure/pure i’s

interp/pure j’s

interp/pure i’s

pure/interp j’s

pure/interp i’s

interp/interp j’s

interp/interp i’s

Error Rates ( j’s / i’s = tot misclassified out of 200)

TEST ON

Pure(A) Itrp(B)

TRAIN ON

Pure(A) j: 0
29

j: 0
10

i: 29 i: 10

Itrp(B) j: 4
37

j: 0
10

i: 33 i: 10

Hypothesis 1:

We claim that BB, the classifier trained on a mixture of pure and interpolated data will

do better than AB, the one trained on the pure only data when tested on Interpolated data.

The null hypothesis is therefore that AB will perform at least as well as BB, that is to say

that the error rate for AB will be less than or equal to the error rate for BB. This means

that the observed error rates o2 <= o4. The actual observed counts are below.
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Right Wrong

TRAIN ON

Pure(A) o1 390 o2 10

e1 390 e2 10

Itrp(B) o3 390 o4 10

e3 390 e4 10

Clearly there is no difference between the performances of the classifiers so we can not

reject the null hypothesis in favor of the hypothesis that the classifier BB performs better

than classifer AB when tested on interpolated data.

Hypothesis 2:

We claim that BA, the classifier trained on the mixture of pure and interpolated training

data will do at least as well as AA, the classifier trained on only pure data when tested on

pure test data. The null hypothesis is that AA and BA will perform equally, thus the two

classifiers should have the same error rates. This means that the observed error rates are

equal, that is, o2 = o4. If we do not reject the null hypothesis then we have some support

for our claim that they perform equally.

Right Wrong

TRAIN ON

Pure(A) o1 371 o2 29

e1 367 e2 33

Itrp(B) o3 363 o4 37

e3 367 e4 33

As explained earlier, the result of our test is χ2 = 1.4. Since this result is not greater than

3.84 we can not reject the null hypothesis in favor of the hypothesis that the classifier has

a different performance when trained on the training sets A and B.
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Conclusions:

For this experiment, both classifiers did much better when tested on both the pure and the

interpolated data, however neither classifier showed a significant difference.

6.3.8 CMR-CMFF (i and j)

When we look at the following chart, we can see that there appears to be no statistical

difference between the classifiers when tested on either the pure only samples, or the

mixed samples. This supports our hypothesis that training on interpolated data does not

hurt the clasifier.

Figure 6.3: CMR-CMFF i and j Experimental Results

Hypothesis 1 Hypothesis 2
Errors Statistic Errors Statistic

Image Quality Range AB BB χ2 Rej AA BA χ2 Rej

normal full 0 0 0.00 no 0 1 1.00 no
slightly blurred full 2 3 2.00 no 1 1 .33 no
greatly blurred, high variance full 71 65 .3 no 83 96 1.20 no
greatly blurred, some variance full 72 64 .54 no 94 93 .10 no
greatly blurred, little variance full 58 53 .26 no 85 87 .20 no
greatly blurred, little variance mid 59 44 2.49 no 86 97 .85 no
slightly blurred, little variance mid 10 10 0.0 no 29 37 1.40 no
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6.4 Three Way CMR/CMFF/CMSS Experiments

We next thought it would be interesting to construct a 3-way interpolation between 3

dissimilar fonts, thus extending our interpolation space into 3 dimensions from 2 dimen-

sions.

6.4.1 Experimental Description

For this experiment, the generated samples were not blurred and had little noise. A vari-

able seed was used for the interpolated data while the real data had no seed. One third

of the pure training samples were taken from each of the pure fonts (CMR, CMFF and

CMSSI). The test interpolated data was taken from the entire range between the real

CMR, CMFF, and CMSSI fonts, with approximately 6 percent from each interpolation.

Percentage Typeface Mix of Training characters:

Following is a graphical representation of the types of data for this particular experiment.

Recall that the end characters use real fonts while the in-between characters are mixtures

of the three fonts.

Training Data.
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Pur 33

** **

** ** **

** ** ** **

** ** ** ** **

33 ** ** ** ** 33

Int **

06 06

06 06 06

06 ** ** 06

06 06 06 06 06

** 06 06 06 06 **

The generating parameters and number of samples for the training data from this typeface

model and this image quality model are below.

Parameters

Training data:

Pure Parameters: default parameters

Pure Seed: no seed

Number Samples: 1800

Interpolated Parameters: default parameters

Interpolated Seed: numb (0-10)

Number Samples: 480

Percentage Typeface Mix of Test characters:

Following is a graphical representation of the types of test data for this particular experi-

ment.
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Test Data.

Pur 33

** **

** ** **

** ** ** **

** ** ** ** **

33 ** ** ** ** 33

Int **

06 06

06 06 06

06 ** ** 06

06 06 06 06 06

** 06 06 06 06 **

The generating parameters and number of test samples for the test data for this typeface

model from this image quality model are below.

Parameters

Test data:
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Pure parameters: default parameters

Pure Seed: no seed

Number Samples: 1800

Interpolated Parameters: default parameters

Interpolated Seed: numb (0-10)

Number Samples: 480

Samples chosen to illustrate data used

Pure Training Samples Interpolated Training Samples

Pure Test Samples Interpolated Test Samples

Samples of Data with closest match

The following samples are of misclassified letters where possible. The first character is

the test sample, while the second is its nearest neighbor.
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pure/pure e’s

pure/pure c’s

interp/pure e’s

interp/pure c’s

pure/interp e’s

pure/interp c’s

interp/interp e’s

interp/interp c’s

Error Rates ( e’s / c’s = tot misclassified out of 200)

TEST ON

Pure(A) Itrp(B)

TRAIN ON

Pure(A) e: 0
0

e: 40
42

c: 0 c: 2

Itrp(B) e: 0
0

e: 3
3

c: 0 c: 0

Hypothesis 1:

We claim that BB, the classifier trained on a mixture of pure and interpolated data will

do better than AB, the one trained on the pure only data when tested on Interpolated data.

The null hypothesis is therefore that AB will perform at least as well as BB, that is to say

that the error rate for AB will be less than or equal to the error rate for BB. This means

that the observed error rates o2 <= o4. The actual counts observed are listed below
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Right Wrong

TRAIN ON

Pure(A) o1 358 o2 42

e1 377 e2 23

Itrp(B) o3 397 o4 3

e3 377 e4 23

As explained earlier, the result of our test is χ2 = 31.57. Since this result is greater than or

equal to 3.84 we can reject the null hypothesis in favor of the hypothesis that the classifier

BB performs better than classifer AB when tested on interpolated data.

Hypothesis 2:

We claim that BA, the classifier trained on the mixture of pure and interpolated training

data will do at least as well as AA, the classifier trained on only pure data when tested on

pure test data. The null hypothesis is that AA and BA will perform equally, thus the two

classifiers should have the same error rates. This means that the observed error rates are

equal, that is, o2 = o4. If we do not reject the null hypothesis then we have some support

for our claim that they perform equally.

Right Wrong

TRAIN ON

Pure(A) o1 400 o2 0

e1 400 e2 0

Itrp(B) o3 400 o4 0

e3 400 e4 0

Clearly there is no difference between the performances of the classifiers so we can not

reject the null hypothesis in favor of the hypothesis that the classifier has a different per-

formance when trained on the training sets A and B.
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Conclusions:

For this experiment, unexpectedly, the classifier trained on the interpolated data did sig-

nificantly better than the one trained on only pure data when tested on the interpolated

data. However, the classifier trained on the interpolated data performed equally with the

one trained on the pure data when tested on the pure data.

6.4.2 Experimental Description

For this experiment, the generated samples were slightly more blurred, and had a small

amount of noise added. No seed was used for the pure data howver a variable seed was

used for the interpolated data. The test interpolated data was taken from the entire range

among the real CMR,CMFF and CMSSI fonts.

Percentage Typeface Mix of Training characters:

Following is a graphical representation of the types of data for this particular experiment.

Recall that the end characters use real fonts while the in-between characters are mixtures

of the three fonts.

Training Data.
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Pur 33

** **

** ** **

** ** ** **

** ** ** ** **

33 ** ** ** ** 33

Int **

06 06

06 06 06

06 ** ** 06

06 06 06 06 06

** 06 06 06 06 **

The generating parameters and number of samples for the training data from this typeface

model and this image quality model are below.

Parameters

Training data:

Pure Parameters: -e1.0,1.1 -t.15,.125 -s.130,.125

Pure Seed: no seed

Number Samples: 1800

Interpolated Parameters: -e1.0,1.1 -t.15,.125 -s.130,.125

Interpolated Seed: numb(0-10)

Number Samples: 1800

Percentage Typeface Mix of Test characters:

Following is a graphical representation of the types of test data for this particular experi-

ment.
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Test Data.

Pur 33

** **

** ** **

** ** ** **

** ** ** ** **

33 ** ** ** ** 33

Int **

06 06

06 06 06

06 ** ** 06

06 06 06 06 06

** 06 06 06 06 **

The generating parameters and number of test samples for the test data for this typeface

model from this image quality model are below.

Parameters

Test data:
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Pure Parameters: -e1.0,1.1 -t.15,.125 -s.130,.125

Pure Test Seed: no seed

Number Samples: 480

Interpolated Test data: -e1.0,1.1 -t.15,.125 -s.130,.125

Interpolated Test Seed: numb(0-10)

Number Samples: 480

Samples chosen to illustrate data used

Pure Training Samples Interpolated Training Samples

Pure Test Samples Interpolated Test Samples

Samples of Data with closest match

The following samples are of misclassified letters where possible. The first character is

the test sample, while the second is its nearest neighbor.
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pure/pure e’s

pure/pure c’s

interp/pure e’s

interp/pure c’s

pure/interp e’s

pure/interp c’s

interp/interp e’s

interp/interp c’s

Error Rates ( e’s / c’s = tot misclassified out of 200)

TEST ON

Pure(A) Itrp(B)

TRAIN ON

Pure(A) e: 0
0

e: 17
18

c: 0 c: 1

Itrp(B) e: 0
0

e: 0
0

c: 0 c: 0

Hypothesis 1:

We claim that BB, the classifier trained on a mixture of pure and interpolated data will

do better than AB, the one trained on the pure only data when tested on Interpolated data.

The null hypothesis is therefore that AB will perform at least as well as BB, that is to say

that the error rate for AB will be less than or equal to the error rate for BB. This means

that the observed error rates o2 <= o4. The actual counts observed are listed below
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Right Wrong

TRAIN ON

Pure(A) o1 382 o2 18

e1 391 e2 9

Itrp(B) o3 400 o4 0

e3 391 e4 9

As explained earlier, the result of our test is χ2 = 14.54. Since this result is greater than or

equal to 3.84 we can reject the null hypothesis in favor of the hypothesis that the classifier

BB performs better than classifer AB when tested on interpolated data.

Hypothesis 2:

We claim that BA, the classifier trained on the mixture of pure and interpolated training

data will do at least as well as AA, the classifier trained on only pure data when tested on

pure test data. The null hypothesis is that AA and BA will perform equally, thus the two

classifiers should have the same error rates. This means that the observed error rates are

equal, that is, o2 = o4. If we do not reject the null hypothesis then we have some support

for our claim that they perform equally.

Right Wrong

TRAIN ON

Pure(A) o1 400 o2 0

e1 400 e2 0

Itrp(B) o3 400 o4 0

e3 400 e4 0

Clearly there is no difference between the performances of the classifiers so we can not

reject the null hypothesis in favor of the hypothesis that the classifier has a different per-

formance when trained on the training sets A and B.
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Conclusions:

For this experiment, unexpectedly, the classifier trained on the interpolated data did sig-

nificantly better than the one trained on only pure data when tested on the interpolated

data. The classifiers performed equally when tested on the pure data.

6.4.3 Experimental Description

For this experiment, the generated samples were greatly blurred, and had a large amount

of noise added. A seed fo 2 was used for the real data, while the interpolated data had

a variable seed. Training was performed as before while the test interpolated data was

taken from the entire range between the real CMR, CMFF and CMSSI fonts.

Percentage Typeface Mix of Training characters:

Following is a graphical representation of the types of data for this particular experiment.

Recall that the end characters use real fonts while the in-between characters are mixtures

of the three fonts.

Training Data.
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Pur 33

** **

** ** **

** ** ** **

** ** ** ** **

33 ** ** ** ** 33

Int **

06 06

06 06 06

06 ** ** 06

06 06 06 06 06

** 06 06 06 06 **

The generating parameters and number of samples for the training data from this typeface

model and this image quality model are below.

Parameters

Training data:

Pure Parameters: -e2.0,2.1 -t.4,.4 -s.4,.4130

Pure Seed: -S2

Number Samples: 1600

Interpolated Parameters: -e2.0,2.1 -t.4,.4 -s.4,.4130

Interpolated Seed: numb(0-10)

Number Samples: 1600

Percentage Typeface Mix of Test characters:

Following is a graphical representation of the types of test data for this particular experi-

ment.
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Test Data.

Pur 33

** **

** ** **

** ** ** **

** ** ** ** **

33 ** ** ** ** 33

Int **

06 06

06 06 06

06 ** ** 06

06 06 06 06 06

** 06 06 06 06 **

The generating parameters and number of test samples for the test data for this typeface

model from this image quality model are below.

Parameters

Test data:
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Pure Parameters: -e2.0,2.1 -t.4,.4 -s.4,.4130

Pure Seed: -S2

Number Samples: 400

Interpolated Parameters: -e2.0,2.1 -t.4,.4 -s.4,.4130

Interpolated Seed: numb(0-10)

Number Samples: 400

Samples chosen to illustrate data used

Pure Training Samples Interpolated Training Samples

Pure Test Samples Interpolated Test Samples

Samples of Data with closest match

The following samples are of misclassified letters where possible. The first character is

the test sample, while the second is its nearest neighbor.
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pure/pure e’s

pure/pure c’s

interp/pure e’s

interp/pure c’s

pure/interp e’s

pure/interp c’s

interp/interp e’s

interp/interp c’s

Error Rates ( e’s / c’s = tot misclassified out of 200)

TEST ON

Pure(A) Itrp(B)

TRAIN ON

Pure(A) e: 36
91

e: 62
111

c: 55 c: 49

Itrp(B) e: 24
92

e: 48
111

c: 68 c: 63

Hypothesis 1:

We claim that BB, the classifier trained on a mixture of pure and interpolated data will

do better than AB, the one trained on the pure only data when tested on Interpolated data.

The null hypothesis is therefore that AB will perform at least as well as BB, that is to say

that the error rate for AB will be less than or equal to the error rate for BB. This means

that the observed error rates o2 <= o4. The actual counts observed are listed below
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Right Wrong

TRAIN ON

Pure(A) o1 289 o2 111

e1 289 e2 111

Itrp(B) o3 289 o4 111

e3 289 e4 111

Clearly there is no difference between the performances of the classifiers so we can not

reject the null hypothesis in favor of the hypothesis that the classifier BB performs better

than classifer AB when tested on interpolated data.

Hypothesis 2:

We claim that BA, the classifier trained on the mixture of pure and interpolated training

data will do at least as well as AA, the classifier trained on only pure data when tested on

pure test data. The null hypothesis is that AA and BA will perform equally, thus the two

classifiers should have the same error rates. This means that the observed error rates are

equal, that is, o2 = o4. If we do not reject the null hypothesis then we have some support

for our claim that they perform equally.

Right Wrong

TRAIN ON

Pure(A) o1 309 o2 91

e1 308 e2 92

Itrp(B) o3 308 o4 92

e3 308 e4 92

As explained earlier, the result of our test is χ2 = 0.1. Since this result is not greater than

3.84 we can not reject the null hypothesis in favor of the hypothesis that the classifier has

a different performance when trained on the training sets A and B.
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Conclusions:

For this experiment, both classifiers performed the same when tested on both interpo-

lated and pure data. Both performed badly, perhaps because the characters were so badly

distorted.

6.4.4 Experimental Description

For this experiment, the generated samples were greatly blurred, and had a large amount

of noise added. However, the variance was limited to half of what it was in the previous

experiment. Real training data had a seed of 5, while the real test data had a seed of 11.

The interpolated training data had a variable seed, and the interpolated test data had a

different variable seed. Training was performed as before while the test interpolated data

was taken from almost the entire range between the real CMR, CMFF and CMSSI fonts.

Percentage Typeface Mix of Training characters:

Following is a graphical representation of the types of data for this particular experiment.

Recall that the end characters use real fonts while the in-between characters are mixtures

of the three fonts.

Training Data.
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Pur 33
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** ** **

** ** ** **

** ** ** ** **

33 ** ** ** ** 33

Int **

06 06
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06 ** ** 06

06 06 06 06 06

** 06 06 06 06 **

The generating parameters and number of samples for the training data from this typeface

model and this image quality model are below.

Parameters

Training data:

Pure Parameters: -e2.0,1.1 -t.4,.2 -s.4,.2
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Pure Seed: -S5

Number Samples: 1800

Interpolated Parameters: -e2.0,1.1 -t.4,.2 -s.4,.2

Interpolated Seed: Snumb (0-10)

Number Samples: 1800

Percentage Typeface Mix of Test characters:

Following is a graphical representation of the types of test data for this particular experi-

ment.

Test Data.

Pur 33

** **

** ** **

** ** ** **

** ** ** ** **

33 ** ** ** ** 33

205



6.4. THREE WAY CMR/CMFF/CMSS EXPERIMENTS

Int **

06 06

06 06 06

06 ** ** 06

06 06 06 06 06

** 06 06 06 06 **

The generating parameters and number of test samples for the test data for this typeface

model from this image quality model are below.

Parameters

Test data:

Pure Parameters: -e2.0,1.1 -t.4,.2 -s.4,.2

Pure Seed: -S11

Number Samples: 480

Interpolated Parameters: -e2.0,1.1 -t.4,.2 -s.4,.2

Interpolated Test Seed: numb * 3 (0, 3, 6....30)

Number Samples: 480
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6.4. THREE WAY CMR/CMFF/CMSS EXPERIMENTS

Samples chosen to illustrate data used

Pure Training Samples Interpolated Training Samples

Pure Test Samples Interpolated Test Samples

Samples of Data with closest match

The following samples are of misclassified letters where possible. The first character is

the test sample, while the second is its nearest neighbor.
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6.4. THREE WAY CMR/CMFF/CMSS EXPERIMENTS

pure/pure e’s

pure/pure c’s

interp/pure e’s

interp/pure c’s

pure/interp e’s

pure/interp c’s

interp/interp e’s

interp/interp c’s

Error Rates ( e’s / c’s = tot misclassified out of 200)

TEST ON

Pure(A) Itrp(B)

TRAIN ON

Pure(A) e: 44
64

e: 89
109

c: 20 c: 20

Itrp(B) e: 46
72

e: 30
48

c: 26 c: 18

Hypothesis 1:

We claim that BB, the classifier trained on a mixture of pure and interpolated data will

do better than AB, the one trained on the pure only data when tested on Interpolated data.

The null hypothesis is therefore that AB will perform at least as well as BB, that is to say

that the error rate for AB will be less than or equal to the error rate for BB. This means

that the observed error rates o2 <= o4. The actual counts observed are listed below
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6.4. THREE WAY CMR/CMFF/CMSS EXPERIMENTS

Right Wrong

TRAIN ON

Pure(A) o1 291 o2 109

e1 321 e2 79

Itrp(B) o3 352 o4 48

e3 321 e4 79

As explained earlier, the result of our test is χ2 = 29.34. Since this result is greater than or

equal to 3.84 we can reject the null hypothesis in favor of the hypothesis that the classifier

BB performs better than classifer AB when tested on interpolated data.

Hypothesis 2:

We claim that BA, the classifier trained on the mixture of pure and interpolated training

data will do at least as well as AA, the classifier trained on only pure data when tested on

pure test data. The null hypothesis is that AA and BA will perform equally, thus the two

classifiers should have the same error rates. This means that the observed error rates are

equal, that is, o2 = o4. If we do not reject the null hypothesis then we have some support

for our claim that they perform equally.

Right Wrong

TRAIN ON

Pure(A) o1 336 o2 64

e1 332 e2 68

Itrp(B) o3 328 o4 72

e3 332 e4 68

As explained earlier, the result of our test is χ2 = 0.54. Since this result is not greater

than 3.84 we can not reject the null hypothesis in favor of the hypothesis that the classifier

has a different performance when trained on the training sets A and B.
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6.4. THREE WAY CMR/CMFF/CMSS EXPERIMENTS

Conclusions:

For this experiment, both classifiers did equally badly when tested on the pure data. They

each misclassified about 30 per cent of the samples. The classifier trained on the interpo-

lated data did significantly better than the one trained on the pure data when tested on the

interpolated data.

6.4.5 Experimental Description

For this experiment, the generated samples were greatly blurred, and had a large amount

of noise added. However, variance was decreased to slightly above the default levels.

Seeds were random for the interpolated training data, and a different random seed was

used for the interpolated test data. Training was performed as before while the test inter-

polated data was taken from the entire range among the real CMR, CMSSI and CMFF

fonts.

Percentage Typeface Mix of Training characters:

Following is a graphical representation of the types of data for this particular experiment.

Recall that the end characters use real fonts while the in-between characters are mixtures

of the three fonts.

Training Data.
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6.4. THREE WAY CMR/CMFF/CMSS EXPERIMENTS

Pur 33

** **

** ** **

** ** ** **

** ** ** ** **

33 ** ** ** ** 33

Int **

06 06

06 06 06

06 ** ** 06

06 06 06 06 06

** 06 06 06 06 **

The generating parameters and number of samples for the training data from this typeface

model and this image quality model are below.

Parameters

Training data:

Pure Parameters: -e2.0,1.1 -t.4,.125 -s.4,.125
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6.4. THREE WAY CMR/CMFF/CMSS EXPERIMENTS

Pure Seed: -S5

Number Samples: 1800

Interpolated Parameters: -e2.0,1.1 -t.4,.125 -s.4,.125

Interpolated Seed: numb(0-10)

Number Samples: 1800

Percentage Typeface Mix of Test characters:

Following is a graphical representation of the types of test data for this particular experi-

ment.

Test Data.

Pur 33

** **

** ** **

** ** ** **

** ** ** ** **

33 ** ** ** ** 33
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6.4. THREE WAY CMR/CMFF/CMSS EXPERIMENTS

Int **

06 06

06 06 06

06 ** ** 06

06 06 06 06 06

** 06 06 06 06 **

The generating parameters and number of test samples for the test data for this typeface

model from this image quality model are below.

Parameters

Test data:

Real Parameters: -e2.0,1.1 -t.4,.125 -s.4,.125

Real Test Seed: -S11

Number Samples: 480

Interpolated Parameters: -e2.0,1.1 -t.4,.125 -s.4,.125

Interpolated Seed: numb * 2 (0,2,4...20)

Number Samples: 480
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6.4. THREE WAY CMR/CMFF/CMSS EXPERIMENTS

Samples chosen to illustrate data used

Pure Training Samples Interpolated Training Samples

Pure Test Samples Interpolated Test Samples

Samples of Data with closest match

The following samples are of misclassified letters where possible. The first character is

the test sample, while the second is its nearest neighbor.
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6.4. THREE WAY CMR/CMFF/CMSS EXPERIMENTS

pure/pure e’s

pure/pure c’s

interp/pure e’s

interp/pure c’s

pure/interp e’s

pure/interp c’s

interp/interp e’s

interp/interp c’s

Error Rates ( e’s / c’s = tot misclassified out of 200)

TEST ON

Pure(A) Itrp(B)

TRAIN ON

Pure(A) e: 49
54

e: 80
86

c: 5 c: 6

Itrp(B) e: 59
70

e: 39
55

c: 11 c: 16

Hypothesis 1:

We claim that BB, the classifier trained on a mixture of pure and interpolated data will

do better than AB, the one trained on the pure only data when tested on Interpolated data.

The null hypothesis is therefore that AB will perform at least as well as BB, that is to say

that the error rate for AB will be less than or equal to the error rate for BB. This means

that the observed error rates o2 <= o4. The actual counts observed are listed below
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6.4. THREE WAY CMR/CMFF/CMSS EXPERIMENTS

Right Wrong

TRAIN ON

Pure(A) o1 314 o2 86

e1 329 e2 71

Itrp(B) o3 345 o4 55

e3 329 e4 71

As explained earlier, the result of our test is χ2 = 8.21. Since this result is greater than or

equal to 3.84 we can reject the null hypothesis in favor of the hypothesis that the classifier

BB performs better than classifer AB when tested on interpolated data.

Hypothesis 2:

We claim that BA, the classifier trained on the mixture of pure and interpolated training

data will do at least as well as AA, the classifier trained on only pure data when tested on

pure test data. The null hypothesis is that AA and BA will perform equally, thus the two

classifiers should have the same error rates. This means that the observed error rates are

equal, that is, o2 = o4. If we do not reject the null hypothesis then we have some support

for our claim that they perform equally.

Right Wrong

TRAIN ON

Pure(A) o1 346 o2 54

e1 338 e2 62

Itrp(B) o3 330 o4 70

e3 338 e4 62

As explained earlier, the result of our test is χ2 = 2.42. Since this result is not greater

than 3.84 we can not reject the null hypothesis in favor of the hypothesis that the classifier

has a different performance when trained on the training sets A and B.
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6.4. THREE WAY CMR/CMFF/CMSS EXPERIMENTS

Conclusions:

For this experiment, both classifiers performed equally when tested on the pure data.

When tested on the interpolated data, the classifier trained on pure data did significantly

worse than the one trained on the interpolated data.

6.4.6 Experimental Description

For this experiment, the generated samples were greatly blurred, and had a large amount

of noise added. However, variance was slight. This differed from the last experiment in

that the interpolated test samples were all taken from the midpoint between CMR, CMFF

and CMSSI.

Percentage Typeface Mix of Training characters:

Following is a graphical representation of the types of data for this particular experiment.

Recall that the end characters use real fonts while the in-between characters are mixtures

of the three fonts.

Training Data.

217
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Pur 33

** **

** ** **

** ** ** **

** ** ** ** **

33 ** ** ** ** 33

Int **
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06 ** ** 06

06 06 06 06 06

** 06 06 06 06 **

The generating parameters and number of samples for the training data from this typeface

model and this image quality model are below.

Parameters

Training data:

Pure Parameters: -e2.0,1.1 -t.4,.125 -s.4,.125

Pure Seed: -S12

Number Samples: 1800

Interpolated Parameters: -e2.0,1.1 -t.4,.125 -s.4,.125

Interpolated Seed: numb2 + numb (numb2 = 0,2,4...10), (numb = 0,2,4...10)

Number Samples: 1800

Percentage Typeface Mix of Test characters:

Following is a graphical representation of the types of test data for this particular experi-

ment.
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6.4. THREE WAY CMR/CMFF/CMSS EXPERIMENTS

Test Data.

Pur 33

** **

** ** **

** ** ** **

** ** ** ** **

33 ** ** ** ** 33

Int **

** **

** ** **

** 50 50 **

** ** ** ** **

** ** ** ** ** **

The generating parameters and number of test samples for the test data for this typeface

model from this image quality model are below.

Parameters

Test data:
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6.4. THREE WAY CMR/CMFF/CMSS EXPERIMENTS

Real Parameters: -e2.0,1.1 -t.4,.125 -s.4,.125

Real Test Seed: -S5

Number Samples: 480

Interpolated Parameters: -e2.0,1.1 -t.4,.125 -s.4,.125

Interpolated Seed: (6, 10)

Number Samples: 480

Samples chosen to illustrate data used

Pure Training Samples Interpolated Training Samples

Pure Test Samples Interpolated Test Samples

Samples of Data with closest match

The following samples are of misclassified letters where possible. The first character is

the test sample, while the second is its nearest neighbor.
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6.4. THREE WAY CMR/CMFF/CMSS EXPERIMENTS

pure/pure e’s

pure/pure c’s

interp/pure e’s

interp/pure c’s

pure/interp e’s

pure/interp c’s

interp/interp e’s

interp/interp c’s

Error Rates ( e’s / c’s = tot misclassified out of 200)

TEST ON

Pure(A) Itrp(B)

TRAIN ON

Pure(A) e: 66
67

e: 49
57

c: 1 c: 8

Itrp(B) e: 40
52

e: 17
22

c: 12 c: 5

Hypothesis 1:

We claim that BB, the classifier trained on a mixture of pure and interpolated data will

do better than AB, the one trained on the pure only data when tested on Interpolated data.

The null hypothesis is therefore that AB will perform at least as well as BB, that is to say

that the error rate for AB will be less than or equal to the error rate for BB. This means

that the observed error rates o2 <= o4. The actual counts observed are listed below
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Right Wrong

TRAIN ON

Pure(A) o1 343 o2 57

e1 360 e2 40

Itrp(B) o3 378 o4 22

e3 360 e4 40

As explained earlier, the result of our test is χ2 = 17.2. Since this result is greater than or

equal to 3.84 we can reject the null hypothesis in favor of the hypothesis that the classifier

BB performs better than classifer AB when tested on interpolated data.

Hypothesis 2:

We claim that BA, the classifier trained on the mixture of pure and interpolated training

data will do at least as well as AA, the classifier trained on only pure data when tested on

pure test data. The null hypothesis is that AA and BA will perform equally, thus the two

classifiers should have the same error rates. This means that the observed error rates are

equal, that is, o2 = o4. If we do not reject the null hypothesis then we have some support

for our claim that they perform equally.

Right Wrong

TRAIN ON

Pure(A) o1 333 o2 67

e1 340 e2 60

Itrp(B) o3 348 o4 52

e3 340 e4 60

As explained earlier, the result of our test is χ2 = 2.19. Since this result is not greater

than 3.84 we can not reject the null hypothesis in favor of the hypothesis that the classifier

has a different performance when trained on the training sets A and B.
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6.4. THREE WAY CMR/CMFF/CMSS EXPERIMENTS

Conclusions:

For this experiment, both classifiers did equally badly when tested on the pure data. The

classifier trained on pure only data did badly when tested on the interpolated data, and

significantly worse than the one trained on interpolated data. Since the interpolated sam-

ples were all taken from the midpoint between CMR, CMSS and CMSSI, they were very

different from what the pure classifier had been trained on.

6.4.7 Experimental Description

For this experiment, the generated samples were less blurred, and had a moderate amount

of noise added. The varience was less than the last experiment. Training was performed

as before and the experiment took the test interpolated data entirely from the midpoint

between the real CMR, CMFF and CMSSI fonts.

Percentage Typeface Mix of Training characters:

Following is a graphical representation of the types of data for this particular experiment.

Recall that the end characters use real fonts while the in-between characters are mixtures

of the three fonts.

Training Data.
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Pur 50

** **

** ** **

** ** ** **

** ** ** ** **

50 ** ** ** ** 50

Int **
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10 ** ** 10
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The generating parameters and number of samples for the training data from this typeface

model and this image quality model are below.

Parameters

Training data:

Pure Parameters: -e1.8,1.0 -t.3,.110 -s.3,.11
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6.4. THREE WAY CMR/CMFF/CMSS EXPERIMENTS

Pure Seed: -S12

Number Samples: 1800

Interpolated Parameters: -e1.8,1.0 -t.3,.11 -s.3,.11

Interpolated Seed: numb2 + numb (numb2 = 0,2,4...10), (numb = 0,2,4...10)

Number Samples: 1800

Percentage Typeface Mix of Test characters:

Following is a graphical representation of the types of test data for this particular experi-

ment.

Test Data.
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Int **

** **

** ** **

** 50 50 **

** ** ** ** **

** ** ** ** ** **

The generating parameters and number of test samples for the test data for this typeface

model from this image quality model are below.

Parameters

Test data:

Real Test data: -e1.8,1.0 -t.3,.110 -s.3,.11

Real Seed: -S5

Number Samples: 480

Interpolated Test data: -e1.8,1.0 -t.3,.11 -s.3,.11

Interpolated Test Seed: (6, 10)

Number Samples: 480
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Samples chosen to illustrate data used

Pure Training Samples Interpolated Training Samples

Pure Test Samples Interpolated Test Samples

Samples of Data with closest match

The following samples are of misclassified letters where possible. The first character is

the test sample, while the second is its nearest neighbor.
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pure/pure e’s

pure/pure c’s

interp/pure e’s

interp/pure c’s

pure/interp e’s

pure/interp c’s

interp/interp e’s

interp/interp c’s

Error Rates ( e’s / c’s = tot misclassified out of 200)

TEST ON

Pure(A) Itrp(B)

TRAIN ON

Pure(A) e: 7
7

e: 9
9

c: 0 c: 0

Itrp(B) e: 9
15

e: 2
4

c: 6 c: 2

Hypothesis 1:

We claim that BB, the classifier trained on a mixture of pure and interpolated data will

do better than AB, the one trained on the pure only data when tested on Interpolated data.

The null hypothesis is therefore that AB will perform at least as well as BB, that is to say

that the error rate for AB will be less than or equal to the error rate for BB. This means

that the observed error rates o2 <= o4. The actual counts observed are listed below
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Right Wrong

TRAIN ON

Pure(A) o1 391 o2 9

e1 393 e2 7

Itrp(B) o3 396 o4 4

e3 393 e4 7

As explained earlier, the result of our test is χ2 = 0.72. Since this result is not greater

than or equal to 3.84 we can not reject the null hypothesis in favor of the hypothesis that

the classifier BB performs better than classifer AB when tested on interpolated data.

Hypothesis 2:

We claim that BA, the classifier trained on the mixture of pure and interpolated training

data will do at least as well as AA, the classifier trained on only pure data when tested on

pure test data. The null hypothesis is that AA and BA will perform equally, thus the two

classifiers should have the same error rates. This means that the observed error rates are

equal, that is, o2 = o4. If we do not reject the null hypothesis then we have some support

for our claim that they perform equally.

Right Wrong

TRAIN ON

Pure(A) o1 393 o2 7

e1 389 e2 11

Itrp(B) o3 385 o4 15

e3 389 e4 11

As explained earlier, the result of our test is χ2 = 2.98. Since this result is not greater

than 3.84 we can not reject the null hypothesis in favor of the hypothesis that the classifier

has a different performance when trained on the training sets A and B.
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6.4. THREE WAY CMR/CMFF/CMSS EXPERIMENTS

Conclusions:

For this experiment, both classifiers did much better when tested on the interpolated data.

The classifier trained on interpolated data did not do significantly better than the one

trained on pure data only when tested on the interpolated data. Both classifiers also did

equally well when tested on the pure samples. These were not the results we expected

based on the last experiment.

6.4.8 Three Way CMR/CMFF/CMSS Test Group Results

In the following chart, we can graphically see that that classifier trained on the mixed data

did significantly better than the one trained on the pure only data. This classifier appears

to have recognized normal and slightly blurred samples better than the pure classifier if

those samples wee taken from the full range of the data. However, it is interesting to

see that the classifiers perform so similarly when the slightly blurred images are taken

from midpoint of the interpolations. Once again, we see that the classifiers had similar

performance when tested on the pure only data.
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6.4. THREE WAY CMR/CMFF/CMSS EXPERIMENTS

Figure 6.4: CMR-CMSSI-CMFF e and c Experimental Results

Hypothesis 1 Hypothesis 2
Errors Statistic Errors Statistic

Image Quality Range AB BB χ2 Rej AA BA χ2 Rej

normal full 42 3 31.57 yes 0 0 0.00 no
slightly blurred full 18 0 14.54 yes 0 0 0.00 no
greatly blurred, high variance full 111 111 0.0 no 91 92 .10 no
greatly blurred, some variance full 109 48 29.34 yes 64 72 0.54 no
greatly blurred, little variance full 86 55 8.21 yes 54 70 2.42 no
greatly blurred, little variance mid 57 22 17.20 yes 67 52 2.19 no
slightly blurred, little variance mid 9 4 .72 no 7 15 2.96 no
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Chapter 7

Conclusions

Our experiments have shown that classifiers trained on synthetic data interpolated in pa-

rameter space is safe, that is to say in our tests, a classifier trained on this data never

worsened from tests on pure samples. Furthermore, the classifier trained on interpolated

data often but not always improved accuracy in tests on interpolated samples. Accuracy

was improved about one third of the time in the four sets of experiments we conducted as

described below.

7.1 First Set

Our first set of experiments was performed on interpolations between the Computer Mod-

ern Roman (CMR), a serifed font, and the Computer Modern Sans Serif (CMSS), a sans-

serif font, both from the Computer Modern (CM) family of fonts. These fonts were fairly

similar to one other and results of testing on a set of pure test samples proved that the

classifier trained on interpolated training samples performed as well as the one trained

on pure samples. The classifier trained on the interpolated samples performed better than

the one trained on pure samples in the two instances when test samples were taken from

the full range of interpolated samples, were greatly blurred, and had little variance from

the midpoint of the blurring parameter. The interpolated classifier also performed better

when the test samples were all taken from the midpoint between CMR and CMSS and
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7.2. SECOND SET

Figure 7.1: CMR-CMSS e and c Results

Hypothesis 1 Hypothesis 2
Errors Statistic Errors Statistic

IMAGE QUALITY TEST SET AB BB χ2 Rej AA BA χ2 Rej

normal full 0 1 1.00 no 0 0 0.00 no
slightly blurred full 0 0 0.00 no 0 1 1.00 no
greatly blurred, high variance full 62 72 .88 no 74 69 .20 no
greatly blurred, some variance full 60 42 3.62 no 44 43 .20 no
greatly blurred, little variance full 64 39 6.90 yes 41 45 .20 no
greatly blurred, little variance mid 79 71 .50 no 52 40 1.76 no
slightly blurred, little variance mid 23 10 5.20 yes 6 7 1.40 no

were only slightly blurred with little variance.

In the first two tests, the image quality was either normal or only slightly blurred. Both

classifiers were able to recognize a large fraction of the characters and both performed

equally well on the interpolated samples, which were taken from the full range of in-

terpolated images. As blurring and variance increased in tests three through five, both

classifiers started to perform badly. Only when the variance was decreased did the inter-

polated classifier pull ahead.

For the last two tests the interpolated samples were taken entirely from the midpoint

between the two fonts, and thus were equally dissimilar from each font. When the test

samples were greatly blurred, neither classifier was able to recognize many of the images,

however when the images became less blurred, the interpolated classifier did better.
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7.2. SECOND SET

Figure 7.2: CMR-CMFF e and c Results

Hypothesis 1 Hypothesis 2
Errors Statistic Errors Statistic

Image Quality Range AB BB χ2 Rej AA BA χ2 Rej

normal full 23 4 10.71 yes 0 0 0.00 no
slightly blurred full 18 3 7.93 yes 0 2 0.00 no
greatly blurred, high variance full 102 106 .80 no 91 83 .46 no
greatly blurred, some variance full 84 83 .10 no 65 73 .54 no
greatly blurred, little variance full 81 57 5.20 yes 58 64 .32 no
greatly blurred, little variance mid 74 56 2.96 no 70 53 2.74 no
slightly blurred, little variance mid 49 16 17.97 yes 8 10 .22 no

7.2 Second Set

We next thought it would be interesting to test our classifier on two fonts which were less

similar. While they were once again taken from the Computer Modern family, the fonts

chosen were much different from each other. We chose Computer Modern Roman (CMR)

and Computer Modern Funny Font (CMFF) for this set of experiments. The same seven

experiments were performed as before.

Once again, both classifiers performed equally when tested on the pure (CMR and CMFF)

test sets. However, this time, the classifier trained on the interpolated data performed bet-

ter when tested on the slightly blurred test sets (both full range and midpoint), as well as

the greatly blurred-little variance test set (both ranges).
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7.3. THIRD SET

Figure 7.3: CMR-CMFF i and j Results

Hypothesis 1 Hypothesis 2
Errors Statistic Errors Statistic

Image Quality Range AB BB χ2 Rej AA BA χ2 Rej

normal full 0 0 0.00 no 0 1 1.00 no
slightly blurred full 2 3 2.00 no 1 1 .33 no
greatly blurred, high variance full 71 65 .3 no 83 96 1.20 no
greatly blurred, some variance full 72 64 .54 no 94 93 .10 no
greatly blurred, little variance full 58 53 .26 no 85 87 .20 no
greatly blurred, little variance mid 59 44 2.49 no 86 97 .85 no
slightly blurred, little variance mid 10 10 0.0 no 29 37 1.40 no

7.3 Third Set

The next set of tests was performed on the two fonts, CMR and CMFF with the letters i

and j. Once again, both classifiers performed equally when tested on the pure test sets.

In every case, the interpolated classifier was at least as good as the pure classifier. How-

ever, when tested on the interpolated test images, there was also no difference between

the recognition of the images. We think that there was either a great enough difference

between the i’s and j’s that the classifiers were able to correctly identify them, or perhaps

the i’s and j’s were similar enough in the fonts chosen that the interpolated samples did

not provide enough variety.

7.4 Fourth Set

The last set of test was even more interesting and challenging. In these experiments we

interpolated among three fonts, Computer Modern Roman (CMR), Computer Modern

Funny Font (CMFF) and a completely different one, Computer Modern Sans Serif Italics

(CMSSI). While these fonts are all from the Computer Modern family, they vary as to
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7.4. FOURTH SET

Figure 7.4: CMR-CMFF-CMSSI e and c Results

Hypothesis 1 Hypothesis 2
Errors Statistic Errors Statistic

Image Quality Range AB BB χ2 Rej AA BA χ2 Rej

normal full 42 3 31.57 yes 0 0 0.00 no
slightly blurred full 18 0 14.54 yes 0 0 0.00 no
greatly blurred, high variance full 111 111 0.0 no 91 92 .10 no
greatly blurred, some variance full 109 48 29.34 yes 64 72 0.54 no
greatly blurred, little variance full 86 55 8.21 yes 54 70 2.42 no
greatly blurred, little variance mid 57 22 17.20 yes 67 52 2.19 no
slightly blurred, little variance mid 9 4 .72 no 7 15 2.96 no

serifs, slant, thickness and many other characteristics.

We performed the same set of seven tests on the three-way interpolations, and once again,

found that both classifiers performed equally when tested on the pure samples. That is to

say, there was no loss of accuracy when the classifier trained on interpolated samples was

tested on the pure test set.

Interestingly enough, the classifier trained on the interpolated samples performed better

when tested on the interpolated samples in five out of the seven cases. It performed better

when tested on the full range of samples in every case except the one in which the im-

ages were greatly blurred with high variance. Both classifiers did badly on this one. It

also performed better when the images were greatly blurred and taken from the midpoint

range only. Both classifiers, however, performed equally well when tested on the slightly

blurred images taken from the midpoint.

It is noteworthy that this last result differs from that of the CMR-CMFF test on the slightly

blurred midpoint test samples. In that test, the classifier trained on the pure images only
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7.5. CONCERNS

could not recognize the midpoint images as well as the one trained on the interpolated

images. Why was the CMR-CMFF-CMSSI classifier able to recognize the interpolated

midpoint images better than the CMR-CMFF one? Could it be that the addition of the

third font, even though it is a pure font, makes the classifier better able to recognize a

previously unseen font? And if that is so, would the addition of many more fonts, both

pure and interpolated make it even better?

7.5 Concerns

It might be argued that it is obvious that the classifier trained on interpolated samples

would do better when tested on interpolated samples, but closer examination leads one to

realize that this might not be the case. While the parameters are contained within a convex

hull created by the starting parameters, it is not at all certain that the features of samples

created with these parameters are also contained within a convex hull of the features.

It is easy to think of an example in which this is not so. For example, let us define two

parameters which are used to generate a box, length and width. Suppose we start with

5x1 and end with 2x4. Interpolating between the these two parameters, we derive 4x2 and

3x3 as new dimensions. These are clearly between the starting values. Now suppose we

choose to use the feature of box area in some fashion to classify our boxes. Our begin-

ning parameters will yield pure boxes of area 5 and 8 respectively, while the interpolations

yield boxes of area 5 and 9. The area of the second box does not fall within the convex

hull of the area of the pure boxes. One could argue that a better feature should have been

chosen, but choosing features is somewhat of an art, and it is not always straightforward

to pick the best from among many.

This leads to the question of whether or not our chosen metric, the Hamming Metric, is

convex in the domain of typeface images of characters. Although it might well be, we

have not shown that to be so. One might reasonably ask that if a very large c in CMR is

closest to a specific very large e in the training set would a very large interpolated c (say
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7.5. CONCERNS

halfway between CMR and CMFF) be closer to a small interpolated c in the same inter-

polated font, or closer to the large e as well. This may have been the situation in some

of our tests, particularly those performed on the is and js. In these cases, the classifier

trained on the interpolated data performed no better than the classifier trained on the pure

data

Another concern is that the use of the interpolated training data in the design of our ex-

periments might have led to improvements merely by the addition of more data and that

adding more pure samples would have had the same effect. We point out that the inter-

polated tests did not add more data, as the interpolated samples replaced existing pure

samples. The training sets were the same sizes in each of the tests. The interpolated train-

ing samples are more varied and it is easy to imagine that by adding these, a neighbor

might be introduced which is equidistant with some other neighboring sample but of a

different class. In such a case, it would be a toss-up as to which sample was picked as the

nearest, and the classifier might perform worse.

One potential problem with the addition of new training samples is the problem of over-

fitting which leads to bad generalization. Sometimes one might get good accuracy but

bad generalization, or bad accuracy but good generalization. In other words, the classifier

might get a tight fit around the training data, however this may lead to poor classification

on the test data.

We bring up these issues in an effort to address questions which might arise regarding

the design of our experiments, and to show that under some circumstances the addition of

interpolated training samples might lead to poorer performance both with the interpolated

test samples as well as the pure test samples.
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Chapter 8

Additional Experiment

One of the existing tests might be biased towards the interpolated training data set; it was

suggested that it might be better to employ pure test data only in a separate, parallel set

of experiments.

8.1 Design of New Experiments

We briefly describe the design of new experiments as follows:

Compare the error rate of classifiers trained on data with interpolated data, to the error

rate of a classifier trained on pure data only, running a sequence of tests over a range of

the number of training samples. This may provide stronger evidence for our broad hy-

pothesis that the addition of interpolated samples drives down the error rate of a classifier

on both pure and interpolated samples, without harming the accuracy of the classifier on

pure samples. If so, it will strengthen our argument that training on interpolated data does

not hurt when testing on pure data, and might also show that the addition of interpolated

training data can help the classifier when testing on pure data.

To implement this experiment we performed the following steps.

239



8.1. DESIGN OF NEW EXPERIMENTS

1. We created a training set consisting of 1000 pure samples each of e and c:

500 CMR es, 500 CMFF es, 500 CMR cs and 500 CMFF cs

The image quality parameters for this pure training set were:

-e.8,1.0 -t.3,.110 -s.3,.11, Seed: -S12.

This provided a moderate amount of blur, threshold and sensitivity with

little variance.

2. We created a pure test set of 1000 of the samples of e and c consisting of

500 CMR es, 500 CMFF es, 500 CMR cs and 500 CMFF cs

The image quality parameters were:

-e.8,1.0 -t.3,.110 -s.3,.11 Seed: -S5.

The seed was different to insure that generally distinct samples were cre-

ated.

3. A series of tests on pure training sets was performed as follows:

(a) For the first test, the classifier was trained on 10 samples each of e and c:

5 CMR es, 5 CMFF es, 5 CMR cs and 5 CMFF cs

i. The classifier was tested on the 1000 test samples.

ii. Error rates were recorded

(b) For the second test, the classifier was trained on 20 samples each of e and c:

10 CMR es, 10 CMFF es, 10 CMR cs and 10 CMFF cs).

The training set included the original samples from test a. above.

i. The classifier was tested on the 1000 test samples.

ii. Error rates were recorded

(c) This series was extended, at each step adding 10 more training samples each

of e and c , for a total of 100 tests.

i. Each classifier was tested on the 1000 test samples.
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8.1. DESIGN OF NEW EXPERIMENTS

ii. Error rates were recorded for each classifier,

4. The results from 3. above were plotted: number of errors as a function of the

number of samples.

Figure 8.1: Results with pure training data

Figure 8.1 shows a graph of our results for the tests using pure test samples and

only pure training data.

The graph clearly shows a large drop in the error rate between 10 and 80 samples.

In fact, the error rate goes from 90 rapidly down to around 35 errors. From 80 to

800 samples the graph trends downwards to a minimum of approximately 23 errors

and then flattens out. Althrough there are several peaks and valleys in the individual

error rates, these can be attributed to the fact that among the training samples for

that particular set, there might have been one sample which was in fact closer to

samples of the other class. When we smooth out the curve, we can clearly see the

downward trend.
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8.2. RESULTS OF NEW EXPERIMENT

5. Using this graph it was possible to identify our area of interest as the interval be-

tween 10 and 500 samples for further experimentation with interpolated training

data. This domain was tested further using interpolated test data as follows.

6. A training set with 10 times the number of samples at the maximum of the area

of interest was created. (In our test, that would be thus 5000 test samples). These

training samples were interpolated samples ranging between CMR and CMFF.

The image quality parameters for the interpolated training set were

-e.8,1.0 -t.3,.110 -s.3,.11 Seed: variable

7. For each of our test points between 10 and 500 (the area of interest), a test as above

was performed using as training data the original pure samples enriched by 10x the

amount of interpolated training samples. (In our example, the first test had 10 pure

samples +100 interpolated samples added to the training data, while the last test

had 500 pure samples +5000 interpolated samples added to the training data.)

The results of these tests as well as the results of the tests on the pure training data

only were plotted together: number of errors as a function of the number of pure

samples (from 10 to 500).

8.2 Results of New Experiment

Based on these results we were able to decide whether or not the error rate on the train-

ing data enriched with interpolated samples is the same or different than that of the pure

training set, and in what way. Figure 8.2 shows our results.

The graphs clearly show similar error rates for the tests conducted with pure traing data to

the tests conducted with the enriched training data. The two lines on the graph start with

a similar number of errors and descend at roughly the same rate, leveling off at about the

same number of training samples. In general, this supports our theory that interpolated
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8.2. RESULTS OF NEW EXPERIMENT

training data does not hurt the classifier when tested on pure samples. However, there is

an interesting divergence at roughly 40 samples. In this area the line for the pure training

samples descends abruptly then rises to around 40 errors while the line for the interpolated

training samples rises to around 55 before descending to 40 errors. We chose this area to

examine in more detail in an effort to determine if the difference was significant.

Figure 8.2: Results with pure vs. enriched training data

Our first step was to determine if the differences fell within a 5 percent margin of error. If

they did so, we could conclude that in fact there was no difference between the test results.

Figure 8.3 shows graphical display of the test results with bars representing the margin of

error for each sample point. Even while accounting for the margin of error there are still

a few test points which show a difference; the question then becomes whether or not that

difference is significant.

Our next step was to expand the graph to more clearly show our area of interest and to

identify the test points in question. In doing so, we found that the points in question were
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8.2. RESULTS OF NEW EXPERIMENT

Figure 8.3: Error bars for pure vs. enriched training data

at 80, 90 and 100 samples. The pure training set at these points thus consisted of 80, 90

and 100 samples each of e and c, while the enriched training set at these particular points

consisted of 80 pure + 800 interpolated, 90 pure + 900 interpolated and 100 pure + 1000

interpolated samples each of e and c.

Figure 8.4 shows our area of interest enlarged. We have also fitted logarithmic regression

lines to the data which will be discussed in more detail later.

Based on the identification of the tests consisting of 80, 90 and 100 pure training samples

and the corresponding enriched plus pure training samples we decided to perform χ2 tests

on the individual results at these test points.

We obtained the following results for each of the three test points. As before, our χ2

is based on the differences between the observed and expected counts of errors for each

type of classifier. The calculation of the χ2 is straightforward and discussed earlier in the

dissertation.
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8.2. RESULTS OF NEW EXPERIMENT

Figure 8.4: Expanded graph pure vs. enriched training data

• test point 80: χ2 = 1.76

• test point 90: χ2 = 5.10

• test point 100: χ2 = 2.66

Since the result of the χ2 for test point 90 is greater than 3.84 we can conclude that there

is a significant difference between the accuracy of the classifier trained on pure only sam-

ples and the one trained on enriched samples for this particular test. The other two test

points did not show a significant difference.

While there may be various reasons for this difference, we believe that the most likely is

that the difference is due to the random variation in the generation of the test and training

samples. We do not believe that a single difference in one test out of a series of 250 tests

invalidates our conclusion that the use of interpolated training data harms the accuracy of

a classifier trained on only pure samples when tested on pure data.
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8.3. FURTHER TESTS

8.3 Further Tests

We further tested the area between 70 and 110 samples by conducting a series of tests

using different seeds for a same sized set of test data, and the training sets of pure and

enriched samples as before. This had the effect of creating different but same-sized test

sets. We averaged the results of the series of tests and plotted the results on a new graph

(figure 8.5) including the error bars to show a 5 percent margin of error.

Since the bars did not overlap, we continued our investigation by performing the χ2 for

each of these test points, arriving at the following:

• test point 80: χ2 = .60

• test point 90: χ2 = .78

• test point 100: χ2 = .64

Since none of these results are greater than 3.84, we can conclude that there is no signif-

icant difference between the performance of the enriched and the pure only classifiers at

these test points.

The logarithmic regression lines were chosen to fit to the graph as they provided the best

match to our data. In examining these lines one can see a smooth downward trend. With

the addition of more and more training samples, and absent the addition of new informa-

tion about the samples (that is to say, new features), the error rate of the classifier will

approach some minimum floor beyond which the addition of more samples will not cause

it to improve. Our experience and theory tells us that this minimum number of errors is

predicted to be twice the Bayes error, and further impovement beyond that is not possible.

Although we had hoped that the classifier trained on the enriched training samples would

perform better when tested on the pure sample set, our additional experiment did not

show any evidence that this occurred. This, again, is in line with the results from our

previous experiments in which the classifier trained on interpolated samples did not differ
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Figure 8.5: Average of 5 tests

significantly from the one trained on the pure only samples in the classification of pure

samples. (AA vs. AB)
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Chapter 9

Overall Conclusions

In our research we set out to answer three questions. First, we wanted to discover if it is

possible to create interpolations in parameter space. We found that it was indeed possible.

By using Knuth’s Metafont system and interpolating between the parameters for each font

we were able to create legible and credible new fonts.

Secondly we wanted to explore if the use of these interpolations is safe, at the very least in

a controlled set of experiments. And thirdly, we sought to determine if there is at least one

set of circumstances in which the use of samples created with the interpolated parameters

leads to better performance.

In our systematic family of tests, we found that the use of synthetic training data gener-

ated by interpolation in parameter space is safe in that it has never worsened results, and

has frequently improved results. The improvement is greater when the fonts being in-

terpolated between are more different from one another and when the images are greatly

blurred with little variance. The three-way interpolation tests showed the most number

of significant improvements for the interpolated training sets. Note that the results shown

are for the two easily confused pairs of characters e/c and i/j.

We refer the reader to the chart in figure 9.1 for a concise graphical summary of our re-

sults.
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Furthermore, an additional series of experiments we performed to test whether or not the

addition of new interpolated samples harmed a classifier when tested on pure samples,

showed graphically that in general, this did not hurt the classifier. This provides support

for our assertion that the use of interpolated data is safe.

Our research has brought up many interesting ideas. No one in the world has yet used

typeface interpolations to generate synthetic data and we are pleased to be the first and

hope there is a useful application for our research results. We would offer up the following

ideas as food for thought.

• Legibility is convex in parameter space, that is to say that any font interpolated

between two legible fonts is still legible.

• Legibility is convex both in typographic space and in image quality space.

• Conversely, can we say that any interpolated font between two illegible fonts is

illegible? We have not proven that, but it is interesting to consider.

So what exactly do we mean by legibility? One definition is that legibility is commonly

thought of as the degree at which glyphs and vocabulary are understandable or readable

based on appearance. [LD08] Legibility pertains to the quality of the typeface design.

Sometimes it is simply a matter of type size, however often it is a matter of typeface

design. In general, typefaces that are true to the basic letterforms are more legible than

typefaces that have been condensed, expanded, embellished, or abstracted. Some factors

influencing legibility are type size and design, for example, comparing serif vs. sans

serif type, italic type vs. roman type, line length, line spacing, color and contrast. Some

commonly agreed findings of legibility research include the following [TS08]:

• Text set in lower case is more legible than text set all in upper case (capitals), pre-

sumably because lower case letter structures and word shapes are more distinctive.

• Extenders (ascenders, descenders and other projecting parts) increase salience (promi-

nence).
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• Regular upright type (roman type) is found to be more legible than italics.

• Contrast, without dazzling brightness, has also been found to be important, with

black on yellow/cream being most effective.

• Positive images (e.g. black on white) are easier to read than negative or reversed

(e.g. white on black).

The most legible typefaces contain big features such as large, open counters, ample low-

ercase x-heights, and character shapes that are obvious and easy to recognize. They are

restrained. They are not excessively light or bold, weight changes within character strokes

are subtle, and serifs, if the face has them, do not call attention to themselves. [TA08]

Let us say that we are interpolating between two legible characters. Assume that we start

with one legible character and smoothly change the size, open counters, x-heights, etc.

and various other characteristics of legibility as defined above. At some interpolation,

say the ith interpolation, we arrive at a character which is no longer legible. Now, since

we are interpolating smoothly, we keep changing the characteristics in the same direction

to produce more interpolations. For example, if the lower-case x-heights are smaller in

interpolation i, they will be even smaller in interpolation i+1. As we continue to change

the features, the character will become more and more distorted. At some point we will

arrive at the other end of the interpolation. It would be impossible for this character to be

legible, as in order to be so, the characteristics would have had to change back to become

legible again, and they would not do so via interpolation. So, if the ending font were

legible, all interpolated fonts in between would have to be legible.

While this is not a rigorous proof, it is intuitively reasonable and we suspect it could be

proven for many commonly accepted individual components that make up legibility.

But is legibility also convex in image quality space? Image quality is determined by many

factors of which we list just a few. [SB05]
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• Sharpness - determines the amount of detail an image can convey. System sharpness

is affected by the lens and sensor (pixel count and anti-aliasing filter). Lost sharp-

ness can be restored by sharping, but oversharpening, can degrade image quality by

causing ”halos” to appear near contrast boundaries.

• Noise is a random variation of image density, visible as grain in film and pixel level

variations in digital images.

• Tonal Response is the relationship between light and pixel level.

• Distortion is an aberration that causes straight lines to curve near the edges of im-

ages.

• Light falloff or vignetting darkens images near the corners.

• Veiling glare is stray light in lenses and optical systems caused by reflections be-

tween lens elements and the inside barrel of the lens.

Let us pick one of the image quality factors, say noise. Our argument for the convexity

of legibility in image quality space is similar to our argument for typographic space. That

is to say, if our two starting images both have an acceptable amount of noise it would

be impossible to interpolate between the two and obtain an in-between image with a less

acceptable amount of noise. We believe this argument could be made for all of the image

quality factors.

Now can we make the argument that any interpolated font between two illegible fonts is

illegible? To answer this question, let us consider just one of the Metafont factors that

governs the creation of a character, barheight, which determines the height of letter bar

lines, such as the horizontal lines on an E. One can easily see that if the barheight is

too small, the horizontal bars will almost disappear, leading to illegibility. Conversely,

if the barheight is extremely large, the bars will merge into one big blob also leading to

an illegible font. If we were to interpolate between these two extremes, we would find

somewhere in between a perfect barheight which would produce a legible font.
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From this example we would conclude that an interpolated font between two illegibile

fonts might in fact be legible. Furthermore, given a legible font, we can always create

two illegible fonts by extrapolating in either direction from the starting parameters until

the ending parameters are so extreme that the fonts they produce can not be recognized.

Based on these ideas as well as our experimental results we would offer the reader this

advice — engineers who wish to build classifiers to test all possible legible typefaces can

use synthetically generated data. This will not harm, and occasionally will improve the

classifier.
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Figure 9.1: Overall Results

CHARS FONT STYLES IMAGE QUALITY TEST SET SAFE? BETTER?

e and c CMR-CMSS normal full range yes –
slightly blurred full range yes –
greatly blurred, high variance full range yes –
greatly blurred, some variance full range yes –
greatly blurred, little variance full range yes yes
greatly blurred, little variance midpoint yes –
slightly blurred, little variance midpoint yes yes

e and c CMR-CMFF normal full range yes –
slightly blurred full range yes yes
greatly blurred, high variance full range yes –
greatly blurred, some variance full range yes –
greatly blurred, little variance full range yes yes
greatly blurred, little variance midpoint yes yes
slightly blurred, little variance midpoint yes yes

e and c CMR-CMFF-CMSSI normal full range yes yes
slightly blurred full range yes yes
greatly blurred, high variance full range yes –
greatly blurred, some variance full range yes yes
greatly blurred, little variance full range yes yes
greatly blurred, little variance midpoint yes yes
slightly blurred, little variance midpoint yes –

i and j CMRCMFF normal full range yes –
slightly blurred full range yes –
greatly blurred, high variance full range yes –
greatly blurred, some variance full range yes –
greatly blurred, little variance full range yes –
greatly blurred, little variance midpoint yes –
slightly blurred, little variance midpoint yes –
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Chapter 10

Future Work

There are many issues we haven’t explored. As discussed previously, there might

be a bias in our set of experiments using interpolated test samples to see if the classi-

fier trained on interpolated data performs better. A more comprehensive test might

include the entire range of fonts from the Computer Modern Family (of which there

are many) in the generation of our test samples. In this way one might obtain many

samples of images created in fonts which have not been seen by either of our classi-

fiers, the one trained on pure as well as the one trained on the interpolated data. An

alternative to this might be to use images created with uninterpolated fonts from

other than the Computer Modern family as test images in the comparison of the

interpolated and pure training classifiers. There is no reason why this could not be

done, and it might prove informative.

It would be good to examine the relationship among the three spaces. Does a convex

region in parameter space imply a convex region in feature space and vice versa?

We postulate that if the distribution is convex in feature space, then convex interpo-

lation can’t hurt and might help. If we suppose the native distribution is not convex,

then convex interpolation might hurt. It would be interesting to look for a case in

which the native distribution is not convex, but nevertheless convex interpolation

doesnt hurt, and also to construct a case where it helps, all the while attempting to
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have as little risk as possible.

Issues for future research include

• It would be helpful to answer some of the following questions for the genera-

tion and use of synthetic data in training and testing classifiers.

1. Can we devise a method for training on synthetic data that is guaranteed

never to increase confusion between any two categories?

2. What are the conditions for the generation of synthetic data that improve

classification? When is no more improvement possible and worsening

likely?

3. Can we generate exactly as many new samples as are needed to force a

certain reduction in error rate?

4. Can we consistently generate data that is misclassified? We might throw

such data into a boosting algorithm so it attempts to accommodate the

failure and thus adapt the decision boundary.

• Which methods are best suited for operating in the three spaces: parameter

space, sample space, and feature space?

1. Is it better to synthesize data in parameter space or feature space?

2. Is there any hope of training classifiers using synthetic data to recognize

Hofstadter’s “Letter Spirit” typefaces?

• Here are some more theoretical questions we would also like to explore.

1. Can we generalize convex combinations to allow non-convex combina-

tions which are bounded and controlled, e.g. extrapolation? Can these

also be made safe?

2. Can we use non-convex extrapolation in a controlled way to map confu-

sion regions in parameter space, i.e. regions in which synthetic data are

not safe?

3. Using the above, can we identify natural interclass boundaries by extrap-

olating synthetic cases until failure occurs?
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4. Will any of our findings be more broadly applicable (beyond the scope of

character recognition)?
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Chapter 11

Lexicon of Terms

Data Space - the natural space within which real data is found. For example,

images in the form of arrays of pixel values.

Feature Space - a datum is represented by a set of numerical values. Each one

is a manually chosen feature, and thus each feature is a point in a multi di-

mensional vector space. Features are an artifact of engineering, that is to say,

features are constructed or chosen to make the task of classification easier.

Parameter Space - the set of parameter values which control generation of the

datum. This assumes that we know exactly how data can be generated, often

pseudo-randomly.

Interpolation - in mathematics, the calculation of the values of a function between

values already known.

Extrapolation - in mathematics, the calculation of the values of a function outside

the range of known values.

Synthetic Data - is produced artificially, or devised, arranged, or fabricated for

special situations to imitate or replace real values.

Real Data - of natural origin or occurrence.
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