
Math 163 - Introductory Seminar
Lehigh University Spring 2008

Notes on Fibonacci numbers, binomial coefficients and mathematical induction.

These are mostly notes from a previous class and thus include some material not covered in
Math 163. For completeness this extra material is left in the notes.

Observe that these notes are somewhat informal. Not all terms are defined and not all proofs
are complete. The material in these notes can be found (with more detail in many cases) in
many different textbooks.

Fibonacci Numbers

What are the Fibonacci numbers?

The Fibonacci numbers are defined by the simple recurrence relation

Fn = Fn−1 + Fn−2 for n ≥ 2 with F0 = 0, F1 = 1.

This gives the sequence F0, F1, F2, . . . = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .. Each
number in the sequence is the sum of the previous two numbers. We read F0 as ‘F naught’.

These numbers show up in many areas of mathematics and in nature. For example, the
numbers of seeds in the outermost rows of sunflowers tend to be Fibonacci numbers. A large
sunflower will have 55 and 89 seeds in the outer two rows.

Can we easily calculate large Fibonacci numbers without first calculating all smaller values using
the recursion?

Surprisingly, there is a simple and non-obvious formula for the Fibonacci numbers. It is:

Fn =
1√
5

(
1 +

√
5

2

)n

+
−1√

5

(
1−√5

2

)n

.

It is not immediately obvious that this should even give an integer. Since −1 < 1−√5
2

< 0 (it
is approximately −.618) the second term approaches 0 as n gets large. Thus the first term
is a good approximation of the Fibonacci numbers. In fact

Fn is the integer closest to
1√
5

(
1 +

√
5

2

)n

.

The Golden Ratio

The number 1+
√

5
2

shows up in many places and is called the Golden ratio or the Golden
mean. For one example, consider a rectangle with height 1 and width x. If a vertical line is
drawn in the middle so that the left side is a square and the right side is a smaller rectangle
proportional to the original then x is the golden ratio.

To see this, note that for the rectangles to be proportional, the ratios of the longer sides
to the smaller are equal. That is x/1 = 1/(x − 1). So x(x − 1) = 1 ⇒ x2 − x − 1. Using
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the quadratic formula x must be (1 +
√

5)/2 or (1−√5)/2. Since the second is negative, x
is the first term, the golden ratio. This proportion for rectangles shows up for example in
the dimensions of the Parthenon and in art. There is no evidence that the ancient Greek
used the golden ratio in planning the parthenon. Rather the shape seems to be aesthetically
pleasing. Da Vinci did sketches of the golden ration in relation to the human body. There
is debate as to whether or not he incorporated these ideas into his paintings. Dali explicitly
used the golden ratio in some of his paintings.

Other examples of recurrences

Consider two other examples of simple recurrences

If An = 2An−1 − 2An−2 for n ≥ 2 with A0 = 2 and A1 = 2 we get the sequence
2, 2, 0,−4,−8,−6, 0, 16, 32, 32, 0, . . .. A number in this sequence is twice the previous number
minus twice the number preceding the previous number. The general expression for An is
even more surprising than that for Fibonacci numbers: An = (1 + i)n + (1 − i)n where
i =

√−1.

A simpler example that will be useful for illustration is Bn = Bn−1 + 6Bn−2 for n ≥ 2 with
B0 = 1 and B1 = 8. This recurrence gives the sequence 1, 8, 14, 62, 146, 518, . . .. The general
formula is Bn = 2 · 3n + (−1)(−2)n.

Mathematical Induction

Later we will see how to easily obtain the formulas that we have given for Fn, An, Bn. For
now we will use them to illustrate the method of mathematical induction. We can prove
these formulas correct once they are given to us even if we would not know how to discover
the formulas.

First we give a proof using the idea of contradiction and that of a minimal counterexample.
This is essentially the same as what we will do with induction but using slightly different
language.

Proposition: If Bn = Bn−1 + 6Bn−2 for n ≥ 2 with B0 = 1 and B1 = 8 then Bn =
2 · 3n + (−1)(−2)n.

Proof (using the method of minimal counterexamples): We prove that the formula is correct
by contradiction. Assume that the formula is false. Then there is some smallest value of
n for which it is false. Calling this value k we are assuming that the formula fails for k
but holds for all smaller values. That is, we assume that Bk 6= 2 · 3k + (−1)(−2)k but that
Bk−1 = 2·3k−1+(−1)(−2)k−1, Bk−2 = 2·3k−2+(−1)(−2)k−2, . . . , B0 = 2·30+(−1)(−2)0. Note
first that substituting n = 0 and n = 1 into the formula we get B0 = 2 · 30 + (−1)(−2)0 = 1
and B1 = 2 · 31 + (−1)(−2)1 = 8. So the formula works for n = 0, 1. Thus k ≥ 2 and we can
apply the recursion to Bk. Then using the recursion and the assumptions of the correctness

2



of the formulas for Bk−1 and Bk−2 we get

Bk = Bk−1 + 6Bk−2 (1)

=
[
2 · 3k−1 + (−1)(−2)k−1

]
+ 6

[
2 · 3k−2 + (−1)(−2)k−2

]
(2)

= 2 (3 + 6) 3k−2 + (−1) (−2 + 6) (−2)k−2 (3)

= 2 · 32 · 3k−2 + (−1) · (−2)2 · (−2)k−2 (4)

= 2 · 3k + (−1)(−2)k (5)

Thus the formula holds for k, contradicting the assumption that k is the smallest number
for which the formula fails. So there can be no such number: the formula holds for all
n = 0, 1, 2, . . .. 2

The key to the proof was showing that if the formula is correct for Bk−2 and Bk−1 then it is
correct for Bk. These are the displayed computations above. Those computations work for
any k. So we could use them along with the easily checked fact that the formula is correct
for B0 and B1 to show that it is correct for B2. Then since it is correct for B1 and B2 we
use the computations above to see that the formula is correct for B3. Continuing this way
we see that we can build up to showing that the formula is correct for any Bn.

We display this as follows:

Formula holds for B0 and B1 ⇒ (using equations (1)-(5) ⇒ formula holds for B2)
Formula holds for B1 and B2 ⇒ (using equations (1)-(5) ⇒ formula holds for B3)
Formula holds for B2 and B3 ⇒ (using equations (1)-(5) ⇒ formula holds for B4)

...
...

...
...

Formula holds for Bk−2 and Bk−1 ⇒ (using equations (1)-(5) ⇒ formula holds for Bk)
...

...
...

...

It is apparent that this shows that this shows that the formula works for all n = 0, 1, 2, . . ..

The language used by mathematicians to describe and present this process is called math-
ematical induction. This provides a succinct way of stating the ideas described above.
Technically it is equivalent to the minimal counterexample proof we gave above but in many
situations the presentation is cleaner and shorter.

We present the same proof using the terminology of mathematical induction.

Proposition: If Bn = Bn−1 + 6Bn−2 for n ≥ 2 with B0 = 1 and B1 = 8 then Bn =
2 · 3n + (−1)(−2)n.

Proof (using mathematical induction): We prove that the formula is correct using mathe-
matical induction. Since B0 = 2 · 30 + (−1)(−2)0 = 1 and B1 = 2 · 31 + (−1)(−2)1 = 8 the
formula holds for n = 0 and n = 1. For n ≥ 2, by induction

Bn = Bn−1 + 6Bn−2

=
[
2 · 3n−1 + (−1)(−2)n−1

]
+ 6

[
2 · 3n−2 + (−1)(−2)n−2

]

= 2 (3 + 6) 3n−2 + (−1) (−2 + 6) (−2)n−2

= 2 · 32 · 3n−2 + (−1) · (−2)2 · (−2)n−2

= 2 · 3n + (−1)(−2)n
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Hence the formula holds for all n = 0, 1, . . .. 2

The words ‘by induction’ (sometimes ‘by the induction hypothesis’ is used) are shorthand
for the idea described above that we have already proved the statement for smaller values of
n and are presenting the method to get to the next value and that this can be repeated to
show the statement for all n.

Induction and the well ordering principle

Formal descriptions of the induction process can appear at first very abstract and hide
the simplicity of the idea. For completeness we give a version of a formal description of
mathematical induction and also that of the well ordering principle on which the minimal
counterexample proof was based. The two are equivalent in that if either is assumed as a
basic axiom then the other can be shown to follow from the axiom.

Well ordering principle - Every non-empty subset of integers contains a smallest element.

Principle of mathematical induction - If Sn is a statement about the positive integer n such
that S1 is true and Sk is true whenever Sk−1 is true then Sn is true for all positive integers.

Solving linear recurrences

The example above with the Golden ratio and rectangles involved the quadratic x2−x−1 = 0.
We now explain how this same equation appears in finding a formula for the Fibonacci
numbers. This method works in general for the sorts of recurrences we gave in the examples.
These are linear: Terms like Fn−1 appear by themselves and not together or in a function.
So for example Fn−1Fn−2 or F 13

n−1 or sin(Fn−1) are not allowed in a linear recurrence. These
are also homogeneous: there is no term like n2 or 2n not involving some Fk.

Consider what would happen if we had a solution to the Fibonacci recurrence of the form
Fn = cαn where c 6= 0 is some constant and α 6= 0. Substituting into the recurrence we get
cαn = cαn−1+cαn−2 ⇒ α2 = α+1. Hence α2−α−1 = 0. That is, α is a root of the quadratic
x2−x−1. Multiples and sums of functions that satisfy the recurrence will also satisfy it. So
for Fibonacci numbers, both roots of x2−x− 1 = 0 satisfy the recurrence. Multiplying each

by a constant and adding we get that λ1

(
1+
√

5
2

)n

+ λ2

(
1−√5

2

)n

satisfies the recurrence. If

we can pick λ1 and λ2 so that we get the correct values when n = 0 and n = 1 then in fact

it will be ‘the’ solution correct for all values. Solving F0 = 0 = λ1

(
1+
√

5
2

)0

+ λ2

(
1−√5

2

)0

and F1 = 1 = λ1

(
1+
√

5
2

)1

+ λ2

(
1−√5

2

)1

we get λ1 = 1√
5

and λ2 = −1√
5

and hence the formula

Fn = 1√
5

(
1+
√

5
2

)n

+ −1√
5

(
1−√5

2

)n

.

The Lucas numbers satisfy the same recursion as the Fibonacci numbers but have different
initial conditions. They are given by Ln = Ln−1+Ln−2 for n ≥ 2 with L0 = 2 and L1 = 1. So
the sequence is 2, 1, 3, 4, 7, 11, 18, 29, 47, . . .. From the discussion above, as with the Fibonacci

numbers they will be of the form Ln = λ1

(
1+
√

5
2

)n

+ λ2

(
1−√5

2

)n

but with different values

of λ1 and λ2. For the Lucas numbers λ1 = λ2 = 1 and we have Ln =
(

1+
√

5
2

)n

+
(

1−√5
2

)n

.

For the recurrences An = 2An−1 − 2An−2 and Bn = Bn−1 + 6Bn−2 we get that solutions will
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be roots of x2 − 2x + 2 = 0 and x2 − x− 6 = 0 respectively. The roots of the first are 1 + i
and 1 − i and the roots of the second are 3 and −2 and these are what we see multiplied
by a constant in the expressions we gave previously. Using tools from linear algebra it can
be shown that if the corresponding polynomial has degree d and its roots are distinct then
d initial conditions will suffice to give a formula in a manner analogous to that described
above. When there are repeated roots things are only slightly more complicated. As an
example Cn = Cn−1 + 16Cn−2 + 20Cn−3 for n ≥ 3 with C0 = 1, C1 = 10, C2 = 54 has the
corresponding polynomial x3 − x2 − 16x− 20 = (x + 2)2(x− 5). So the roots are −2 (which
is repeated) and 5. The general formula is Cn = (−1)(−2)n + n(−2)n + 2 · 5n.

Combinatorial description of Fibonacci numbers

We have already noted that Fibonacci numbers show up both in nature and in many areas of
mathematics. The following five closely related objects are counted by Fibonacci numbers.

The Fibonacci numbers Fn count each of the following:
(a) the number of subsets of {1, 2, . . . , n−2} with no consecutive elements. (That is, subsets
that do not contain i and i + 1 for any i.)
(b) the number of binary string of length n− 2 with no consecutive 1’s. (That is, lists of 0’s
and 1’s such no two 1’s appear next to each other.)
(c) the number of lists of 1’s and 2’s with sum n− 1. (The lists can have any length as long
as the sum of the entries is n− 1.)
(d) the number of lists of odd positive integers with sum n.
(e) the number of lists of integers greater than 1 with sum n + 1.

We illustrate with n = 6, where F6 = 8.

(a) (b) (c) (d) (e)
∅ 0000 11111 111111 7
{1} 1000 2111 3111 25
{2} 0100 1211 1311 34
{3} 0010 1121 1131 43
{4} 0001 1112 1113 52
{1,3} 1010 221 51 223
{1,4} 1001 212 33 232
{2,4} 0101 122 15 322

So column (a) has all subsets of {1, 2, 3, 4} with no consecutive elements, column (b) has
binary strings of length 4 with no consecutive 1’s, column (c) has lists of 1’s and 2’s with
sum 5, column (d) has lists of odd integers with sum 6 and column (e) has lists of integers
greater than 1 with sum 7.

There are several ways to show that the Fibonacci numbers give each of these counts. Two
methods are:
Recursion - show that the objects being counted satisfy the same recurrence relation and
initial conditions as the Fibonacci numbers.
Bijection - show a bijection, that is, a one to one correspondence, between the object and
some other object known to be counted by the Fibonacci numbers
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We will illustrate these methods with a few of the examples above but first we discuss
bijections.

Bijections

A bijection between two sets is a one-to-one pairing of all of the elements in one set with
all of the elements in the other set. If there is a bijection between two sets then they have
the same cardinality. There are a few technical remarks: formally a bijection is a function
from one set to another that is both onto (also called surjective) and one-to-one (also called
injective). So everything in each set is paired to something in the other set. We have used
the word cardinality rather than size to include infinite sets. For infinite sets the cardinality
is in some sense a measure of how infinite it is. There is a bijection between the natural
numbers and the rational numbers so both have the same cardinality (even though it might
seem at first glance that there should be ‘more’ rational numbers). These are both countable
sets as we can list or count them. It can be shown that there is no bijection between the
natural numbers and the real numbers so the real numbers have a different cardinality. They
are called uncountable. Infinite sets with the same cardinality as the natural numbers are
countable those that do not have the same cardinality are uncountable. So, while the reals
are uncountable, there are other uncountable sets with different cardinality than the reals.

The continuum hypothesis states that there is no set with cardinality between that of the
natural numbers and the reals. Proving this was posed by Hilbert in 1900 as one of a set of
famous problems. In 1963 Paul Cohen proved that the continuum hypothesis could neither
be proved or disproved using a standard set of basic axioms. That is, it is undecidable in
this setting.

Proofs for combinatorial description of Fibonacci numbers

We can think of subsets of {1, 2, . . . , n} in two ways. We can list the elements of the set or
we can give a binary string of length n with 1’s in locations corresponding to the elements
of the set and 0’s elsewhere. This binary list is called the characteristic vector. For example
{2, 3, 5, 7} as a subset of {1, 2, . . . , 8} is represented by 01101010. Technically we have just
described a bijection between binary lists of length n and subsets of {1, 2, . . . , n}. To formally
prove that this is a bijection we would need to say a bit more but because this pairing is so
clear we do not do so. Similarly, there is a bijection between subsets of {1, 2, . . . , n−2} with
no consecutive elements and binary string of length n − 2 with no consecutive 1’s. Again
we do not prove this formally. Note that by the bijection if one of these is counted by the
Fibonacci numbers then so is the other.

To show that there are indeed Fn binary string of length n − 2 with no consecutive 1’s we
could either show a bijection between these string and something else we know to be counted
by the Fibonacci numbers or show that they satisfy the Fibonacci recurrence and have the
same initial conditions. We will leave these as exercises.

To show that there are Fn lists of 1’s and 2’s with sum n − 1 we will use the recurrence
relation.

Proposition: The number of lists of 1’s and 2’s with sum n− 1 is the Fibonacci number Fn.

Proof: Let Rn for n ≥ 1 denote the set of all lists of 1’s and 2’s with sum n − 1. Our aim
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is to show that |Rn| = Fn. Note that there is one list in R1, the empty list and one list in
R2, the list with a single 1. So |R1| = 1 = F1 and |R2| = 1 = F2. Now, consider Rn and
partition it into R1

n and R2
n where R1

n a contains those lists that end in a 1 and R2
n contains

those lists that end in a 2. This is a partition as each list in Rn ends in exactly one of 1 or
2. So |Rn| = |R1

n|+ |R2
n|.

Now, note that each element of R1
n is a 1,2 list with sum n − 1 ending in 1. Dropping the

last 1 results in a 1,2 list with sum n− 2. Similarly, adding a 1 to the end of a 1,2 list with
sum n− 2 results in a list with sum n− 1. This establishes a bijection between 1,2 lists with
sum n− 1 ending in 1 and 1,2 lists with sum n− 2. Thus |R1

n| = |Rn−1|. Similarly, dropping
last 2 from lists in R2

n pairs them with lists in Rn−2 and we have |R2
n| = |Rn−2|. Thus we get

that |Rn| = |R1
n| + |R2

n| = |Rn−1| + |Rn−2|. Thus the |Rn| satisfy the Fibonacci recurrence
and have the same initial conditions so |Rn| = Fn. 2

To show that the number of lists of odd positive integers with sum n and the number of lists
of integers greater than 1 with sum n+1 are each Fn we could in a similar manner show that
they satisfy the Fibonacci recurrence. In the first case we would partition the lists based on
whether the last term is 1 or not. If it is 1 we drop the 1 to get a list with sum n− 1. If it is
not 1 it is at least 3 and we subtract 2 from the last term to get a list with sum n− 2. We
will not give a formal proof which would also need to show that the process described above
is indeed a bijection, i.e., that it can be reversed. For the second case we would partition
the lists based on whether the last term is 2 or not, dropping it if it is a 2 and subtracting
1 if it is not. Again we skip the details.

Having shown that the number of 1,2 lists is Fn we can also establish that the number of
lists of odd positive integers with sum n and the number of lists of integers greater than 1
with sum n + 1 are each Fn by establishing a bijections.

Consider again these lists when n = 6:

11111 111111 7
2111 3111 25
1211 1311 34
1121 1131 43
1112 1113 52
221 51 223
212 33 232
122 15 322

We need to find a way to pair the first column with each of the other two columns in a
manner that will work in general for any n.

For the first two columns start first by adding a 1 to the front of each list in the first column
so that each sum is now 6. Every consecutive string of 2’s is now preceded by a 1. Replace
each consecutive string of 2’s and the preceding 1 by the sum of these terms. So, for example
we would replace 12221 with 71 and replace 121 with 31. In the example for n = 6 this
pairing put together entries in the same row. It is not hard to see that the sum is preserved
and that we only get odd numbers so we do indeed get lists of odd positive integers with
sum n. Also it is not hard to see that the process can be reversed, odd positive integers can
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be replaced with a list consisting of a 1 followed by some number of 2’s. We will give a more
formal description of this below.

For the first and third columns first start by adding a 2 to the front of each list in the first
column so that each sum is now 7. Now each consecutive string of 1’s is preceded by a 2.
Replace each consecutive string of 1’s and the preceding 2 by the sum of these terms. So,
for example in 2212 we replace the middle 21 with a 3 to get 232 and in 21211 we replace
the beginning 21 with 3 and the ending 211 with 4 to get 34. In the example for n = 6
this pairing put together entries in the same row. Again we can show that this produces a
bijection in general but we will omit the details.

Now we give a more formal version of the proof for the first two columns:

Proposition: The number of lists of 1’s and 2’s with sum n− 1 is the same as the number of
lists of odd positive integers with sum n

Proof (using a bijection): Let Sn be the set of lists of 1’s and 2’s with sum n− 1 and Tn be
the set of lists of odd positive integers with sum n. We will give a bijection between Sn and
Tn to establish the result.

Given a list in Sn, add a 1 to the start of the list. The new list has sum n and each consecutive
string of 2’s appearing in the new list is preceded by a 1. Replace each consecutive string
of 2’s and the preceding 1 by the sum of the entries. The sum must be odd and the only
terms that are not changed are 1’s that are followed by another 1. Thus the result is a list
of odd positive integers with sum n. Reversing the process we can replace each odd integer
2k + 1 ≥ 3 in a list in Tn with a string 122 . . . 2 having k 2’s to get a list of 1’s and 2’s
starting with a 1 having sum n. Dropping the first 1 gives a list in Sn. Each list in Sn then
clearly yields a list in Tn and the reverse process takes the list in Tn back to the original list
in Sn. Thus there is a bijection between Sn and Tn. 2

Binomial coefficients

In order to see another example in mathematics where Fibonacci numbers appear we first
need to review binomial coefficients. Use the symbol

(
n
k

)
to represent the number of k element

subsets of an n element set. We read this as ‘n choose k’. Although we do not need this fact
now it is not hard to show that

(
n
k

)
= n!

k!(n−k)!
where n! read as ‘n factorial’ is the product of

all positive integers less than or equal to n. That is, n! = n · n − 1 · n − 2 · · · 3 · 2 · 1. As a
notational convenience we set 0! to be 1.

The following table, which we will call the binomial triangle gives some small values of
(

n
k

)
:
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k 0 1 2 3 4 5 6 7
n
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1

So, for example the entry in row 6 column 3 is
(
6
3

)
= 20. The number of different size 3

subsets of a 6 element set is 20. Note that we start counting at 0 so the row labeled 6 is
actually the 7th row in the table.

The binomial coefficients satisfy a simple recurrence relation that is useful for making the
binomial triangle.

As a concrete example consider a class with 18 students where the instructor decides that
exactly 7 students will get A’s and the rest will get F’s. The number of different groups
(subsets) of 7 students that can be selected to get the A’s is ‘18 choose 7’, the binomial
coefficient

(
18
7

)
. To get a sense of how large these number are, this is

(
18
7

)
= 18!

7!11!
= 31, 824.

Imagine that the instructor has a favorite student. The size 7 subsets can be partitioned into
two collections, those that contain the favorite student and those that do not. For those that
contain the favorite, the instructor needs only to pick 6 students from the other 17 students,
in

(
17
6

)
ways. For those that do not contain the favorite, the instructor picks all 7 students

from the remaining 17 students in
(
17
7

)
ways. So we get

(
18
7

)
=

(
17
6

)
+

(
17
7

)
.

In general we get the following which we provide with a slightly more formal proof that
follows the idea of previous paragraph.

Proposition:

(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

Proof: Partition the k subsets of {1, 2, . . . , n} into two parts, the subsets containing n and
the subsets not containing n. Each k subset of {1, 2, . . . , n} containing n can be written as
S ∪ {n} for some k − 1 subset of {1, 2, . . . , n − 1} and hence the number of these is

(
n−1
k−1

)
.

The k subsets of {1, 2, . . . , n} not containing n are the k subsets of {1, 2, . . . , n − 1} and
hence the number of these is

(
n−1

k

)
. The result then follows. 2.

This is sometimes called Pascal’s identity and can be used to quickly determine entries in
the binomial triangle. The right diagonal and first column entries are 1. Each other entry is
the sum of the entry directly above it plus the entry above and one column to the left.

The binomial triangle is often presented as an isosceles triagle with the 1’s forming the outer
edges. It is often called Pascal’s triangle in western countries, Yang Hui’s triangle in China
and Kayyam’s triangle in Persia. ‘Pascal’s Triangle was discovered by Pingala around 500
A.D. in India, by Kayyam in Persia around 1000 A.D. and by Yang Hui in China around 1200
A.D. all long before Pascal’s discovery in 1655. The binomial coefficients play an important
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role in various areas of mathematics. For example the rows give the coefficients in the
expansion of (x + y)n. This result plays a role, as one example, in determining probabilities
related to sequences of coin flips.

The binomial triangle and Fibonacci numbers

Below we highlight two diagonal rows of the binomial triangle with italic and with bold
numerals.

k 0 1 2 3 4 5 6 7 8
n
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1

The sum of the italic diagonal is 1 + 5 + 6 + 1 = 13 = F7, the sum of the bold diagonal
is 1 + 7 + 15 + 10 + 1 = 34 = F9 and the sum of the diagonal between these two is
1 + 6 + 10 + 4 = 21 = F8. That these are Fibonacci numbers is no accident. The sums of
the diagonals give the Fibonacci numbers.

In order to show this fact, we first need to get correct notation to express the observation of
the previous paragraph and then we need to prove that it is correct. Writing the binomial
coefficients the examples above are F7 =

(
6
0

)
+

(
5
1

)
+

(
4
2

)
+

(
3
3

)
, F9 =

(
8
0

)
+

(
7
1

)
+

(
6
2

)
+

(
5
3

)
+

(
4
4

)
and F8 =

(
7
0

)
+

(
6
1

)
+

(
5
2

)
+

(
4
3

)
. We see that if we start in row n− 1 we get Fn so we guess

that the Fibonacci-binomial identity is

Fn =





(
n−1

0

)
+

(
n−2

1

)
+

(
n−3

2

)
+ · · ·+ (n−1

2
n−1

2

)
if n is odd

(
n−1

0

)
+

(
n−2

1

)
+

(
n−3

2

)
+ · · ·+ ( n

2
n−2

2

)
if n is even

This is Fn =

(
n− 1

0

)
+

(
n− 2

1

)
+

(
n− 3

2

)
+ · · ·+

(
n− 1− i

i

)
+ · · · where we understand

that the sum stops when we get a term
(

a
b

)
with a < b.

Proofs of the Fibonacci-binomial identity

We will give two different proofs of the Fibonacci- binomial identity described above in order
to illustrate to different methods. One method, mathematical induction we have already
encountered. The second method, a combinatorial proof we have also already encountered.
The proof of the identity

(
n
k

)
=

(
n−1
k−1

)
+

(
n−1

k

)
used an argument that involved counting

size k subsets of n in two different ways. Equating the expression gave the identity. Using
arguments that involve counting is the key to combinatorial proofs. Indeed, what we called
a bijective proof above can also be considered a special type of combinatorial proof.
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Proof (using mathematical induction): It is straightforward to check that the identity holds
for n = 1 and n = 2: F1 =

(
0
0

)
= 1 and F2 =

(
1
0

)
= 1. By induction, we assume that the

identity holds for values less than n and show that it holds for n. When n is even we get

Fn−2 =
(
(n−2)−1

0

)
+

(
(n−2)−2

1

)
+ · · ·+ (

(n−2)−1−(i−1)
i−1

)
+ · · ·+ ( (n−2)

2
(n−2)−2

2

)

+ Fn−1 =
(
(n−1)−1

0

)
+

(
(n−1)−2

1

)
+

(
(n−1)−3

2

)
+ · · ·+ (

(n−1)−1−i
i

)
+ · · ·+ ( (n−1)−1

2
(n−1)−1

2

)

Fn =
(

n−1
0

)
+

(
n−2

1

)
+

(
n−3

2

)
+ · · ·+ (

n−1−i
i

)
+ · · ·+ ( n

2
n−2

2

)

The equalities in the first two rows follow by induction. The bottom row is the sum of the
top two rows and establishes the identity for Fn. The result on the left in the bottom follows
by the Fibonacci recurrence and on the right from applying the binomial identity

(
m
r

)
=(

m−1
r−1

)
+

(
m−1

r

)
to each pair of terms and noting that for the first term

(
n−2

0

)
= 1 =

(
n−1

0

)
.

Similarly the identity can be shown for Fn when n is odd as follows:

Fn−2 =
(
(n−2)−1

0

)
+ · · ·+ (

(n−2)−1−(i−1)
i−1

)
+ · · ·+ ( (n−2)+1

2
(n−2)−3

2

)
+

( (n−2)−1
2

(n−2)−1
2

)

+ Fn−1 =
(
(n−1)−1

0

)
+

(
(n−1)−2

1

)
+ · · ·+ (

(n−1)−1−i
i

)
+ · · ·+ ( (n−1)

2
(n−1)−2

2

)

Fn =
(

n−1
0

)
+

(
n−2

1

)
+ · · ·+ (

n−1−i
i

)
+ · · ·+ (n+1

2
n−3

2

)
+

(n−1
2

n−1
2

)

The equalities in the first two rows follow by induction. The bottom row is the sum of
the top two rows and establishes the identity for Fn. The result on the left in the bottom
follows by the Fibonacci recurrence and on the right from applying the binomial identity(

m
r

)
=

(
m−1
r−1

)
+

(
m−1

r

)
to each pair of terms and noting that for the first term

(
n−2

0

)
= 1 =

(
n−1

0

)

and for the last term
(n−3

2
n−3

2

)
= 1 =

(n−1
2

n−1
2

)
.

Thus by induction the identity holds for all n. 2

Proof (using combinatorial methods): The number of lists of 1’s and 2’s with sum n − 1 is
Fn. Partition these lists into S0, S1, S2 . . . , where Si consists of those lists with i terms that
are 2’s and hence (n − 1) − 2i terms that are 1’s. Since the Si partition the lists (i.e., the
Si are disjoint and their union is all of the lists) we have that Fn = |S0| + |S1| + · · · . The
lists in Si have length (n− 1− 2i) + i = n− 1− i of which i are twos. As there are

(
n−1−i

i

)

ways to the locations of the 2’s we get that |Si| =
(

n−1−i
i

)
. Hence Fn = |S0| + |S1| + · · · =(

n−1
0

)
+

(
n−2

1

)
+

(
n−3

2

)
+ · · ·+ (

n−k
k−1

)
+ · · · establishing the identity. 2

Another Fibonacci identity

Another identity involving Fibonacci numbers is

1 + F0 + F1 + F2 + · · ·+ Fn = Fn+2.
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We will outline a proof by mathematical induction, a combinatorial proof and also discuss
using

∑
notation.

Mathematical induction

Learning mathematical induction may be a bit like learning to ride a bike. It seems almost
impossible at first and you fall and scrape your knees a few times but eventually you get it
and it turns out that it isn’t hard and you can really do a lot once you figure it out.

To get to the ideas behind a mathematical induction proof we describe the process in detail.
The final proof will hide all of this and be very short.

Substituting n = 0 into the equation we get 1 + F0 = F2. Since F0 = 0 and F2 = 1 this is
1 + 0 = 1 and clearly true. When n = 1 we get 1 + F0 + F1 = F3. With F0 = 0.F1 = 1 and
F3 = 2 we have 1 + 0 + 1 = 2 and the statement is true. Using the recurrence for Fibonacci
numbers we have F3 = F2 + F1 and substituting F2 = 1 + F0 which we have just established
we get F3 = F2 + F1 = (1 + F0) + F1 as needed.

For n = 2 we need to establish F4 = 1 + F0 + F1 + F2. Using the Fibonacci recurrence and
F3 = 1+F0+F1 which we have just shown to be true we get F4 = F3+F2 = (1+F0+F1)+F2

and the identity holds for n = 2.

Now imagine that we keep doing this and have shown the identity for n = 0, 1, 2, . . . , 11 and
we want to show it for n = 12. That is, we already know the following:

F2 = 1 + F0

F3 = 1 + F0 + F1

F4 = 1 + F0 + F1 + F2
...

...
...

F13 = 1 + F0 + F1 + · · ·+ F11

We want to know show that F14 = 1 + F0 + F1 + · · ·+ F11 + F12. Substituting the last line
above (which we have already established to be true) and the recurrence we get

F14 = F13 + F12 = (1 + F0 + F1 + · · ·+ F11) + F12 = 1 + F0 + F1 + · · ·+ F12

So using the fact that the identity is known to be true for n = 0, 1, . . . , 11 we have shown that
it is true for n = 12. In fact we really only needed the fact that the identity is known to be
true for n = 11. That it is true for n = 0, 1, . . . , 10 is in this case extra unused information.
(In some induction proofs we will need the truth of the statement for all smaller values.)

There was nothing to special about n = 11 so just use the symbol n. That is, we imagine
that we have shown the identity true for 1, 2, . . . , (n− 1) and we want to show that it is true
for n. So we assume that we already know the following:

F2 = 1 + F0

F3 = 1 + F0 + F1

F4 = 1 + F0 + F1 + F2
...

...
...

F(n−1)+2 = 1 + F0 + F1 + · · ·+ Fn−1

12



We want to use these fact and anything else we know (in this case the Fibonacci recurrence)
to show the identity for n. That is we need to show Fn+2 = 1 + F0 + F1 + · · ·+ Fn using the
assumptions above.

We can do this fairly easily by substituting the last line of the values assumed to be true,
where the left side is F(n−1)+2 = Fn+1 and the recurrence to get

Fn+2 = Fn+1 + Fn = (1 + F0 + · · ·+ Fn−1) + Fn = 1 + F0 + · · ·+ Fn−1 + Fn.

Observe that the second equality is simply using the associative property. We didn’t really
need to do this but include it to make sure things are clear.

So we have shown that the identity holds at n when it is assumed to be true for 1, 2, . . . , n−1.
This we can imagine a process of building up values for which we know it is true, n = 0 then
n = 1 then n = 2 then · · · then n = 11 then n = 12 · · · . Clearly we can do this to get all
numbers 0, 1, 2, . . . and this established that the identity is true for all n.

This is mathematical induction. The wording of a proof using mathematical induction is
a way of describing the process we went through above without writing so much. If we all
understand that this is what is meant by induction then we can present the proof ideas very
succinctly.

Here is how we do this using induction:

Proof that 1 + F0 + F1 + F2 + · · ·+ Fn = Fn+2 by mathematical induction. (version 1)

Since F0 = 0 and F2 = 1 we have F2 = 1 = 1 + 0 = 1 + F0. So the identity holds for n = 0.
For n ≥ 1 by the Fibonacci recurrence we have Fn+2 = Fn+1 + Fn and by induction we can
assume Fn+1 = 1+F0 + · · ·+Fn−1. Then Fn+2 = Fn+1 +Fn = (1+F0 + · · ·+Fn−1)+Fn and
the identity holds for n. Thus by mathematical induction 1+F0 +F1 +F2 + · · ·+Fn = Fn+2

for n = 0, 1, 2, . . .. 2
∑

notation

We next introduce some more notation for the proof above. In this case the
∑

notation
does not do too much to make the proof above shorter or more clear but in many instances
it does so it is good practice to use the notation here.

We use
∑

as shorthand for sums. So
n∑

i=0

Fi means that we sum all of the expressions

that we get substituting values i = 1, 2, . . . , n into the expression after the
∑

. That is,
n∑

i=0

Fi = F0 + F1 + · · ·+ Fn.

Now we give the proof above again using this notation. We also phrase it even slightly more
succinctly to see how induction proofs are sometimes written. By the basis we are referring
to the small case n = 0 that is checked directly.

Proof that 1 +
∑n

i=0 Fi = Fn+2 by mathematical induction. (version 2)
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The basis is F2 = 1 = 1 + 0 = 1 + F0. For n ≥ 1 we have

Fn+2 = Fn+1 + Fn = (1 +
n−1∑
i=0

Fi) + Fn = 1 +
n∑

i=0

Fi

where the first equality is from the Fibonacci recurrence, the second by induction and the
last by including Fn in the sum. So, by induction the identity holds for all n. 2

Combinatorial proof

We also want to show
1 + F0 + F1 + F2 + · · ·+ Fn = Fn+2

using a counting argument. This is what is known as a combinatorial proof. In this instance
the combinatorial proof is at least as long as the induction proof. However, combinatorial
proofs are in general a powerful technique that sometimes are much shorter than other
methods. They also are ‘nice’ in that they do not require as much ‘overhead’ such as, for
example, having a good grasp on the technique of mathematical induction.

We recall that the Fibonacci numbers count the number of lists of 1’s and 2’s with sum n−1.
When n = 5 and so n + 2 = 7 we have the following F7 = 13 lists of 1’s and 2’s with sum 6.
We will soon see why they are arranged in the columns as done here.

111111 21111 12111 11211 11121 11112
2211 2121 2112

1221 1212
1122
222

This is almost too small to see a pattern but we can see something. Observe that the lists
in the last column all end in 2, those in the second to last column end in 21 etc. That is, we
have partition the lists based on how many 1’s follow the last 2. The first column has the
only list with seven 1’s and no 2’s. The second column has no lists since there are no lists
with sum 6 ending with a 2 followed by six 1’s (the sum would be too big), the third column
ends with a 2 followed by five 1’s etc. Consider the column with those lists that end in 21.
The beginning of the list, preceding the end 21 has sum 6 − 3 = 3 and we know that there
are F4 = 3 such lists. So this column should have size 3.

For a given n the right side of the identity is Fn+2 which counts lists of 1’s and 2’s with sum
(n + 2) − 1 = n + 1. The goal will be to partition the set of all lists with sum n + 1 into
subsets of the lists with sizes corresponding to the sizes given by Fibonacci numbers on the
left side of the identity.

For any n we can partition the set of Fn+2 lists of 1’s and 2’s with sum n + 1 based on the
number of 1’s following the last 2. Observe that lists with sum n + 1 that end with 211 . . . 1
where there are k terms that are 1 can be obtained by taking lists with sum (n+1)−2−k =
(n− k)− 1 and appending 211 . . . 1, with sum k + 2. So there are Fn−k such lists. It seems
that this partition the gives the count of Fn+2 as a sum of smaller Fibonacci numbers, plus
1 for the single list with all 1’s.
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What we need to do now is take the observation of the previous paragraph and make it into
a proof that works for all n. We give two versions of the same proof using slightly different
notation and level of formality.

Combinatorial proof that 1 + F0 + F1 + F2 + · · ·+ Fn = Fn+2. (version 1)

Let S be the set of lists of 1’s and 2’s with sum n + 1. This has size Fn+2. Partition S into
(T0 ∪ T1 ∪ · · ·Tn−1) ∪ U where U consists of the single list with n + 1 terms that are 1 and
Tk consists of all lists for which the last 2 is followed by exactly k terms that are 1’s. This
is a partition. Each list in S is in exactly one of these sets as any list with sum n + 1 that
contains a 2 has at most n − 1 terms that are 1. So |S| = |T0| + |T1| + · · · + |Tn−1| + |U |.
Given a list in Tk, deleting the last 2 and the 1’s that follow it results in a list with sum
(n + 1)− 2− k = (n− k)− 1. Reversing this, adding a 2 followed by k terms that are 1’s to
a list with sum (n− k)− 1 yields a list in Tk. Thus there is a bijection between Tk and lists
of 1’s and 2’s with sum (n − k) − 1. So |Tk| = Fn−k. Along with |U | by its definition and
using F0 = 0 we get

Fn+2 = |S|
= |U |+ 0 + |Tn−1|+ |Tn−2|+ · · ·+ |T0|
= 1 + F0 + Fn−(n−1) + Fn−(n−2) + · · ·+ Fn−0

= 1 + F0 + F1 + F2 + · · ·+ Fn

and the identity is shown. 2

Combinatorial proof that 1 +
∑n

i=0 Fi = Fn+2. (version 2)

There are Fn+2 lists of 1’s and 2’s with sum n+1. There is one list of all 1’s. The remaining
lists each contain at least one 2. There are Fn−k lists in which the last 2 is followed by k
terms that are 1 because such lists are determined by the part of the list preceding the last
2, which has sum (n + 1)− 2− k = (n− k)− 1. here k can be 0, 1, . . . , n− 1. Thus

Fn+2 = 1 +
n−1∑

k=0

Fn−k = 1 +
n∑

i=1

Fi = 1 +
n∑

i=1

Fi

where the last equality follows by adding F0 = 0 and the second to last from the change of
indices i = n− k. So the identity is shown. 2
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