
Perfect Maps

Garth Isaak

Lehigh University

A ternary 1-dimensional perfect map with window size 2

0 0 1 1 2 1 0 2 2 0 0 1 . . .

A ternary 1-dimensional perfect map with window size 2

0 0 1 1 2 1 0 2 2 0 0 1 . . .

A ternary 1-dimensional perfect map with window size 2

0 0 1 1 2 1 0 2 2 0 0 1 . . .

00

A ternary 1-dimensional perfect map with window size 2

0 0 1 1 2 1 0 2 2 0 0 1 . . .

00, 01

A ternary 1-dimensional perfect map with window size 2

0 0 1 1 2 1 0 2 2 0 0 1 . . .

00, 01, 11

A ternary 1-dimensional perfect map with window size 2

0 0 1 1 2 1 0 2 2 0 0 1 . . .

00, 01, 11, 12

A ternary 1-dimensional perfect map with window size 2

0 0 1 1 2 1 0 2 2 0 0 1 . . .

00, 01, 11, 12, 21

A ternary 1-dimensional perfect map with window size 2

0 0 1 1 2 1 0 2 2 0 0 1 . . .

00, 01, 11, 12, 21, 10

A ternary 1-dimensional perfect map with window size 2

0 0 1 1 2 1 0 2 2 0 0 1 . . .

00, 01, 11, 12, 21, 10, 02

A ternary 1-dimensional perfect map with window size 2

0 0 1 1 2 1 0 2 2 0 0 1 . . .

00, 01, 11, 12, 21, 10, 02, 22

A ternary 1-dimensional perfect map with window size 2

0 0 1 1 2 1 0 2 2 0 0 1 . . .

00, 01, 11, 12, 21, 10, 02, 22, 20

A ternary 1-dimensional perfect map with window size 2

0 0 1 1 2 1 0 2 2 0 0 1 . . .

00, 01, 11, 12, 21, 10, 02, 22, 20

Each size 2 ternary string appears exactly once

Also called DeBruijn cycles

A ternary 1-dimensional perfect map with window size 2

0 0 1 1 2 1 0 2 2 0 0 1 . . .

00, 01, 11, 12, 21, 10, 02, 22, 20

Each size 2 ternary string appears exactly once

Also called DeBruijn cycles

History

? Other?

1892 E. Baudot - telegraphy- binary, window size 5

1894 C. Flye-Sainte Marie - monthly type question
General construction and enumeration

1897 W. Mantel - primitive polynomials

1934 M.H. Martin - dynamics

1934 K.R. Popper - probability

1946 I.J. Good - decimal representation of numbers

1946 N.G. DeBruijn - telephone engineering

History

? Other?

1892 E. Baudot - telegraphy- binary, window size 5

1894 C. Flye-Sainte Marie - monthly type question
General construction and enumeration

1897 W. Mantel - primitive polynomials

1934 M.H. Martin - dynamics

1934 K.R. Popper - probability

1946 I.J. Good - decimal representation of numbers

1946 N.G. DeBruijn - telephone engineering

History

? Other?

1892 E. Baudot - telegraphy- binary, window size 5

1894 C. Flye-Sainte Marie - monthly type question
General construction and enumeration

1897 W. Mantel - primitive polynomials

1934 M.H. Martin - dynamics

1934 K.R. Popper - probability

1946 I.J. Good - decimal representation of numbers

1946 N.G. DeBruijn - telephone engineering

History

? Other?

1892 E. Baudot - telegraphy- binary, window size 5

1894 C. Flye-Sainte Marie - monthly type question
General construction and enumeration

1897 W. Mantel - primitive polynomials

1934 M.H. Martin - dynamics

1934 K.R. Popper - probability

1946 I.J. Good - decimal representation of numbers

1946 N.G. DeBruijn - telephone engineering

History

? Other?

1892 E. Baudot - telegraphy- binary, window size 5

1894 C. Flye-Sainte Marie - monthly type question
General construction and enumeration

1897 W. Mantel - primitive polynomials

1934 M.H. Martin - dynamics

1934 K.R. Popper - probability

1946 I.J. Good - decimal representation of numbers

1946 N.G. DeBruijn - telephone engineering

History

? Other?

1892 E. Baudot - telegraphy- binary, window size 5

1894 C. Flye-Sainte Marie - monthly type question
General construction and enumeration

1897 W. Mantel - primitive polynomials

1934 M.H. Martin - dynamics

1934 K.R. Popper - probability

1946 I.J. Good - decimal representation of numbers

1946 N.G. DeBruijn - telephone engineering

History

? Other?

1892 E. Baudot - telegraphy- binary, window size 5

1894 C. Flye-Sainte Marie - monthly type question

General construction and enumeration

1897 W. Mantel - primitive polynomials

1934 M.H. Martin - dynamics

1934 K.R. Popper - probability

1946 I.J. Good - decimal representation of numbers

1946 N.G. DeBruijn - telephone engineering

History

? Other?

1892 E. Baudot - telegraphy- binary, window size 5

1894 C. Flye-Sainte Marie - monthly type question
General construction and enumeration

1897 W. Mantel - primitive polynomials

1934 M.H. Martin - dynamics

1934 K.R. Popper - probability

1946 I.J. Good - decimal representation of numbers

1946 N.G. DeBruijn - telephone engineering

History

? Other?

1892 E. Baudot - telegraphy

- binary, window size 5

1894 C. Flye-Sainte Marie - monthly type question
General construction and enumeration

1897 W. Mantel - primitive polynomials

1934 M.H. Martin - dynamics

1934 K.R. Popper - probability

1946 I.J. Good - decimal representation of numbers

1946 N.G. DeBruijn - telephone engineering

History
? Other?

1892 E. Baudot - telegraphy- binary, window size 5

1894 C. Flye-Sainte Marie - monthly type question
General construction and enumeration

1897 W. Mantel - primitive polynomials

1934 M.H. Martin - dynamics

1934 K.R. Popper - probability

1946 I.J. Good - decimal representation of numbers

1946 N.G. DeBruijn - telephone engineering

Notation

- I apologize, will try not to rely on this

notation too much

0 0 1 1 2 1 0 2 2 0 0 1 . . .

is in

PF3
1(9; 2; 1)

I PF - Perfect factor

I 3 - alphabet size 3

I 1 - dimension 1

I 9 - length 9

I 2 - window size 2

I 1 - 1 string

Notation

- I apologize, will try not to rely on this

notation too much

0 0 1 1 2 1 0 2 2 0 0 1 . . .

is in

PF3
1(9; 2; 1)

I PF - Perfect factor

I 3 - alphabet size 3

I 1 - dimension 1

I 9 - length 9

I 2 - window size 2

I 1 - 1 string

Notation

- I apologize, will try not to rely on this

notation too much

0 0 1 1 2 1 0 2 2 0 0 1 . . .

is in

PF3
1(9; 2; 1)

I PF - Perfect factor

I 3 - alphabet size 3

I 1 - dimension 1

I 9 - length 9

I 2 - window size 2

I 1 - 1 string

Notation

- I apologize, will try not to rely on this

notation too much

0 0 1 1 2 1 0 2 2 0 0 1 . . .

is in

PF3
1(9; 2; 1)

I PF - Perfect factor

I 3 - alphabet size 3

I 1 - dimension 1

I 9 - length 9

I 2 - window size 2

I 1 - 1 string

Notation - I apologize, will try not to rely on this

notation too much

0 0 1 1 2 1 0 2 2 0 0 1 . . .

is in

PF3
1(9; 2; 1)

I PF - Perfect factor

I 3 - alphabet size 3

I 1 - dimension 1

I 9 - length 9

I 2 - window size 2

I 1 - 1 string

A1 = 0 0 0 1 2 2 1 2 1 0 0

A2 = 1 1 1 2 0 0 2 0 2 1 1

A3 = 2 2 2 0 1 1 0 1 0 2 2

is in

PF3
1(9; 3; 3)

A1 = 0 0 0 1 2 2 1 2 1 0 0

A2 = 1 1 1 2 0 0 2 0 2 1 1

A3 = 2 2 2 0 1 1 0 1 0 2 2

is in

PF3
1(9; 3; 3)

Every ternary length 3 string appears exactly once
in this collection of 3 length 9 strings

A1 = 0 0 0 1 2 2 1 2 1 0 0

A2 = 1 1 1 2 0 0 2 0 2 1 1

A3 = 2 2 2 0 1 1 0 1 0 2 2

is in

PF3
1(9; 3; 3)

Every ternary length 3 string appears exactly once
in this collection of 3 length 9 strings
For example, 212 and 011 are indicated above

0 0 0 1 0
0 0 1 0 0
1 0 1 1 1
0 1 1 1 0
0 0 0 1 0

is in PF2
2((4, 4); (2, 2); 1)

Every binary 2 by 2 array appears exactly once in
this 4 by 4, two dimensional array

0 0 0 1 0
0 0 1 0 0
1 0 1 1 1
0 1 1 1 0
0 0 0 1 0

is in PF2
2((4, 4); (2, 2); 1)

Every binary 2 by 2 array appears exactly once in

this 4 by 4, two dimensional array For example
1 0
0 1

and
0 0
1 1

are indicated above (note the wrapping property)

Review of Basics: A construction for 1-dimensional perfect
maps when k is a prime power: These are feedback shift
register sequences

I Let h(x) = xn + hn−1x
n−1 + · · ·+ h1x + x0 be a primitive

polynomial of degree n over GF (k)

I Let f (x1x2 . . . xn) = −h0x1 − h1x2 − · · · − hn−1xn

I Given terms in a string x1x2 . . . xn let the next term be
f (x1x2 . . . xn)

I This produces a perfect map (except for omitting
000 . . . 00)

I This method is useful for efficient construction and also
used for 2-dimensional perfect factors ...(details omitted)

Review of basics:

For all alphabet sizes k and window sizes n, one dimensional
perfect maps exist. That is, PFk

1(kn; n; 1) is non-empty. Note
that the string length is determined by k and n.
Part of digraph D(3, 4):

2001

0010

0011

0012

0200

1200

2200

Construct a digraph D(k , n):
Vertices ‘ = ‘ k-ary strings of length n
Arcs: (s1s2 . . . sn) −→ (s2s3 . . . snsn+1) between strings that
can appear as consecutive windows

Review of basics:
For all alphabet sizes k and window sizes n, one dimensional
perfect maps exist. That is, PFk

1(kn; n; 1) is non-empty. Note
that the string length is determined by k and n.

Part of digraph D(3, 4):

2001

0010

0011

0012

0200

1200

2200

Construct a digraph D(k , n):
Vertices ‘ = ‘ k-ary strings of length n
Arcs: (s1s2 . . . sn) −→ (s2s3 . . . snsn+1) between strings that
can appear as consecutive windows

Review of basics:
For all alphabet sizes k and window sizes n, one dimensional
perfect maps exist. That is, PFk

1(kn; n; 1) is non-empty. Note
that the string length is determined by k and n.

Part of digraph D(3, 4):

2001

0010

0011

0012

0200

1200

2200

Construct a digraph D(k , n):
Vertices ‘ = ‘ k-ary strings of length n
Arcs: (s1s2 . . . sn) −→ (s2s3 . . . snsn+1) between strings that
can appear as consecutive windows

Review of basics:
For all alphabet sizes k and window sizes n, one dimensional
perfect maps exist. That is, PFk

1(kn; n; 1) is non-empty. Note
that the string length is determined by k and n.
Part of digraph D(3, 4):

2001

0010

0011

0012

0200

1200

2200

Construct a digraph D(k , n):
Vertices ‘ = ‘ k-ary strings of length n
Arcs: (s1s2 . . . sn) −→ (s2s3 . . . snsn+1) between strings that
can appear as consecutive windows

A Hamiltonian cycle in D(k, n)
corresponds to a perfect map

000

100

010

001

111

110

101

011

A Hamiltonian cycle in D(k, n)
corresponds to a perfect map

000

100

010

001

111

110

101

011

000

A Hamiltonian cycle in D(k, n)
corresponds to a perfect map

000

001

100

010 111

110

101

011

0001

A Hamiltonian cycle in D(k, n)
corresponds to a perfect map

000

001 011

100

010 111

110

101

00011

A Hamiltonian cycle in D(k, n)
corresponds to a perfect map

000

001 011

111

100

010

110

101

000111

A Hamiltonian cycle in D(k, n)
corresponds to a perfect map

000

001 011

111

110100

010 101

0001110

A Hamiltonian cycle in D(k, n)
corresponds to a perfect map

000

001 011

111

110

101

100

010

00011101

A Hamiltonian cycle in D(k, n)
corresponds to a perfect map

000

001 011

111

110

101010

100

000111010

A Hamiltonian cycle in D(k, n)
corresponds to a perfect map

000

001 011

111

110

101010

100

0001110100

A Hamiltonian cycle in D(k, n)
corresponds to a perfect map

000

001 011

111

110

101010

100

00011101000

Finding Hamiltonian cycles is ‘hard’

BUT ...

000

001 011

111

110

101010

100

is the line digraph of

00

10

01

11

10
0

001 01
1

110

000 111101 010

Finding Hamiltonian cycles is ‘hard’
BUT ...

000

001 011

111

110

101010

100

is the line digraph of

00

10

01

11

10
0

001 01
1

110

000 111101 010

Finding Hamiltonian cycles is ‘hard’
BUT ...

000

001 011

111

110

101010

100

is the line digraph of

00

10

01

11

10
0

001 01
1

110

000 111101 010

Finding Eulerian circuits is ‘easy’

000

001 011

111

110

101010

100

00

10

01

11

10
0

001 01
1

110

000 111101 010

Finding Eulerian circuits is ‘easy’

000

001 011

111

110

101010

100

000

00

10

01

11000

10
0

001 01
1

110

111101 010

Finding Eulerian circuits is ‘easy’

000

001 011

111

110

101010

100

0001

00

10

01

11000
001 01

1

111

110

101 010

10
0

Finding Eulerian circuits is ‘easy’

000

001 011

111

110

101010

100

00011

00

10

01

11000
001 01

1

111

110

101 010

10
0

Finding Eulerian circuits is ‘easy’

000

001 011

111

110

101010

100

000111

00

10

01

11000
001 01

1

111

110

101 010

10
0

Finding Eulerian circuits is ‘easy’

000

001 011

111

110

101010

100

0001110

00

10

01

11000
001 01

1

111

110

101 010

10
0

Finding Eulerian circuits is ‘easy’

000

001 011

111

110

101010

100

00011101

00

10

01

11000
001 01

1

111

110

101 010

10
0

Finding Eulerian circuits is ‘easy’

000

001 011

111

110

101010

100

00011101 0

00

10

01

11000
001 01

1

111

110

101 010

10
0

Finding Eulerian circuits is ‘easy’

000

001 011

111

110

101010

100

00011101 00

00

10

01

11000
001 01

1

111

110

101 010

10
0

It is easy to check that the digraphs D(k , n − 1) are Eulerian:
they are connected and each vertex has indegree and
outdegree k . The Eulerian circuits correspond to Hamiltonian
cycles in D(k , n).

Enumeration

BEST theorem: DeBruijn, Ehrenfest,
Smith, Tutte:

Label the arcs leaving a given vertex in order that they are
traversed in the Eulerian circuit starting from 000 . . . 00. The
arcs traversed last form a spanning in-tree rooted at
000 . . . 00. For each of the kn−1 vertices in D(k , n − 1) there
are (k − 1)! orderings for the arcs not in the tree. Thus the

number of Eulerian circuits is [(k − 1)!]k
n−1

times the number
of trees rooted at some vertex. By the matrix tree theorem
the number of spanning trees is found by evaluating a
determinant of a matrix related to the incidence matrix and
for D(k − 1, n) this can be determined

Enumeration BEST theorem: DeBruijn, Ehrenfest,
Smith, Tutte:

Label the arcs leaving a given vertex in order that they are
traversed in the Eulerian circuit starting from 000 . . . 00. The
arcs traversed last form a spanning in-tree rooted at
000 . . . 00. For each of the kn−1 vertices in D(k , n − 1) there
are (k − 1)! orderings for the arcs not in the tree. Thus the

number of Eulerian circuits is [(k − 1)!]k
n−1

times the number
of trees rooted at some vertex. By the matrix tree theorem
the number of spanning trees is found by evaluating a
determinant of a matrix related to the incidence matrix and
for D(k − 1, n) this can be determined

Enumeration BEST theorem: DeBruijn, Ehrenfest,
Smith, Tutte:

Label the arcs leaving a given vertex in order that they are
traversed in the Eulerian circuit starting from 000 . . . 00. The
arcs traversed last form a spanning in-tree rooted at
000 . . . 00.

For each of the kn−1 vertices in D(k , n − 1) there
are (k − 1)! orderings for the arcs not in the tree. Thus the

number of Eulerian circuits is [(k − 1)!]k
n−1

times the number
of trees rooted at some vertex. By the matrix tree theorem
the number of spanning trees is found by evaluating a
determinant of a matrix related to the incidence matrix and
for D(k − 1, n) this can be determined

Enumeration BEST theorem: DeBruijn, Ehrenfest,
Smith, Tutte:

Label the arcs leaving a given vertex in order that they are
traversed in the Eulerian circuit starting from 000 . . . 00. The
arcs traversed last form a spanning in-tree rooted at
000 . . . 00. For each of the kn−1 vertices in D(k , n − 1) there
are (k − 1)! orderings for the arcs not in the tree. Thus the

number of Eulerian circuits is [(k − 1)!]k
n−1

times the number
of trees rooted at some vertex.

By the matrix tree theorem
the number of spanning trees is found by evaluating a
determinant of a matrix related to the incidence matrix and
for D(k − 1, n) this can be determined

Enumeration BEST theorem: DeBruijn, Ehrenfest,
Smith, Tutte:

Label the arcs leaving a given vertex in order that they are
traversed in the Eulerian circuit starting from 000 . . . 00. The
arcs traversed last form a spanning in-tree rooted at
000 . . . 00. For each of the kn−1 vertices in D(k , n − 1) there
are (k − 1)! orderings for the arcs not in the tree. Thus the

number of Eulerian circuits is [(k − 1)!]k
n−1

times the number
of trees rooted at some vertex. By the matrix tree theorem
the number of spanning trees is found by evaluating a
determinant of a matrix related to the incidence matrix and
for D(k − 1, n) this can be determined

The number of perfect maps for
k-ary windows of size n is

[(k − 1)!]k
n−1

kkn−1−n

Universal Cycles
Extend perfect map ‘listing’ ideas to other combinatorial
objects.

Some recent non-existence results by Stevens for
subsets ...
We illustrate with permutations (‘easier’ than subsets ...) :
Look at length 3-permutations of {1, 2, 3, 4, 5}:

123421423215241321354153253452314531542543245134124351431251234

Every length 3-permutation of {1, 2, 3, 4, 5} appears exactly
once

Universal Cycles
Extend perfect map ‘listing’ ideas to other combinatorial
objects. Some recent non-existence results by Stevens for
subsets ...

We illustrate with permutations (‘easier’ than subsets ...) :
Look at length 3-permutations of {1, 2, 3, 4, 5}:

123421423215241321354153253452314531542543245134124351431251234

Every length 3-permutation of {1, 2, 3, 4, 5} appears exactly
once

Universal Cycles
Extend perfect map ‘listing’ ideas to other combinatorial
objects. Some recent non-existence results by Stevens for
subsets ...
We illustrate with permutations (‘easier’ than subsets ...) :
Look at length 3-permutations of {1, 2, 3, 4, 5}:

123421423215241321354153253452314531542543245134124351431251234

Every length 3-permutation of {1, 2, 3, 4, 5} appears exactly
once

Universal Cycles
Extend perfect map ‘listing’ ideas to other combinatorial
objects. Some recent non-existence results by Stevens for
subsets ...
We illustrate with permutations (‘easier’ than subsets ...) :
Look at length 3-permutations of {1, 2, 3, 4, 5}:

123421423215241321354153253452314531542543245134124351431251234

Every length 3-permutation of {1, 2, 3, 4, 5} appears exactly
once

Every length 3-permutation of {1, 2, 3, 4, 5} appears exactly
once

1 2 3 4 2 1 4 2 3 5 2 1 . . .

123

Every length 3-permutation of {1, 2, 3, 4, 5} appears exactly
once

1 2 3 4 2 1 4 2 3 5 2 1 . . .

123, 234

Every length 3-permutation of {1, 2, 3, 4, 5} appears exactly
once

1 2 3 4 2 1 4 2 3 5 2 1 . . .

123, 234, 342

Every length 3-permutation of {1, 2, 3, 4, 5} appears exactly
once

1 2 3 4 2 1 4 2 3 5 2 1 . . .

123, 234, 342, 421

Every length 3-permutation of {1, 2, 3, 4, 5} appears exactly
once

1 2 3 4 2 1 4 2 3 5 2 1 . . .

123, 234, 342, 421, 214

Every length 3-permutation of {1, 2, 3, 4, 5} appears exactly
once

1 2 3 4 2 1 4 2 3 5 2 1 . . .

123, 234, 342, 421, 214, . . .

Find a Hamiltonian cycle in a particular graph Q(n, k)

321

213

214

215

132

432

532

Graph for 3 permutations of {1, 2, 3, 4, 5}

Like the perfect map case these are line digraphs and similar
methods work to show existence of universal cycles for k
permutations of {1, 2, . . . , n}
But Q(n, k) is the line digraph of some other digraph P(n, k)
and not of Q(n, k − 1)

Find a Hamiltonian cycle in a particular graph Q(n, k)

321

213

214

215

132

432

532

Graph for 3 permutations of {1, 2, 3, 4, 5}
Like the perfect map case these are line digraphs and similar
methods work to show existence of universal cycles for k
permutations of {1, 2, . . . , n}

But Q(n, k) is the line digraph of some other digraph P(n, k)
and not of Q(n, k − 1)

Find a Hamiltonian cycle in a particular graph Q(n, k)

321

213

214

215

132

432

532

Graph for 3 permutations of {1, 2, 3, 4, 5}
Like the perfect map case these are line digraphs and similar
methods work to show existence of universal cycles for k
permutations of {1, 2, . . . , n}
But Q(n, k) is the line digraph of some other digraph P(n, k)
and not of Q(n, k − 1)

These other digraphs P(n, k) omit edges that do not
correspond to permutations

321

213

214

215

132

432

532

Omit the red edges

Are these digraphs Hamiltonian?

These other digraphs P(n, k) omit edges that do not
correspond to permutations

321

213

214

215

132

432

532

Omit the red edges
Are these digraphs Hamiltonian?

I Are these digraphs Hamiltonian?

I If yes then we get universal cycles for
k-permutations for which the k + 1 strings are
also permutations

I These digraphs were introduced by Fiol et al. in
a different context and the question of
Hamiltonicity asked by Klerlein, Carr and
Starling (at a Southeast conference)

I Are these digraphs Hamiltonian?

I If yes then we get universal cycles for
k-permutations for which the k + 1 strings are
also permutations

I These digraphs were introduced by Fiol et al. in
a different context and the question of
Hamiltonicity asked by Klerlein, Carr and
Starling (at a Southeast conference)

I Are these digraphs Hamiltonian?

I If yes then we get universal cycles for
k-permutations for which the k + 1 strings are
also permutations

I These digraphs were introduced by Fiol et al. in
a different context and the question of
Hamiltonicity asked by Klerlein, Carr and
Starling (at a Southeast conference)

I These digraphs P(n, k) are NOT line digraphs

I BUT

I They are NEARLY line digraphs

I Obtain P(n, k) from the line digraph of
P(n, k − 1) by deleting a few arcs

I An Eulerian circuit in P(n, k) that avoids certain
turns produces a Hamiltonian cycle in P(n, k)

I These digraphs P(n, k) are NOT line digraphs

I BUT

I They are NEARLY line digraphs

I Obtain P(n, k) from the line digraph of
P(n, k − 1) by deleting a few arcs

I An Eulerian circuit in P(n, k) that avoids certain
turns produces a Hamiltonian cycle in P(n, k)

I These digraphs P(n, k) are NOT line digraphs

I BUT

I They are NEARLY line digraphs

I Obtain P(n, k) from the line digraph of
P(n, k − 1) by deleting a few arcs

I An Eulerian circuit in P(n, k) that avoids certain
turns produces a Hamiltonian cycle in P(n, k)

I These digraphs P(n, k) are NOT line digraphs

I BUT

I They are NEARLY line digraphs

I Obtain P(n, k) from the line digraph of
P(n, k − 1) by deleting a few arcs

I An Eulerian circuit in P(n, k) that avoids certain
turns produces a Hamiltonian cycle in P(n, k)

I These digraphs P(n, k) are NOT line digraphs

I BUT

I They are NEARLY line digraphs

I Obtain P(n, k) from the line digraph of
P(n, k − 1) by deleting a few arcs

I An Eulerian circuit in P(n, k) that avoids certain
turns produces a Hamiltonian cycle in P(n, k)

Rearrange the ‘loops’ to avoid ‘bad turns’.

Construct a new
digraph on the loops with arcs for good turns. Find a Hamiltonian
cycle to give the rearrangement. The Hamiltonian cycle exists in
the new digraph as degrees are high enough. Repeat for all vertices
of P(n, k) to get a Hamiltonian cycle

Rearrange the ‘loops’ to avoid ‘bad turns’. Construct a new
digraph on the loops with arcs for good turns.

Find a Hamiltonian
cycle to give the rearrangement. The Hamiltonian cycle exists in
the new digraph as degrees are high enough. Repeat for all vertices
of P(n, k) to get a Hamiltonian cycle

Rearrange the ‘loops’ to avoid ‘bad turns’. Construct a new
digraph on the loops with arcs for good turns. Find a Hamiltonian
cycle to give the rearrangement.

The Hamiltonian cycle exists in
the new digraph as degrees are high enough. Repeat for all vertices
of P(n, k) to get a Hamiltonian cycle

Rearrange the ‘loops’ to avoid ‘bad turns’. Construct a new
digraph on the loops with arcs for good turns. Find a Hamiltonian
cycle to give the rearrangement. The Hamiltonian cycle exists in
the new digraph as degrees are high enough.

Repeat for all vertices
of P(n, k) to get a Hamiltonian cycle

Rearrange the ‘loops’ to avoid ‘bad turns’. Construct a new
digraph on the loops with arcs for good turns. Find a Hamiltonian
cycle to give the rearrangement. The Hamiltonian cycle exists in
the new digraph as degrees are high enough. Repeat for all vertices
of P(n, k) to get a Hamiltonian cycle

I When n = k − 2 the degrees are not high
enough to get a Hamiltonian cycle in the
auxiliary digraph.

I In this case P(n, n − 2) are Cayley digraphs
from an alternating group

I Use Rankin’s Theorem to conclude that there is
no Hamiltonian cycle in this case

I Rankin’s Theorem 1948 application to
camponology (bell ringing)

I When n = k − 2 the degrees are not high
enough to get a Hamiltonian cycle in the
auxiliary digraph.

I In this case P(n, n − 2) are Cayley digraphs
from an alternating group

I Use Rankin’s Theorem to conclude that there is
no Hamiltonian cycle in this case

I Rankin’s Theorem 1948 application to
camponology (bell ringing)

I When n = k − 2 the degrees are not high
enough to get a Hamiltonian cycle in the
auxiliary digraph.

I In this case P(n, n − 2) are Cayley digraphs
from an alternating group

I Use Rankin’s Theorem to conclude that there is
no Hamiltonian cycle in this case

I Rankin’s Theorem 1948 application to
camponology (bell ringing)

I When n = k − 2 the degrees are not high
enough to get a Hamiltonian cycle in the
auxiliary digraph.

I In this case P(n, n − 2) are Cayley digraphs
from an alternating group

I Use Rankin’s Theorem to conclude that there is
no Hamiltonian cycle in this case

I Rankin’s Theorem 1948 application to
camponology (bell ringing)

Back to perfect maps

Perfect Maps and Factors in higher dimensions - a partial
history:

1961 Reed and Stewart

1985 Fan,Fan,Ma,Sui and Etzion

1988 Cock

1988 Ivanyi and Toth

1993 Hurlbert and Isaak

1994 Mitchell and Paterson

1996 Paterson

I and many others

Necessary Conditions

R

S

u

v

I For 2-dimensional k−ary perfect maps

I

There are RS entries/windows
and kuv possible windows

I

So RS = kuv

I

The all 0 window is repeated if u = R or v = S

I

So R > u and S > v

Necessary Conditions

R

S

u

v

I For 2-dimensional k−ary perfect maps

I There are RS entries/windows
and kuv possible windows

I

So RS = kuv

I

The all 0 window is repeated if u = R or v = S

I

So R > u and S > v

Necessary Conditions

R

S

u

v

I For 2-dimensional k−ary perfect maps

I There are RS entries/windows
and kuv possible windows

I So RS = kuv

I

The all 0 window is repeated if u = R or v = S

I

So R > u and S > v

Necessary Conditions

R

S

u

v

I For 2-dimensional k−ary perfect maps

I There are RS entries/windows
and kuv possible windows

I So RS = kuv

I The all 0 window is repeated if u = R or v = S

I

So R > u and S > v

Necessary Conditions

R

S

u

v

I For 2-dimensional k−ary perfect maps

I There are RS entries/windows
and kuv possible windows

I So RS = kuv

I The all 0 window is repeated if u = R or v = S

I So R > u and S > v

Necessary Conditions

RS = kuv and R > u, S > v
Similar conditions for perfect factors and for higher dimensions

I Are these sufficient?

I 1-dimensional perfect maps - YES

I 2-dimensional perfect maps when k is a prime power -
YES (Paterson 1996)

I Otherwise? - partial results

I Difficulty with sizes like 212 × 312 with window size 3× 4
and 6-ary

Necessary Conditions

RS = kuv and R > u, S > v
Similar conditions for perfect factors and for higher dimensions

I Are these sufficient?

I 1-dimensional perfect maps - YES

I 2-dimensional perfect maps when k is a prime power -
YES (Paterson 1996)

I Otherwise? - partial results

I Difficulty with sizes like 212 × 312 with window size 3× 4
and 6-ary

Necessary Conditions

RS = kuv and R > u, S > v
Similar conditions for perfect factors and for higher dimensions

I Are these sufficient?

I 1-dimensional perfect maps - YES

I 2-dimensional perfect maps when k is a prime power -
YES (Paterson 1996)

I Otherwise? - partial results

I Difficulty with sizes like 212 × 312 with window size 3× 4
and 6-ary

Necessary Conditions

RS = kuv and R > u, S > v
Similar conditions for perfect factors and for higher dimensions

I Are these sufficient?

I 1-dimensional perfect maps - YES

I 2-dimensional perfect maps when k is a prime power -
YES (Paterson 1996)

I Otherwise? - partial results

I Difficulty with sizes like 212 × 312 with window size 3× 4
and 6-ary

Necessary Conditions

RS = kuv and R > u, S > v
Similar conditions for perfect factors and for higher dimensions

I Are these sufficient?

I 1-dimensional perfect maps - YES

I 2-dimensional perfect maps when k is a prime power -
YES (Paterson 1996)

I Otherwise? - partial results

I Difficulty with sizes like 212 × 312 with window size 3× 4
and 6-ary

Necessary Conditions

RS = kuv and R > u, S > v
Similar conditions for perfect factors and for higher dimensions

I Are these sufficient?

I 1-dimensional perfect maps - YES

I 2-dimensional perfect maps when k is a prime power -
YES (Paterson 1996)

I Otherwise? - partial results

I Difficulty with sizes like 212 × 312 with window size 3× 4
and 6-ary

Non-prime powers alphabets from prime power alphabets:

0011 ∈ PF 1
2 (4; 2; 1)

{001, 112, 220} ∈ PF 1
3 (3; 2; 3)

‘Combine’

0 0 1 1 0 0 1 1 0 0 1 1
⊕ 1 1 2 1 1 2 1 1 2 1 1 2

1 1 5 4 1 2 4 4 2 1 4 5

Using also 001 and 220 this gives 115412442145
004301331034
223520550253

 ∈ PF 1
6 (12; 2; 3)

Higher Dimensional Perfect Maps

I Two basic techniques have been implicit in
many results

I ‘Integration’ ‘grows’ the window size

I ‘Concatenation’ increases the dimension

I Both use as tools perfect factors, perfect
multifactors, equivalence class perfect
multifactors ...

Higher Dimensional Perfect Maps

I Two basic techniques have been implicit in
many results

I ‘Integration’ ‘grows’ the window size

I ‘Concatenation’ increases the dimension

I Both use as tools perfect factors, perfect
multifactors, equivalence class perfect
multifactors ...

Higher Dimensional Perfect Maps

I Two basic techniques have been implicit in
many results

I ‘Integration’ ‘grows’ the window size

I ‘Concatenation’ increases the dimension

I Both use as tools perfect factors, perfect
multifactors, equivalence class perfect
multifactors ...

Higher Dimensional Perfect Maps

I Two basic techniques have been implicit in
many results

I ‘Integration’ ‘grows’ the window size

I ‘Concatenation’ increases the dimension

I Both use as tools perfect factors, perfect
multifactors, equivalence class perfect
multifactors ...

Higher Dimensional Perfect Maps

I Two basic techniques have been implicit in
many results

I ‘Integration’ ‘grows’ the window size

I ‘Concatenation’ increases the dimension

I Both use as tools perfect factors, perfect
multifactors, equivalence class perfect
multifactors ...

Concatenation

Start with 1-dimensional perfect map 001121022 for columns
and shift sequence 01023456789 a perfect map with window
size 1

0 1 2 3 4 5 6 7 8
0
0
1
1
2
1
0
2
2

Concatenation

Start with 1-dimensional perfect map 001121022 for columns
and shift sequence 01023456789 a perfect map with window
size 1

0 1 2 3 4 5 6 7 8
0 0
0 0
1 1
1 1
2 2
1 1
0 0
2 2
2 2

Concatenation

Start with 1-dimensional perfect map 001121022 for columns
and shift sequence 01023456789 a perfect map with window
size 1

0 1 2 3 4 5 6 7 8
0 0 0
0 0 1
1 1 1
1 1 2
2 2 1
1 1 0
0 0 2
2 2 2
2 2 0

Concatenation

Start with 1-dimensional perfect map 001121022 for columns
and shift sequence 01023456789 a perfect map with window
size 1

0 1 2 3 4 5 6 7 8
0 0 0 1
0 0 1 2
1 1 1 1
1 1 2 0
2 2 1 2
1 1 0 2
0 0 2 0
2 2 2 0
2 2 0 1

Concatenation

Start with 1-dimensional perfect map 001121022 for columns
and shift sequence 01023456789 a perfect map with window
size 1

0 1 2 3 4 5 6 7 8
0 0 0 1 0
0 0 1 2 2
1 1 1 1 2
1 1 2 0 0
2 2 1 2 0
1 1 0 2 1
0 0 2 0 1
2 2 2 0 2
2 2 0 1 1

Concatenation

Start with 1-dimensional perfect map 001121022 for columns
and shift sequence 01023456789 a perfect map with window
size 1

0 1 2 3 4 5 6 7 8
0 0 0 1 0 0
0 0 1 2 2 1
1 1 1 1 2 1
1 1 2 0 0 2
2 2 1 2 0 1
1 1 0 2 1 0
0 0 2 0 1 2
2 2 2 0 2 2
2 2 0 1 1 0

Concatenation

Start with 1-dimensional perfect map 001121022 for columns
and shift sequence 01023456789 a perfect map with window
size 1

0 1 2 3 4 5 6 7 8
0 0 0 1 0 0 0
0 0 1 2 2 1 2
1 1 1 1 2 1 2
1 1 2 0 0 2 0
2 2 1 2 0 1 0
1 1 0 2 1 0 1
0 0 2 0 1 2 1
2 2 2 0 2 2 2
2 2 0 1 1 0 1

Concatenation

Start with 1-dimensional perfect map 001121022 for columns
and shift sequence 01023456789 a perfect map with window
size 1

0 1 2 3 4 5 6 7 8
0 0 0 1 0 0 0 1
0 0 1 2 2 1 2 2
1 1 1 1 2 1 2 1
1 1 2 0 0 2 0 0
2 2 1 2 0 1 0 2
1 1 0 2 1 0 1 2
0 0 2 0 1 2 1 0
2 2 2 0 2 2 2 0
2 2 0 1 1 0 1 1

Concatenation

Start with 1-dimensional perfect map 001121022 for columns
and shift sequence 01023456789 a perfect map with window
size 1

0 1 2 3 4 5 6 7 8
0 0 0 1 0 0 0 1 0
0 0 1 2 2 1 2 2 1
1 1 1 1 2 1 2 1 1
1 1 2 0 0 2 0 0 2
2 2 1 2 0 1 0 2 1
1 1 0 2 1 0 1 2 0
0 0 2 0 1 2 1 0 2
2 2 2 0 2 2 2 0 2
2 2 0 1 1 0 1 1 0

PF 2
3 ((9, 9); (2, 2); 1)

Find
1 2
0 2

where there is a shift of 2

The shift in location from 10 to 22 in 001121022

0 1 2 3 4 5 6 7 8
0 0 0 1 0 0 0 1 0
0 0 1 2 2 1 2 2 1
1 1 1 1 2 1 2 1 1
1 1 2 0 0 2 0 0 2
2 2 1 2 0 1 0 2 1
1 1 0 2 1 0 1 2 0
0 0 2 0 1 2 1 0 2
2 2 2 0 2 2 2 0 2
2 2 0 1 1 0 1 1 0

I Concatenation increases the dimension

I In general needs 1-dimensional perfect factors
for the shifts

I Concatenation of perfect factors requires two
1-dimensional factors; one for shifts and one to
pick which factor

I Concatenation increases the dimension

I In general needs 1-dimensional perfect factors
for the shifts

I Concatenation of perfect factors requires two
1-dimensional factors; one for shifts and one to
pick which factor

I Concatenation increases the dimension

I In general needs 1-dimensional perfect factors
for the shifts

I Concatenation of perfect factors requires two
1-dimensional factors; one for shifts and one to
pick which factor

‘Integrating’ to produce perfect factors (the inverse
of Lempel’s homomorphism, finite difference
operator):
For 1-dimensional perfect factors:

0 0 1 1 2 1 0 2 2
0

The first row 001121022 is a PF 1
3 (9; 2; 1) (window size 2) and

gives the differences for (part of) a perfect factor with window
size 3. Start with 0

‘Integrating’ to produce perfect factors (the inverse
of Lempel’s homomorphism, finite difference
operator):
For 1-dimensional perfect factors:

0 0 1 1 2 1 0 2 2
0 0

The first row 001121022 is a PF 1
3 (9; 2; 1) (window size 2) and

gives the differences for (part of) a perfect factor with window
size 3

‘Integrating’ to produce perfect factors (the inverse
of Lempel’s homomorphism, finite difference
operator):
For 1-dimensional perfect factors:

0 0 1 1 2 1 0 2 2
0 0 0

The first row 001121022 is a PF 1
3 (9; 2; 1) (window size 2) and

gives the differences for (part of) a perfect factor with window
size 3

‘Integrating’ to produce perfect factors (the inverse
of Lempel’s homomorphism, finite difference
operator):
For 1-dimensional perfect factors:

0 0 1 1 2 1 0 2 2
0 0 0 1

The first row 001121022 is a PF 1
3 (9; 2; 1) (window size 2) and

gives the differences for (part of) a perfect factor with window
size 3

‘Integrating’ to produce perfect factors (the inverse
of Lempel’s homomorphism, finite difference
operator):
For 1-dimensional perfect factors:

0 0 1 1 2 1 0 2 2
0 0 0 1 2

The first row 001121022 is a PF 1
3 (9; 2; 1) (window size 2) and

gives the differences for (part of) a perfect factor with window
size 3

‘Integrating’ to produce perfect factors (the inverse
of Lempel’s homomorphism, finite difference
operator):
For 1-dimensional perfect factors:

0 0 1 1 2 1 0 2 2
0 0 0 1 2 1

The first row 001121022 is a PF 1
3 (9; 2; 1) (window size 2) and

gives the differences for (part of) a perfect factor with window
size 3

‘Integrating’ to produce perfect factors (the inverse
of Lempel’s homomorphism, finite difference
operator):
For 1-dimensional perfect factors:

0 0 1 1 2 1 0 2 2
0 0 0 1 2 1 2

The first row 001121022 is a PF 1
3 (9; 2; 1) (window size 2) and

gives the differences for (part of) a perfect factor with window
size 3

‘Integrating’ to produce perfect factors (the inverse
of Lempel’s homomorphism, finite difference
operator):
For 1-dimensional perfect factors:

0 0 1 1 2 1 0 2 2
0 0 0 1 2 1 2 2

The first row 001121022 is a PF 1
3 (9; 2; 1) (window size 2) and

gives the differences for (part of) a perfect factor with window
size 3

‘Integrating’ to produce perfect factors (the inverse
of Lempel’s homomorphism, finite difference
operator):
For 1-dimensional perfect factors:

0 0 1 1 2 1 0 2 2
0 0 0 1 2 1 2 2 1

The first row 001121022 is a PF 1
3 (9; 2; 1) (window size 2) and

gives the differences for (part of) a perfect factor with window
size 3

‘Integrating’ to produce perfect factors (the inverse
of Lempel’s homomorphism, finite difference
operator):
For 1-dimensional perfect factors:

0 0 1 1 2 1 0 2 2
0 0 0 1 2 1 2 2 1

1 1 1 2 0 2 0 0 2

2 2 2 0 1 0 1 1 0

The top row 001121022 is a PF 1
3 (9; 2; 1) and gives the

differences for each of the other rows. The other rows differ by
the constant ‘starter’ in the first column.

The other rows form a PF 1
3 (9; 3; 3)

0 0 1 1 2 1 0 2 2
0 0 0 1 2 1 2 2 1
1 1 1 2 0 2 0 0 2
2 2 2 0 1 0 1 1 0

Find 202: its differences are 12 so it will appear (in one of the
rows) in a location ‘below’ 12

Requires sum of the entries to be 0 mod k. If not then number
of factors will be decreased and length of each factor increased
We will use integration along ‘directions’ for higher
dimensional perfect factors
In general for higher dimensions we need a perfect multifactor
for a ‘starter’

0 0 1 1 2 1 0 2 2
0 0 0 1 2 1 2 2 1
1 1 1 2 0 2 0 0 2
2 2 2 0 1 0 1 1 0

Find 202: its differences are 12 so it will appear (in one of the
rows) in a location ‘below’ 12
Requires sum of the entries to be 0 mod k. If not then number
of factors will be decreased and length of each factor increased

We will use integration along ‘directions’ for higher
dimensional perfect factors
In general for higher dimensions we need a perfect multifactor
for a ‘starter’

0 0 1 1 2 1 0 2 2
0 0 0 1 2 1 2 2 1
1 1 1 2 0 2 0 0 2
2 2 2 0 1 0 1 1 0

Find 202: its differences are 12 so it will appear (in one of the
rows) in a location ‘below’ 12
Requires sum of the entries to be 0 mod k. If not then number
of factors will be decreased and length of each factor increased
We will use integration along ‘directions’ for higher
dimensional perfect factors

In general for higher dimensions we need a perfect multifactor
for a ‘starter’

0 0 1 1 2 1 0 2 2
0 0 0 1 2 1 2 2 1
1 1 1 2 0 2 0 0 2
2 2 2 0 1 0 1 1 0

Find 202: its differences are 12 so it will appear (in one of the
rows) in a location ‘below’ 12
Requires sum of the entries to be 0 mod k. If not then number
of factors will be decreased and length of each factor increased
We will use integration along ‘directions’ for higher
dimensional perfect factors
In general for higher dimensions we need a perfect multifactor
for a ‘starter’

Perfect multifactors

000011210220112102201121022

is obtained by writing three 0’s followed by three copies of the
string 01121022. In this string every 3-ary window of length 2
appears exactly 3 times, once in each position modulo 3. We call
this a perfect multifactor. Shifting by 3 and by 6 we get two
additional strings

022000011210220112102201121 121022000011210220112102201

for a set of 3, length 27 strings in which each length 2 window
appears appears exactly once in each position modulo 9

Integration
Use the second string of the previous example and the 9× 9 array
from the example preceding that:

0 2 2 0 0 0 0 1 1 2 1 0 2 2 0 1 1 2 1 0 2 2 0 1 1 2 1
0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0
0 0 1 2 2 1 2 2 1 0 0 1 2 2 1 2 2 1 0 0 1 2 2 1 2 2 1
1 1 1 1 2 1 2 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 2 1 2 1 1
1 1 2 0 0 2 0 0 2 1 1 2 0 0 2 0 0 2 1 1 2 0 0 2 0 0 2
2 2 1 2 0 1 0 2 1 2 2 1 2 0 1 0 2 1 2 2 1 2 0 1 0 2 1
1 1 0 2 1 0 1 2 0 1 1 0 2 1 0 1 2 0 1 1 0 2 1 0 1 2 0
0 0 2 0 1 2 1 0 2 0 0 2 0 1 2 1 0 2 0 0 2 0 1 2 1 0 2
2 2 2 0 2 2 2 0 2 2 2 2 0 2 2 2 0 2 2 2 2 0 2 2 2 0 2
2 2 0 1 1 0 1 1 0 2 2 0 1 1 0 1 1 0 2 2 0 1 1 0 1 1 0

Integrate down the columns:

integration down the columns yields:

0 2 2 0 0 0 0 1 1 2 1 0 2 2 0 1 1 2 1 0 2 2 0 1 1 2 1
0 2 2 1 0 0 0 2 1 2 1 0 0 2 0 1 2 2 1 0 2 0 0 1 1 0 1
0 2 0 0 2 1 2 1 2 2 1 1 2 1 1 0 1 0 1 0 0 2 2 2 0 2 2
1 0 1 1 1 2 1 2 0 0 2 2 0 0 2 2 2 1 2 1 1 0 1 0 2 0 0
2 1 0 1 1 1 1 2 2 1 0 1 0 0 1 2 2 0 0 2 0 0 1 2 2 0 2
1 0 1 0 1 2 1 1 0 0 2 2 2 0 2 2 1 1 2 1 1 2 1 0 2 2 0
2 1 1 2 2 2 2 0 0 1 0 2 1 1 2 0 0 1 0 2 1 1 2 0 0 1 0
2 1 0 2 0 1 0 0 2 1 0 1 1 2 1 1 0 0 0 2 0 1 0 2 1 1 2
1 0 2 2 2 0 2 0 1 0 2 0 1 1 0 0 0 2 2 1 2 1 2 1 0 1 1

Doing the same thing with the other two possible starters produces
three 3-ary 9× 27 arrays in which we claim that every 3-ary 3× 2
subarray appears exactly once.

The examples we have given hint at several general methods which
give hope that that necessary conditions can be shown sufficient in
higher dimensions at least for prime power alphabets.

For non prime power alphabet sizes new tools will probably be
needed

The examples we have given hint at several general methods which
give hope that that necessary conditions can be shown sufficient in
higher dimensions at least for prime power alphabets.
For non prime power alphabet sizes new tools will probably be
needed

Let A be a (~R; ~V ; τ)dG [~N] PMF (perfect multifactor). Let
H = Zr1/n1

× Zr2/n2
× · · ·Zrd/nd

and let H ′ = {1, 2, . . . , τ}. Let
(B : C) be a
(Q; (U − 1,U); ρ)H,H′ [M] PMFP (perfect multifactor pair) with
the following property. There exists c ∈ H such that each string
B(j) in B satisfies
Q∑

h=1

[B(j)]h = c . That is, the entries in each fundamental block sum

to c .
Then,

I If c = 0 ∈ H, concatenation using (B : C) as indexer yields a
(~R+; ~V +; ρ)d+1

G [~N+] PMF (perfect multifactor) where the

first d coordinates of ~N+, ~R+ and ~V + are the same as ~N, ~R
and ~V and n+

d+1 = M, r+
d+1 = Q and v+

d+1 = U.
I If c 6= 0 ∈ H and additionally we have the following: If c is

viewed as a vector ~C = (c1, c2, . . . , cd) with entries from Z

and for i = 1, 2, . . . , d we have ηi =
ri/ni

gcd(ri/ni , ci)
(i.e., the

order of ci in Zri/ni
is ηi), then gcd (ηi , ci) = 1. Also, for i 6= j ,

gcd(ηi , ηj) = 1. Then concatenation using (B : C) as indexer

yields a (~R+; ~V +; ρ)d+1
G [~N∗] PMF (perfect multifactor) where

the first d coordinates of ~R+ and ~V + are the same as ~R and
~V with r+

d+1 = QΠd
i=1ηi and v+

d+1 = U. Also ~N∗ is given by
n∗
j = niηi for j = 1, 2, . . . , d and n∗

d+1 = M.

Let A be a (~Q; ~U; ρ)dG [~N] PMF (perfect multifactor) with the sum
of entries in each (one dimensional) projection along direction d
equal to a constant c ∈ G . Let ~Q− and ~U− be obtained from ~Q
and ~U by deleting the d th dimension.
Then,

I If c = 0, let B be a (~R; ~U−; τ)d−1
G |H [~Q−] EPMF (equivalence

class perfect multifactor modulo H). Integrating A with
starter B yields a
(~R+; ~U∗; ρτ)dG |H [~N] EPMF (equivalence class perfect

multifactor modulo H) where ~U∗ = ~U + ~e(d) and r+
d = qd .

I If c 6= 0, let H ′ be the subgroup generated by c . Let B be a
set of representatives modulo H ′ of a (~R; ~U−; τ)d−1

G |H′ [~Q
−]

EPMF (equivalence class perfect multifactor modulo H ′).
Integrating A with starter B yields a (~R+; ~U∗; ρτ/|H ′|)dG [~N]

PMF (perfect multifactor) where ~U∗ = ~U + ~e(d) and
r+
d = |H ′|qd .

