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First, let’s review !

Narayanaswamy assumed that M (t) obeys TRS.

P(T.&) = p(T, ) - AT (8) T(8)-T =M, (E)AT
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XAH (1- x)AH
RT = RT

T =T,eXp where 0 <x<1

Arrhenius term A T; dependence just like Tool !

The Tool-Narayanaswamy-Moynihan equations are

p(T.8)=p(T )| asMp(é‘—&')Z—;d&' and T =T—jM,,(§—§')j—§,d§'
XAH (1- x)AH
RT RT

and some form fort,suchas T, =T, exp




DSC: Differential Scanning Calorimetry as a “Black Box”. By a “black box”, |

mean 1) what are the inputs and 2) what is the output. Ignore the details of

how the apparatus works.

DSC
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The output is the Q vs. t
required to produce the
specified T vs. t
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B) Linear heating a glass that was linearly cooled i.e. an “ up scan”

A

Ti
T
>
t
> T
A

C, : > | € As the glass is relaxing toward the super
' 1 cooled equilibrium line, heat is given off i.e.
c: H is decreasing so this region is exothermic.




D) A linear up scan on an annealed glass




A=B
Y.Z. Yue Chemical Physics Letters 357 (2002) 20-24
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(C*=C' )T = Tf(C _C )dT Well worth reading !!
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A is the area of the “bird”

B is the area of this
trapezoid




Pulling all of the pieces together !

dT
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Is there any deeper meaning to Tf =T - jMp(g— §')

What can we use for the response M. From experiments, M, can be fit with a stretched
exponent

M (&)= eXp(— é)b
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Let’s substitute M, into the T; expression
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Using the Prony series approximation to the stretched exponential, we obtain
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Recall that the a,’s sum to 1. We can then rewrite the above equation as
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We now have N Tool equations. We have come back full circle.

Let’s call the fictive temperature associated with each term in the {} T, so we now have

What is the meaning of this equation ? Each relaxation time T has its own fictive
temperature. T, can be viewed as a weighted sum of the individual fictive temperatures for
various relaxation process.



Is there anything else that we can obtain from DSC and compare with theoretical calculation ?

Yes! We can use DSC to measure dT,/dT . We can then use TNM to T, vs. t. If we
know the cooling rate g = dT/dt then

ar, dI, dt 1 dT,
dT  dr dT  ¢(t) dr

measure calculate

How can we measure dT,/dT from DSC ?

Moynihan was an expert at this !



We can define the fictive temperature in the following fashion

In addition, we can write

Further, we can write the equilibrium H,,(T)as  H_ (T ) =H, (TO) +[C dT'

Now substitute H(t) and H,(T) into our top expression yields

ﬂ/(]y“ )+ [C.dT" = % )+ [C, dT'-[C, dT'



So we now have }CPdT' = }CP’LdT' — }Cp’ng'

If we now subtract }Cpgng' from both sides we obtain

[C.dT'-[C dT'=[C, dT'-[C, dT'-[C, dT'
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split this integral into two pieces



Splitting the last integral on the right into two pieces gives
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We now obtain T}(CP — CP’g)dT' = ff(CP,L — CP,g)dT'

Ty

Very soon we will see how Moynihan used this expression to find T..



Recall the fundamental theorem of calculus

F(x)= jf(x)dx where a is a constant

dF
E=f(x)

What happens if F(x) is a composite function, i.e. F(g(x)) ?

8(x)

F(g(x))= J f(x)dx Need to use the chain rule

dF(g(x)) dF(g(x))dg _ f(g(x))%



Apply the fundamental theorem of calculus for a composite function to our expression
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Using DSC you can measure every
term on the right side

Calculate this with TNM eq.



Iy

How did Moynihan use this expression }(CF - CP’g)dT' = f(C

-C, )dT'
to find T; ? "

P.L Pg

Consider the C, graph for a liquid that is cooled through the glass transition and then
reheated through the glass transition. The H vs. T graphs and C, vs T graphs are




Moynihan’s Method

orange T}(CP -C,. )dT'

Area bounded by C and C;,
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In Moynihan’s method, T; approaches a lower limit of T,



In practice how do you solve the TNM equations
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pT.E)= p(1.)- M (§-8)LdE and T, =T~ (5-8)
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Rewrite the reduced time € in terms of T and the heating/cooling q = dT/dt
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We now break up the T(t) into N section as T=T+>YAT

The TNM eq. for T; can now be written as
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Finally T =T—§AT,, exp
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The T, is tricky since it depends on T;
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T, =T,exp




Use the following cute trick with T,

If we break T into temperature steps that are small, it would not be unreasonable to
assume that T, at temperature step i is very close in value to T, at temperature step i-1

So instead of writing t, at temperature step i as

xAH (1-x)AH
T, =T,exp o7 + o7

P

xAH N (1- x)AH
RT = RT.

We canwritet,;as T, =T, exp

This is fine since we need to know the initial condition of T;i.e. T{(0) - T;, = a given.

We need to take smaller and smaller AT until this approximation as no effect.



So what do we need to actually do a TNM calculation ?

We need 4 parameters: b for the stretched exponential Mp(&) = exp(— é)
T

o dt
where E= T,f—

o [7(1)]

xAH N (1- x)AH
RT * R,

and T, x, and AH for T, =T,CEXp

We also need the thermal path, T(t), and the initial value T(O).

Then use Excel or some other program to iterate T =T-YAT exp

o AT
2
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Repeat this procedure for p(TfS')

Finally an application !!



It is well known that the index of refraction of glasses, n, varies with the cooling
rate. Recall the Ritland and Napolitano and Spinner experiments.

Further, it has been empirically determined that n depends on the prior cooling
rate in the following fashion.

n,(h)=n,(h)+m ln(z_)

0

where hy and h, are two different cooling rates and m_ is typically a negative
constant.

Can TNM shed any insight into this expression ?



What assumptions did they make ?

Over the visible range, the index of refraction will have a strong density
dependence. Assume that the density is a linear function of the fictive
temperature T;. Further, assume that there is only one univerisal T; for the
enthalpy, density and n.

f foref

T How can we calculate
T ?

Ref: U. Fotheringham et al. “Refractive Index Drop Observed After Molding of
Optical Elements: A Quantitative Understanding Based on the Tool-
Narayanswamy-Moynihan Model,” J. Am. Ceram. Soc., [3] 780-783 (2008)

Ref: U. Fotheringham et al. “Evaluation of the Calorimetric Glass Transition of
Glasses and Glass Ceramics with Respect to Structural Relaxation and
Dimensional Stability,” Thermochimica Acta, 461 [1-2] 72-81 (2007)



Use TNM

- dT , . dt'
T ( )=T(t)—{d—g,exp[—(g—g) s where <= L0
H x 1-x
T(t),T(t)|= —
and T[ (1).T,( )] ToeXPR T(t)+Tf(t)
" x=0.789
t, = 1.68 x 10-46s
The parameters used for one glass are <
H/k = 84396.5
. b=0.656

The boundary condition they use it T = T; above the glass transition.



Some results !

Two different glasses. Each glass was
taken through two different cooling rates.

glass1 glass 2

TNM-IModel Fit to DSC of P-SKS7™ @nd P-LaSF47™
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Fig.X Differential Scanning Calonimetry (DSC) curves foc P.SKST™
and P-LaSF4T™ and the fit of the Teol-Narayanaswamy-Moynihan

(TNM maodel) parameters.

A comparison of DSC
with TNM. Excellent
agreement !!l!



more results

Refractive Index Measurements of P-LaSF47™
and P-SK57™ after Temperature Jumps
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Fig. 6. Results of comstant rate coolisg experments for P-SK-57™
Tool-Narayasaswamy-Moymhan (TNM model) parameters,

Refracbve Index n, vs. Cooling Rale for P-LaSF4T
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Fig. 5. Results of comstant cookng rate experiments on P-LaSF47T™
Black: simulatad refractive indices, Black error bars: ssmulation error
causad by the Ing 0Ty error. Red: measured values. Red error bars: pre-
cision of the refractometer used. Groen dashoad line: best lmear it of
mcasured values on a loganthmmic scake, Insertion: pasition of the UV
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Thank You !

Any questions ?



