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Abstract 

We consider the problem of computing the shortest schedule of the intervals 
[j2-‘, (j + 1)2-‘), for 0 < j < 2’ - 1 and 1 < i < k such that separation of intersecting intervals 
is at least R. This problem arises in an application of wavelets to medical imaging. It is 
a generalization of the graph separation problem for the intersection graph of the intervals, 
which is to assign the numbers 1 to Zkfl - 2 to the vertices, other than the root, of a complete 
binary tree of height k in such a way as to maximize the minimum difference between all 
ancestor descendent pairs. We give an efficient algorithm to construct optimal schedules. 

1. Introduction 

The problem we consider arises in an application of wavelets to magnetic resonance 
imaging. Roughly speaking, it is possible to measure the inner product of the spatial 
density of an object to be imaged with a chosen function. If we focus on one of the 
three spatial dimensions, then measuring the inner product of the spatial density with 
the complex exponentials, a typical method, would in effect allow the measurement of 
the Fourier transform of the density along that dimension. In practice, the density is 
periodicized and assumed to be band-limited. Thus, a finite number of Fourier 
coefficients suffice to reconstruct the density. 

One drawback of this method is that an inner product measurement can be made 
very quickly (tens of milliseconds), but it is necessary to let the region over which the 
inner product is taken recover for as long as 2 seconds before another measurement in 
that region can be made. One way of improving upon this situation is to use a different 
basis such as a wavelet basis. It is possible to construct an orthonormal wavelet basis 
Wij, the Haar basis, for the unit interval such that basis elements are supported on the 
dyadic intervals, that is, Wij, i 2 0, 0 <j < 2’, is supported on the interval 
[j/2’, (j + 1)/2’). In practice, one must again assume that the density is band-limited, 
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that is, that the inner product of the density Wij is zero for i greater than some fixed 
constant k, thereby allowing a finite number of measurements to reconstruct the 
density. The advantage of using this basis is that it is not necessary to wait for the 
previously measured interval to recover completely before taking another measure- 
ment because there are many basis elements supported on non-overlapping intervals. 
For a more precise description of the application to magnetic resonance imaging, see 

PI. 
The problem we consider in this paper is the computation of a minimum time 

schedule of the dyadic intervals such that every pair of intervals is scheduled at least 
the measurement time apart, and every overlapping pair of intervals is scheduled at 
least the recovery time apart. We first make some preliminary observations, and then 
prove a lower bound that provides the intuition for the upper bound to follow. We 
then give an efficient algorithm to compute an optimal schedule. 

2. Preliminaries 

We associate the dyadic intervals of length at least 1/2k with a complete binary tree 

of height k, Tk. The root, uoo, corresponds to the unit interval, while the children of the 

node uij, vi + 1,2j and vi+ i,2j+ 1 correspond to its left and right half intervals. This tree is 
the diagram of the partial order corresponding to interval containment. Call the 
intersection graph of these intervals Ik. This graph can alternatively be viewed as the 
comparability graph of the partial order corresponding to the tree diagram. 

Normalize the measurement time to 1, and call the resulting recovery time R. What 
we seek is a map S: V( Tk)++ % such that 

(1) S(u) > 0, 
(2) IS(u) - S(v)1 > 1, for u #v, 
(3) IS(u) - S(v)/ > R, for u an ancestor of v or vice versa, and 
(4) ISI = max,,Vo-,jS(v) is minimized. 
If S satisfies (l)-(3) it is called a schedule. If it additionally satisfies (4), it is called 
a minimum schedule. The parameters to the problem are the recovery time R and the 
tree Tk. The recovery time R can be any positive real number. We do not assume that 
R is an integer. 

As an example, consider the tree T2 with recovery time R = 4. An appealing idea is 
to schedule all of the leaves first, since they are all unrelated and can be scheduled one 
right after the other, then schedule their parents as soon as possible, and so on until 
finally the root has been scheduled. The resulting schedule is illustrated in Fig. l(a); 
the vertices are labelled with S(v). Fig. l(b) shows a different presentation of that 
schedule. The horizontal axis is the unit interval on which all the intervals lie. The 
vertical axis is the scheduling time of the interval. In this diagram, any vertical line 
that intersects two intervals must do so at least R units apart. Fig. l(c) shows 
a different schedule with I SI smaller than the previous example. This is in fact 
a minimum schedule. 
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Fig. 1. 

The most constraining vertex to schedule is, of course, the root. Since it is an 
ancestor of every other vertex, it is impossible to schedule any vertex between 
S( uoO) - R and S( voO) + R. In fact, it is easy to see that we might as well schedule it first. 

Lemma 1. There is a minimum schedule with S(voO) = 0. 

Proof. Consider a minimum schedule where the root is not scheduled first. If it is 
scheduled last, reverse the schedule and it is now first. (This is best understood by 
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considering diagrams of the form of Figs. l(b) and (c). Many symmetries of these 
diagrams preserve properties (l)-(4) above.) If it is not last, pull it out of the middle 
and “close up” the schedule by R. Slide down the whole schedule by R and place the 
root first. This resulting schedule is a minimum schedule for recovery time R. 0 

Since the root may be scheduled first, and no other interval may be scheduled 
before time R, after which constraint 3 above is no longer binding with respect to the 
root interval, it suffices to construct a minimum schedule for the two subtrees of the 
root alone. This is the minimum schedule problem for Tk_ luTk_ 1, the form of the 
problem we will consider in the remainder of the paper. By Tk _ 1 u Tk _ 1 we mean the 
disjoint union of two Tk _ 1 on different vertex sets. 

A related question is, what is the largest recovery time R such that Tk_ 1 u Tk_ 1 can 
be scheduled one immediately after the other, that is, when S: V( G)H 
{O, . . . ,I V(G) 1 - 1). This problem is the graph separation problem [l, 3,4), which is 
a “dual” of the graph bandwidth problem. The separation number of a graph G is the 
largest s such that there is a bijection f: V( G)H (0, . . . ,I V( G)( - 1) such that 
If(u) -f(u) ( 2 s if (u, u) E E(G). The problem of determining whether the separation 
number of a graph is > k is in general NP-complete: a graph has a Hamiltonian path 
if and only if its complement has separation number > 1 [3]. The separation number 
of Ik, the interval graph corresponding to Tk, is 1 because the unit interval is adjacent 
to every other interval. However, the separation number of Ik_ 1 ul,, _ 1, which corres- 
ponds to our reduced problem without the root, is not as easily determined. Later, we 
will compute it, as the ordering of the intervals that achieves maximum separation will 
prove in this case (though not in general, as seen by Zk) to be the optimum order for 
a minimum schedule of Tk- 1 UT,_ 1, for every positive real recovery time R. 

We now turn to a lower bound for ) S I on Tk_ 1 u Tk _ 1. 

3. A lower bound 

Theorem 2. Zf S is a schedule for Tk_ IuTk_l with separation R then 

n-l if R<LZJ, 

ISI 2 (n - kL;],(r;l - R) + kR - 1 if L;]< R <r;l, 

(k - 1)R + [;I- 1 if R2/-fl, 

where n = 2(Zk - l), the number of vertices in Tk_ , u Tk_ 1. 

Proof. A schedule S gives a sequence of vertices ul, u2, . . . , u, according to their 
relative order. Divide this sequence up into epochs in the following way. Place u1 in the 
first epoch. Continue with the vertices in sequence, adding them to the first epoch until 
the interval of the next vertex overlaps the interval of a vertex already in the epoch. 
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Fig. 2. 

Use this vertex to start the second epoch, and continue to add vertices to this epoch in 
the same way. When done, there will be some number of epochs, e, such that any pair 
of vertices in the same epoch will not overlap. Call the length of the ith epoch Ii, the 
first vertex of the ith epoch nil, and the last vertex of the epoch nil,. 

Some simple facts about S can be determined from this decomposition into epochs. 
For instance, since nil overlaps some interval in the previous (i - I)st epoch, it must be 
the case the S(Uir) - S(Ui- i, 1) B R. Also, it must be the case that S(Uil,) - S(uil) > 
Ii - 1, by repeated application of condition (2) for a schedule. Thus, we have the ladder 
of difference bounds illustrated in Fig. 2 (except for the bounds on the right which will 
be justified shortly). It might be helpful at this point to glance at Fig. 3 which 
illustrates a schedule for T5uT5. In effect, we will argue that a minimum schedule 
must look something like this schedule: a sequence of k epochs, all essentially the same 
length. 

We now consider three cases according to the number of epochs e as compared 
to k. 
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Fig. 3. 

It is not possible that e is less than k. Pick any path from root to leaf in one of the 
trees. This gives k mutually overlapping intervals, no two of which can be in the same 
epoch, so there must be at least k epochs. 

The interesting case is e = k. If there are exactly k epochs then it must be the case 
that every vertex u overlaps some vertex in every other epoch. This can be seen by 
considering a path from a root to a leaf that passes through u. This path consists of 
k mutually overlapping vertices that must be in different epochs, and thus u overlaps 
a vertex in every other epoch. From this we can deduce that S( Ui,,) - S( Ui _ 1, *,_ ,) 2 R. 
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The simplest way to see this is to reverse the schedule and apply the reasoning used to 
determine that S( Ui1) - S( Vi- 1, 1) 2 R, which now applies since we know that 
ui _ 1. l,. I must overlap some vertex in epoch i. We now seek the longest forward path in 
the ladder diagram of Fig. 2 which corresponds to a telescoping sum that gives a lower 
bound on S( u,~.) - S( u1 i ) = 1 S 1. Such a path will go down the left side, cut across to 
the right, and then continue down to the bottom. The total distance spent travelling 
down the left side and the right side is (k - 1)R. Since there are n vertices that must fit 
in k epochs, one of the epochs is at least rn/kl - 1 long, and we will cut across to the 
right at the longest epoch which is at least this long. Thus (SI is at least 
(k - l)R + [n/k1 - 1, and the theorem holds for R 2 rn/kl. 

This bound can be strengthened in two ranges of R. For any R, the trivial lower 
bound of n - 1 applies, and we rely on this for R < Ln/kj. For Lnlk J < R < rn/kj the 
situation is more delicate. Augment the ladder of bounds on the left and right side with 
constraints based on the lengths of the epochs: S( Ui+ i, i) - S(uil) > Ii and 

S(ni+l,&~,) -S(niL) 2 li+l* Call an epoch i long if its length 1: is greater than R, and 
call it short otherwise. Since L n/k J < R, some epoch must be long. Follow the left side 
of the ladder down to the first long epoch, cut across to the right side, and then down 
the remainder of the right side. Using the newly added bounds, we see that IS1 is at 
least 

We now argue that this is at least (n - kLn/k J)(rn/kj - R) + kR - 1. Consider 
adding the n intervals to the k epochs without regard to any constraint other than 
minimizing the above sum. Every epoch will add at least R to the sum so, without loss 
of generality, assume that each of the k epochs has at least LR J = Ln/k J intervals. This 
leaves n - kLn/k J intervals to be accounted for. Each of these will add at least 
[n/k1 - R to th e sum. The bound now easily follows. 

The remaining case is e > k. If there are more than k epochs, then it is no longer the 
case that every vertex overlaps some vertex in every other epoch. Thus, the “right side” 
difference bounds (S(uil,) - S(ui_ l,l,_,) 2 R) are not valid in this case, but the “left 
side” bounds still hold by the construction of the epochs. For R > [n/k1 the lower 
bound we wish to establish is (k - l)R + rn/kl - 1. The path down the left side of the 
ladder gives us ) S ( > kR since there are at least k + 1 epochs. If Ln/k j < R < r n/k] 

then we again use the bounds based on the length of the intervals. For each of the first 
k epochs call it Iong if it has at least [R 7 intervals; short otherwise. If we go down the 
left side we get the lower bound . 

If all the epochs were short this sum would be kR. But this leaves n - kLn/k J intervals 
unaccounted for. Placing them all in the (k + 1)st epoch or in subsequent epochs 
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would increase our bound on 1 SI by 1 for each beyond the first. Placing one in 
a short epoch thereby making it long adds [n/k] - R < 1 to (S ( . Thus, (S ( is 
at least (n - kLn/kJ - l)(rn/kl - R) + kR. This is larger than the lower 
bound we wish to prove when R = L n/k J, and comparison of the derivatives of the 
bounds with respect to R shows that it remains so in the interval 

Ln/kj < R d [n/k]. 0 

4. An upper bound and an algorithm 

In this section we give a matching upper bound to the lower bound of the previous 
section. The lower bound proof actually tells us quite a lot about what we are looking 
for in the way of a schedule: a sequence of k epochs, all of essentially the same length, 
each of which covers the entire unit interval. Fig. 3 illustrates one such schedule for 
T5u T5, where k = 6 and R = Ln/k J = 21. What we will do in general is to find 
k epochs of approximately equal size such that each epoch consists of vertices of one 
subtree (the “left” subtree of intervals with right endpoint less than :) followed by 
vertices of the other subtree (the “right” subtree of intervals with left endpoint greater 
than or equal to i) with the intervals of each epoch covering the unit interval from left 

to right. 
Actually, more than just a size constraint will be important in constructing optimal 

schedules. It will also be required that if epoch i + 1 is started R units after the 
start of epoch i, that it can proceed with each vertex one unit after the previous 
vertex such that for every overlapping pair of intervals from the epochs in the 
left subtree they are scheduled at least R units apart. This separation constraint 
is, of course, the crux of the problem. Think of an epoch as a runner sweeping 
across the unit interval, sometimes very fast with long intervals, sometimes 
slow with short intervals. To insure the separation constraint, we will arrange 
that within the left subtree the (i + 1)st epoch initially runs slower than does 
the ith epoch. Further, if it ever runs faster than the previous interval, then it will 
continue to run faster. Thus, if the runners are started at the same time and the second 
runner takes at least as long as the first to run the whole interval, then the first runner 
will never be overtaken by the second. If the first runner is started R units before the 
second, it will always remain at least R units ahead. Separation in the second subtree 
will be insured by symmetry. 

Call Ai the sequence of vertices from the left subtree in the (k + 1 - i)st epoch, 
and Bi the sequence of vertices from the right subtree in the (k + 1 - i)st epoch. 
We must have Ci((Ai( + IBil)= n. If it can be arranged that ]Ai( = (Bk+r-i(, 
then, as it is made clear by the rotational symmetry of Fig. 3, it suffices to 
find only the Ai. We also wish to have the epochs as equal in size as possible. The 
best that could be hoped for is to find r = n - kLn/k J epochs of size [n/k] and 
the remaining k - r of size Ln/k J. It turns out to be always possible to accomplish 
this. 
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Definition 1. Let 

I 
L;J+Si-2i-1 if 1 <i<t, 

IAil = 
:LiJ if i = y, r even, k odd, 

iCLZ1 + 1) if i=T, I odd, k odd, 
2k-i if $ < i < k, 

andIBiI=)Ak+l_il,where6i=lifiislessthanorequaltor/2forr=n-kLn/kJ, 
and 6i = 0 otherwise. 

By noting that the remainder I is odd if and only if both k and Ln/k J are odd, it is 
not difficult to see that the sizes in Definition 1 are integral. Note that I Ail + 

(Bi)=Ln/k]+l for i<r/2 and i>k+l-r/2, )Ai)+lBil=Ln/k]+l for 
i = (k + 1)/2 and r odd, and I Ai I + l&l = Ln/k J otherwise. Thus, we see that 

Ci(lAil + IBil) = n. 

Definition 2. Call a sequence of vertices vi, u2, . . . , Vi in a complete binary tree of 
height h a monotone cut if 
(1) the interval corresponding to ui+ 1 is to the right of that of Vi, 
(2) the length of the interval of Vi+ 1 is at most as large as that of Vi, and 
(3) every path from root to leaf has a vertex in the cut (that is, it goes left to right, top 

to bottom, and covers the entire interval corresponding to the root of the tree). 

The following simple lemma is central to the proof that epochs of the desired size 

can always be found. 

Lemma 3. Let T be a complete binary tree of height h. If 1 < x < 2h, then there is 

a monotone cut of size x. 

Proof. By induction on h. The case h = 0 is trivial. For a given h, if x = 1 or x = 2” the 
monotone cut will be the root or the leaves, respectively. If 1 < x < 2h-1 + 1, then 
select the left child of the root and, by induction, a monotone cut of size x - 1 from the 
right subtree. The resulting sequence is a monotone cut. For x > 2”-i + 1 select 
a monotone cut of size x - 2h- ’ in the left subtree (by induction) followed by all the 
leaves in the right subtree. 0 

We now begin to construct the Ai. Initially, we are faced with the complete left 
subtree. We will first extract the vertices corresponding to Ak, then Ak- 1, and so on, 
until finally being left with only Ai. Let Fk = Tk-l and for i = k - 1, k - 2, . . . , 1, 

define Fi to be the forest which is the diagram of the intervals remaining after 

At,Al,-1, . . . , Ai + 1 have been removed. That is, Fi _ 1 is obtained from Fi by removing 
the vertices of Ai. 
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Fig. 4. 

Ak, which is of size 1, can only be the root of the left subtree, which is the root 
of Fk. Fk_ 1 consists of two complete binary trees of height k - 2, and since 
(Ak_ 1 1 = 2, we take Ak_ 1 to be the roots of the two trees. For i > [k/21, we continue 
this way, taking Ai to be the 2k-i roots of Fi, which correspond to the first Lk/2 J levels 
of Tk-1. 

The key to showing that we can continue to extract the Ai for i < [k/21 is that the 
diagram Fi of the remaining elements consists of trees with height i - 1, almost all of 
which are binary. For Aiy we will select one of these subtrees as a “center”. The roots of 
all trees to the left of the center will be selected, a monotone cut of an appropriate size 
will be selected in the center, and all the leaves of the trees to the right will be selected. 
If the center is binary, then Lemma 3 can be used to insure that a monotone cut of the 
appropriate size can be found in the center. It is important to note that relative to Tk_ 1 

the Ai do not have such a simple monotone structure, but relative to Fi, Ai is monotone. 
Fig. 4 shows how this procedure works for k = 5. Fig. 4(a) shows T4 = F5 with the 
sequences A5 and A4, (b) shows F, with A3, and (c) shows F2 and AZ. The remaining 
vertices of Fz form Al. 
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Let Ni denote the number of subtrees in the diagram Fi and$ denote the number of 
leaves in thejth tree from the right in Fi. Let Ri be such that 

R,- 1 

C fi”’ + (Ni - Ri + 1) < ) Ai 1 < f h(j) + (Ni - Ri), 
j=t j=l 

that is, the least value such that taking all the leaves of the “rightmost” Ri subtrees 
together with the roots of the rest is not too small. Such an Ri exists because 

IAil Q IFil, 
Let Li = Ni - Ri for i < rk/21. In Fi, Ai will consist of the roots of the Li subtrees 

to the left of center, a monotone chain in the Rith subtree from the right (the center), 
and the leaves of the Ri - 1 subtrees to the right of center. Our goal is to show that the 
center is binary, so that Lemma 3 can be applied to insure that ) Ai 1 is the proper size. 
Let Ci = I Ail - ‘J$~‘fi” + (Ni - Ri + 1) denote the size of the monotone cut 
needed in the center subtree. 

Observe that removing 1 Ai 1 from Fi produces Fi_ 1 by creating two new trees (of 
height i - 2) beneath each of the Li roots which are removed, a new possibly 
nonbinary tree of height i - 2 from the center subtree and trees of height i - 2 in the 
remainder. The number of subtrees to the right of the center Ri - 1 is unchanged. At 
most one new nonbinary tree is formed at each step, so the total number of nonbinary 
subtrees in Fi is at most r k/21 - i. Furthermore, if all nonbinary trees in Fi were 
among the Ri - 1 rightmost subtrees then all nonbinary trees in Fi- 1 will be among 
the Ri rightmost subtrees. Thus, it is enough to show that Ri_ 1 > Ri to insure that the 
center in Fi will be binary. We obtain upper and lower bounds on Ri to show that this 
holds. First we get a bound on Ni which appears in the bounds for Ri. 

Lemma 4. 

Ni < 
iLn/k J + i - 2’ + 1 

2’- 1 

Proof. Each of the trees in Fi has at least 2’ - 1 elements. Then, 

Ni(2’-1)6 zfi= i IAk)<iLn/kJ+i-2’+1. 0 

j=l k=l 

Lemma 5. 

~~ a LnIkJ - Ni - ([k/21 - i)2i-l 
2i-1 _ 1 

Proof. Use Ni - Ri = Li, the size of Ai in terms of subtrees in Fi, the fact that each 
binary tree in Fi has height i - 1 and thus 2’- l leaves, and each of the at most 
([k/21 - i) nonbinary trees has at most twice this number of leaves. (The last 
observation can be seen by noticing that these trees come from trees of height i with 
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a monotone cut removed.) Then, 

Ln/kJ-2’-’ ~ IAil 

Ri- 1 

= Li + C 5” + Ci 
k=l 

< Ni - Ri + Ri2’-’ + (p/21 - ip-1. 

Lemma 6. 

,,,LnlkJ- Lj 
J' 2j-1 

Proof. Using the same bounds as in the previous lemma, 

Ln/kJ + 1 - 2j-’ z JAjJ 

Rj- 1 

= Lj + C A” + Cj 
k=l 

~ Lj + (Rj - 1)2’-’ + 1. 0 

Theorem 7. There exist Ai, of the sizes in Dejinition 1, such that in Fi, Ai, is a sequence 

of roots followed by a monotone chain in a complete binary tree, followed by all the 
leaves of the remaining trees. 

Proof. This is easily seen to be so for i > k/2. Assume that each subtree in Fi has 
height i - 1 and that “almost all” of these are complete binary trees. That is, there are 
at most r k/21 - i nonbinary subtrees and these are among the rightmost Ri + 1 sub- 
trees. Furthermore, assume that the nonbinary subtrees have at most 2’ leaves. From 
the discussion preceding the lemmas, it is enough to show that Ri > Ri+ 1. If this is the 
case, we can find Ai and additionally, Fi_ 1 will have the properties noted above. 

Assume for contradiction that Ri ,< Ri + 1. We will proceed with some detail in order 

to cover the cases when i is small. From Lemmas 4, 5-6 we get 

Ln/kj - Ni - (rk/21- i)2’-’ < Ln/k J 
2i-1 _ 1 17 

2 
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Since Ln/k J = L(2“+’ - 2)/k] > (2“+ ’ - 2)/k - 1, (1) implies 

2ktl 2+k 
--- 

k k 

2i-2”‘l +2 
- 

2’ - 1 
+ ([k/2] 92’. 

For integral i 2 2, k > 2, one can easily check that 

2+k -- 
k 

1+&$+2’,~~‘1+2 

Thus, the following is implied: 

2k+l 

- 
k 

1 + & - A) d ([k/21 - i)2’ 

i +&-$$)G&([k/21-i)2’ 

1 
q--d 

2 $&(rWl- W’. 

Simple calculus shows that for a constant a, the function (a - i)2’ is maximized with 
respect to i at a - (l/ln2) with value 2”/(eln 2) z (0.531)2”. Thus, we have 

1 k k 
5G2”“l - (0.54)2rk”’ => 1 < 0.54- 2rw 

For i > 2 and k > 2 this is a contradiction. The last step removing AI from F, is trivial 
as F, consists of isolated vertices. 0 

We now show that these epochs will satisfy the separation constraints. Let Ai[j] 
denote the jth element of Ai. 

Lemma 8. SUPPOW S(Ai[j]) = S(Ai[j - 11) + 1, 1 <j f IAil, and S(Ai+,[j]) = 

S(Ai+lCj- 11) + l,i <j G IAi+1I.ThenifS(Ai[l]) 2 S(Ai+,[l]) + R,S(Ai[q]) B 
S( Ai+ 1 [r]) + R for any pair of intersecting intemh Ai[q] and Ai+ 1 [r]. 

Proof. First note that ) Ai+ I I < I Ai( by Definition 1. Define two flows on the half unit 
interval, Vi(p) = l/l,(p) where c(p) is the length of the interval containing position p in 
Ai, and vi+ l(p) = l/ii+ I(p) where Ii+ l(p) is the length of the interval containing 

position p in Ai+ 1. Integrate these flows to get the functions ti(p) such that 
ti(O)= S(Ai[l])andti+l(p),such thatti+I(0)=S(A,+,[l]).Thesearenothingmore 
than a piecewise linear interpolation of the schedule S for Ai and Ai + 1. The utility of 
these functions is that min ( ti( p) - ti+ l(p)) is a lower bound on the separation of the 
two intervals. This is illustrated by Fig. 5. 
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Fig. 5. 

By the monotone construction of Ai+ 1 and Ai in Fi+ 1 and Fi it follows that 

q(O) > Ui+ I(O), and if Oi(po) < Ui+ I&,), then Ui(p) ,< Ui+ l(p) for all p 2 /JO. Suppose 
for 0 < p1 <: it was the case that ti(pl) - ti+,(pl) d R. Then Vi(pl) < ui+l(pl), and 
hence Vi(p) < Oi+l(p) for all p 2 ~1. Thus, we conclude that ti($) - ti+l($) < R. But 

ti(i) - ti+I(+) = (S(AiC1l) + I Ail) - (S(Ai+ 1 Cl11 + IAi+ 1 I) 

2 R. 

The last inequality follows since I Ai I 2 I Ai+ 1 I. 5 

Theorem 9. There exists a minimum schedule for 

that 
Tk- 1 uTk_, with separation R such 

n-l if 
IsI 3 (n - kL;J)(rZl- R) + kR - 1 if 

(k - l)R + r;l- 1 if 

R d LZJ, 
L2J < R <[;I, 
R a r;i, 

where n = 2(Zk - l), the number of vertices in Tk_ , u Tk_ 1. 

Proof. Let S(Ak[l])=O, S(Ai[j+ l])=S(Ai[j])+ 1, S(A;-l[l])=S(Ai[l])+ 
max{R, li}, and s(Bk-i[j]) = ISI - S(Ai[j]), where ISI is as in the statement of the 
theorem and Ii = 1 Ai1 + (Bil. It is clearly minimum by the lower bound. That it is 
a schedule follows from the previous theorem, and the fact that for every i, the last 
element of Ai is scheduled at least 1 unit before the first element of Bi. 0 
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Theorem 10. An optimal schedule for Tk_ l~Tk_ 1 with separation R can be found in 

O(n) time, where n = 2(2k - l), the number of vertices in Tk_ luTk- 1. 

Proof. Keep a data structure representing FL such that every tree has the leaves 
threaded and every vertex had a pointer to its parent. Then Ai can easily be found in 

O(n) time by the method of Theorem 7. It is then trivial to apply Theorem 9. 0 

Finally, we restate Theorem 9 in terms of the graph theoretical separation problem. 
Recall that Ik_ ivik_ 1 denotes the interval graph that is the comparability graph of 
the diagrams Tk _ 1 u Tk _ 1. Alternatively, Ik _ 1 ulk _ 1 iS the interSeCtiOn graph Of the 
intervals [j2-‘,(j + 1)2-‘), for 0 Q j < 2’ - 1 and 1 < i d k. 

Theorem 11. The separation ofI& 1 ulk_ 1 is L k/2 J where n = 2( 2k - l), the number of 

vertices in zk _ 1 uzk _ 1 . 

Proof. Same as Theorem 9 except delete the R from max{ R, Ii} when defining 

S(Ai-,[l])=S(Ai[l])+max{R,li}. 0 

5. Conclusion 

The scheduling problem considered here arises from using the Haar wavelet basis in 
a particular diagnostic application. Many other scheduling problems arise from other 
wavelet bases and diagnostic procedures. 

In our case, the Haar basis is supported on the dyadic intervals, but other wavelet 
bases have different support, and thus scheduling algorithms for these would be of use. 

In the Haar case, the separation constraint we used fairly completely model the 
physics of the problem, for other bases the true separation constraint is more complex. 
Essentially, for each point on the unit interval, the separation constraint for that point 
after an inner product measurement depends on the intensity of the function with 
which the inner product is being measured at that point. For many wavelet bases, 
a clinically useful schedule will have to take this into account. 

For imaging in higher dimensions is would be useful to find good schedules for 
2-dimensional wavelet bases. 
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