MODIFICATION of GLASS for DNA ATTACHMENT
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(@) untreated

(b) aminosilane-treated
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Angle dependent XPS results

A preference for the protonated
amine to be oriented towards
the glass surface and the non-
protonated ones to be oriented
away from the surface Is
suggested.
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Thickness of silane layer
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Aminosilanes with variable alkyl-ligand functionality

NH,
%Hg NH
NH, N§{ Ng
S1 S1 94
g1 S a9
OC.H. OCH OCH
CHO gop,~ 77 CHO oo, T CHO oo,
PENNSTATE Materials Research Institute

IMI — NFG Winter School, .
January 2008, Kyoto, Japan Center for Glass Surfaces, Interfaces and Coatings



W
o

¢-Pontential (mV)
W
o

Surface charge on silane treated glass surfaces

SiO

APTMS
EDA

$(> Oo| 0O

DETA

\¢

o O

.
o1

1]
o /<B
D
Qﬁ‘(

pH

"2 4 6 8 10 12

0.4

o
w A
00 |
m
—
>

o

N
n
j}

&-Pontential (mV)
l\% M
L
[
)/

jjst%//
}j/
/ /C{

O
o
4

5
N

CYﬁ////£f
[

O
N

2”3”4”5”6”7”8' 910 il
pH



Microstructures and DNA Disributions in Spots

SILICA COATING HYBRID SILICA COATING
(TEOS) (TEOS:APS=75:25)
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Hybridization of DNA on Sol/Gel-Derived Microarrays

"DOUGHNUTS”
Annular pattern from
irregular deposition of DNA

STANDARD APS

HYBRID Sol/Gel

The DNA retention was determined by comparing the initial flucrescence intensit
the spots with the intensity after vigorous washing steps to remove non-covalent!
bound DMa. The absolute before and afferflucrescence intensities for individual

ere evaluated by normalizing the intensity of the pixel paints within the DNA sp

W
(circular, gray area) to the surrounding region (hackground, dotted square) as sh
here.


http://www.gene-chips.com/sample1.html
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Sol/Gel Derived Porous Oxides & Hybrids
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OCH,CH;- groups allow branching
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J Model Materials for DNA arrays
U Novel possibilities for biosensors
and “lab-on-a-chip”applications

see Handbook of Sol-Gel Science
Vol 3, S. Sakka, Ed., 2005, pp.551-576




Characterization of Coatings

A Coating Performance: DNA Retention by Laser Confocal Scanning

UV Cross link

Coated Glass Vigorous Wash C(

Slide @7
‘ Washing in weak detergent, ‘ /
- boiling H,0, EtOH to remove .
Fluorescently-labeled as-dep05|ted physically-attached DNA after washlng

DNA probes were Fluorescence was
spotted in triplicate measured in the Compare fOI“ g'f?:ftx::hﬂltgorescence
as-deposited state %o retention
O Chemical Functionality: XPS

O Surface Morphology: AFM
] Pore Size and Distribution: BET
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DNA Attachment for Aminosilane
Modified SiO, Coatings

Acid cat. SiO,+ Silane coating
DNA retention = <10%

715 8:1.8
4:1.2

= S

4:2.1

AS-2@120C APS@120C AS-2@450C APS@450C

Base-cat. SiO, + Silane coating
DNA retention = 10-20 %

19.4.1

13:3.1
13:0.1 12:2.2

I'IN W

AS-2@120C APS@120C AS-2@450C APS@450C

XPS-Surface Functionality (NH,)

N (at.%) N/Si

ACID cat. SiO, + Silane coating
APS treatment 0.9 0.03
AS-2 treatment 1.3 0.05

BASE-cat SiO, + Silane coating
APS treatment 0.8
AS-2 treatment 2.2

0.03
0.08

NH, content of silane coatings
on acid and base catalyzed SiO,
is ~ 1-2 at.%.
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DA retention and nitrogen {in atomics) for glass slides with three different coating. DINA retention 15
determined based on confocal fluorescence measurements. The micro-spotted samples used in the analyses
were produced by the same printing session using Cy3-tagged oligos. Each bar represents average retention
value for a different slide, each contaiming six DA micro-spots.
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Characterization of DNA Substrates

Atomic Force X-Ray Photoelectron
Microscope (AFM) Spectroscopy (XPS)
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Aminosilane APS-treated sol/gel Hybrid sol/gel derived
(APS) derived porous silica APS-functionalized silica
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Silicon Oxycarbide Glass
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Reactive sputter deposition of
Si-oxycarbide from a Si-carbide target

Substrate
Changes in Film Stoichiometry Due to
A Increasing Oxygen Partial Pressure
O~ O

Ar O \
2 "\\ 604 |=m= Carbon / hd
== Oxygen o
Ar \ / SI C02 2 504 Silicon
c Ar %
w 404 ()
. Ar, O Plasma =] <
Q
A O
< 10+ .\

S|C 05 10 15 20 25 30 35
Targ et Percent Oxygen (by pressure)

- - negative charge - -

PENNSTATE Materials Research Institute
IMI — NFG Winter School,
ﬁ Center for Glass Surfaces, Interfaces and Coatings

January 2008, Kyoto, Japan



Oxygen-to-Carbon Ratio

Varying oxygen partial pressure
yields compositions from SiO,, to SiC

XPS Atomic Percentage O/C
. Color .
Si2p | O1s | C1s Ratio
100
R ¢ 228 33 0.061
43.3 5.7 0.11
41.3 9.4 0.19
4

10 * 415 10.1 0.209
39.0 15.6 0.343
4 38.4|  20.9 0.512
L 2 384 214 0.533
PN 36.3 32.3 1.03
35.6/ 37.0 1.36
¢ 36.3| 428 2.05
0.1 f 34.4| 474 2.60
34.9 48.2 2.85
37.0 55.4 7.3
0.0L 36.0 56.6 7.7
0 2 4 6 8 10 12 36.5 58.9 12.7
Oxygen Partial Pressure (%) 35.3] 632 40.9
35.5 63.1 45.2
354 63.6 64




Blood Coagulation versus Surface Composition
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standard deviation of mean for N = 3,
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see Acta Biomaterialia, 1, 583 (2005)
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Nanoporous IR Transparent Amorphous Coatings for Chem-Bio
Sensors: Functionalization and Biomolecule Immobilization

Sculptured Thin Films
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Micro-Systems for Bioanalytical Applications

“Lab-on-a-chip systems”

Applications
 Biological analysis and assays
Q Biological or industrial sensors
[ Chemical analysis and synthesis
O Bio-reactors
O Medical diagnosis
A Drug discovery-delivery

Advantages of Microsystems
 Smaller reagent (biological samples) volumes
A Improved selectivity and sensing (high surface area/volume)
[ Increased reaction/assay speed
A Parallel and simultaneous analyses of large number of assays
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Sculptured Thin Films

Matthew Pickett ~ 100nm EHT = 2.00kv Signal A = InLens PSU Nanofab LEO 1530

Mag = 50.00KX — WD= 3mm PhotoNo.=242 Time:10:05 Date :14 Aug 2003

‘Metals, Semiconductors and Oxides




Sculptured Thin Films

R R 2 & W

Matthew Pickett ~ 1pm EHT = 2.00kV Signal A =InLens PSU Nanofab LEO 1530
Mag= 14.01 KX F——— WD= 1mm PhotoNo.=241 Time:9:58 Date :14 Aug 2003
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MULTICAPILLARY FRACTIONATING COLUMNS

09/09/2004

SEI 3.0kvV  X1,300 10um  WD41mm
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glass surface-catalyzed growth of cyanoacrylate nanofibers

SURY A 1+ = Axsrea:

* Vapars of Ethyl 2-cyanoacrylate (ECA) undergo rapid anionic
polymerization initiated by nucleophilic attack as follows:
H CN INITIATION
Ne, N
y {'I={'
7~ Scmmo

OC;H;

see PJ Mankidy, et al
Chem Comm, 2006
*Nanoletters, 2006
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Surface Morphology of Various
Commercial Microscope Slides




The value chain to various areas of commercial and
developmental interest

Drug Discovery
Diagnostics
Research

Microarrays
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Glass Surfaces and Coatings for Biotechnology

Glass Is a low cost material that keeps on giving through value
added compositional tailoring, surface treatment and coating.

Glass surface composition, organofunctionalization and other
monolayer coatings can be used to control (surface) reactivity
from passive to active.

Sol/Gel coatings and other nanostructures offer a way to
control (surface) reactivity through nanoporosity

Glass surfaces and sol/gel coatings can be readily hydrated
and/or functionalized.... biology likes water!

Glass surfaces and coatings can be patterned for arrays,
microfluidics, biomolecule immobilization, cell transfers,
(living) cell encapsulation and lab-on-a-chip, in general.

PENNSTATE Materials Research Institute
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Patterned Hydrogels for Sensors

cell and protein based
biosensors using patternable
hydrogel materials

Hydrogel polymerizaton is initiated by

UV light and can support functional M. Pishko
proteins and cell growth
PENNSTATE Materials Research Institute
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A tremendous interest in deoxyribenucleic acid
{DNA) characterization tools was spurred by the
mapping and sequencing of the human genome,
New tools were nseded, beginning in the early 1990s,
to cope with the unprecedented amount of genomic
information that was being discovered. Such needs
lead to the development of DNA microarrays; tiny
gene-based sensors traditionally prepared on coated
glass microscope slides. The following review is
intended to provide historical insight into the advent
of the DNA microarray, followed by a description of
the technology from both the application and
fabricaticn peints of view. Finally, a description of
the unmet challenges and needs associated with
DNA microarrays will be described to define areas

of potential future developments for the materials
researcher,

*Dirwctor RED-Schatt Netwion AC,
MaxBs, Dthe-Schett-3tr, 2,

D-£5127 Meiay, Genmarny

E-malt s conmeedschott com
10Frector, Materials Research Institute,
The Pwrmybvwria Stats Usiasity,

199 Maceriss Reseach Insutute Buldng,
Uniosesity Pack, PA 258025809 LISA
Email pamtana@emapriedy

moterkisioday March 2004

to DAlroarag

by Samuel D. Conzone* and Carlo G. Pantanot

Maost individuals, outside of academic circles focused
on genomics, became aware of the potential
commercial, technical, and social importance of the
human genome project during the late 1990s. The
human genome project was formally initiated in
1990 and was expected to last 15 years, It had the
major geals of Identifying all of the genes in human
DNA, determining the sequences of those genes, and
storing the information in public databases.
However, the project moved quickly from the onset
and, by 1998, the Department of Energy (DOE) and
the National Institutes of Health (NIH) predicted
that the human genome project would be completed
by 2003.

The big buzz about biotech

The tremendous success in rapidly mapping and sequencing
the human genome (a working draft sequence of the human
genome was completed in 2000), has lead many
cemmentators to predict that similar achievements would
fellow on the applications side, leading to unprecedented
discoverles related to human health?3, Gaudy promises of
high-tech clinies with the abllity to prescribe drugs based on
the genetic make-up of the patient were well ahead of their
time. This normal lag from discovery (the sequenced human
genome) to true applicstions (genetically englneered drugs)
is partially attributable to the lack of toals, which could
enable researchers to utilize effectively the tremendous

of information that was g ted during the human
E2nome project,

ISENSTIET 2T © Gnevier L3 004



SCHOTT Regional Research and Development
These high-level technological advancements and major

markets eventually percolate to the ,,glass scientist*

How do I package this fragile, “sticky,” complex, liquid-formulated
drug in a glass container, while ensuring stability, low cost?

Biotherapeutic

« Complex, unstable “protein”
- Expensive Packaged Drug

* Liquid formulated » Stable (~2 yrs)
(infinite chem, viscosities) e« Economical

« High/low concentration « FDA compliant
(1 to >1000 pg/ml) » Mass produce-able

Packaging
@ » Borosilicate glass

(NOT inert and only part of system)

« Sterilize-able

« With, w/o lubricant §

» Multiple formats

~ « Must be low cost



http://www.cs.dartmouth.edu/~brd/www/bio/images/rasp21.gif
http://images.google.com/imgres?imgurl=http://www.ocularvision.com/OV-Blue%2520Syringe.jpg&imgrefurl=http://www.ocularvision.com/ovblue.htm&h=293&w=333&sz=11&tbnid=p57ZSm3orSq9FM:&tbnh=105&tbnw=119&prev=/images%3Fq%3Dsyringe%2Band%2Bpicture&start=1&sa=X&oi=images&ct=image&cd=1

superhydrophobic/superhydrophilic surfaces and coatings

« substrates for biotechnology
« patternable for microfluidics
 easy-clean surfaces
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The Best of Bioceramic
Material Science With
Positive Clinical Results...
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Bioglass® Synthetic Bone Graft Particuiate

A chemically bonded implant-tissue interface
. . .the consequence of which is more rapid
filling of defects than is produced by materials
such as hydroxylapatite, which is merely
osteoconductive.

es bond to both bone

) Rapidly fills bony defects by
osteoproduction and certain soft tissue
J Effective in repairing and ) Initiates a rapid chemical bond
restoring the penodontium which inhibits epithekal
downgrowth
J Suction placed adjacent to
site does not disturb the <J Easily mixed, transferred and
material contained in site
- v

PerioGlas~ B0
Nerle s Ow

NS JCCoMpany each boa

Call for the Dealer Nearest You...

USBiomaterials
9515 Deereco Road ¢ Fifth Floor
Timonium, Maryland 21093

Tel: (800)466-8607 FAX: (24 hour) (410)560-1426
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Five yoor post-oporatve x-1y now
showing norma’ bone height. No evidence
of a recurrence of the periodontsl Ssease.
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