
Notes on the Euclidean algorithm

Consider trying to find integer solutions to 6x + 15y = 3 and 6x + 15y = 4. The
first equation has an integer solution 3(−2) + 15(1) = 3. For the second equation
we can factor out a 3 and we have 3(2x + 5y) = 4. If there was a solution, that is
integers x∗ and y∗ with 6x∗ + 15y∗ = 4 then, dividing by 3 we get 2x∗ + 5y∗ = 4

3
.

Since 2, 5, x∗, y∗ are integers so is 2x∗ + 5y∗ and we then would have that 4
3

is an
integer, which is nonsense. So there is no integer solution to 6x + 15y = 4. Consider
in general 6x + 15 = c. If we divide the left side by 3, the left side is an integer
so we see we get a similar contradiction unless the right side c is a multiple of 3.
When c is a multiple of 3, say c = 3h then multiplying the first solution by h we have
3(−2h) + 15(1 · h) = (3 · −2 + 15 · 1)h = 3h = c.

Our aim is to show that the ideas of the previous example work in general. Given
positive integers a, b, c we have an integer solution to ax + by = c if and only if c is a
multiple of the greatest common divisor of a and b. In addition we will describe the
Euclidean algorithm, which uses the simple idea of the proof to compute the greatest
common divisor and a solution.

The greatest common divisor is a familiar notion from basic arithmetic. Formally,
we say that a positive integer c is a common divisor of a and b if c|a and c|b (i.e., c
divides a and c divides b). Then c is a greatest common divisor of a and b, written
c = gcd(a, b), if it is larger than every other common divisor. In fact, for any other
common divisor d, we have d|c. Note that c|a (c divides a) means that there exists
an integer k such that ck = a.

We need to use the division algorithm, which is essentially the familiar idea of division
from elementary arithmetic. For simplicity assume that a ≥ b ≥ 0. Then we can
divide a by b and get a quotient q and a remainder r with the nonnegative remainder
strictly less than b. (Technically there is a little to show this formally. We will omit
these details.) That is we can find integers q and r with 0 ≤ r < b so that a = qb+ r.

The key to the Euclidean algorithm and the proof is the fact that gcd(a, b) = gcd(b, r).
Then for the algorithm we make a recursive call with b and r and for the proof we
apply induction with b and r, finding b = q′b + r′.

We will first assume gcd(a, b) = gcd(b, r) and use it to prove the theorem about
integral solutions. Later will will give the simple proof that gcd(a, b) = gcd(b, r).

Theorem: Let a ≥ b and c be non-negative integers. There in an integer
solution to ax + by = c if and only if c is a multiple of the greatest common
divisor of a and b.

Proof: Let g = gcd(a, b).

1



We first prove ‘only if’. That is, we need to show that if there is an integer solution
that c is a multiple of g. There exist integers ha, hb with a = gha and b = ghb since g
divides a and b. If x∗, y∗ are integers such that ax∗+ by∗ = c then substituting we get
g(hax

∗ + hby
∗) = (gha)x

∗ + (ghb)y
∗ = ax∗ + by∗ = c. Since hax

∗ + hby
∗ is an integer,

c is a multiple of g.

For ‘if’ we need to prove that if c is a multiple of g then there exist integers x∗, y∗

such that ax∗ + by∗ = c. Note first that if c is a multiple of g then c = gh for
some integer h. Then if we have integers x′, y′ with ax′ + by′ = g we have a(x′h) =
b(y′h) = (ax′ + by′)h = gh = c. Thus it is enough to show that there is an integer
solution to ax + by = g. We use induction on b. When b = 0, g = a and we have
the trivial solution g · 1 = g. By the division algorithm there are integers q, r with
0 ≤ r < b such that a = qb + r. Since g = gcd(a, b) = gcd(b, r) and b > r, by
induction there exist integers x′, y′ such that bx′ + ry′ = g. Then using r = a− qb we
have g = bx′ + ry′ = bx′ + (a− qb)y′ = ay′ + b(x′− qy′) and hence ax∗ + by∗ = g with
x∗ = y′ and y∗ = x′ − qy′. 2

We used the following lemma in the proof so we need to prove the lemma too.

Lemma: If a = qb + r then gcd(a, b) = gcd(b, r).

Proof: If d divides a and b then a = dk and b = dl for some integers k, l. So
r = a− qb = dk− q(dl) = d(k− ql) and hence d divides r. Similarly if d divides b and
r then b = dl and r = dj for some integers k, l. So a = qb + r = q(dl) + dj = d(ql + j)
and hence d divides a. Hence every common divisor of a and b is a common divisor
or b and r and thus gcd(a, b) = gcd(b, r). 2

In the proof we found that x∗ = y′ and y∗ = x′ − qy′ satisfy ax∗ + by∗ = g when
bx′+ ry′ = g. Simply iterating this using the q, r from the division algorithm gives us
a way of finding the greatest common divisor as well as the solution to ax + by = g.
This is called the Euclidean algorithm. We illustrate this as follows. Doing this by
hand we first work down the left side using the division algorithm and then when we
get to the bottom work back up the right side determining the values of the x and y
using x∗ = y′ and y∗ = x′ − qy′ where the x∗, y∗ are the values one row higher than
the x′, y′ and the q is from the row with the x∗, y∗.

For example

ai bi qi ri g xi yi

657 = 306 · 2 + 45 9 7 −15
306 = 45 · 6 + 36 9 −1 7
45 = 36 · 1 + 9 9 1 −1
36 = 9 · 4 + 0 9 0 1
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So the greatest common divisor of 657 and 306 is 9 and 9 = 657·7+306·−15. Observe
that at each step we have aixi + biyi = 9. And following from g = ay′ + b(x′ − qy′)
above x for a given line is y for the line below and y for a given line is x for the line
below minus the current q times y for the line below.

As another example

ai bi qi ri g xi yi

55 = 34 · 1 + 21 1 13 −21
34 = 21 · 1 + 13 1 −8 13
21 = 13 · 1 + 8 1 5 −8
13 = 8 · 1 + 5 1 −3 5
8 = 5 · 1 + 3 1 2 −3
5 = 3 · 1 + 2 1 −1 2
3 = 2 · 1 + 1 1 1 −1
2 = 1 · 2 + 0 1 0 1

So the greatest common divisor of 21 and 13 is 1 and 1 = 21 · 5 + 13 · −8.

Note that the second example involves Fibonacci numbers. We now show that con-
secutive Fibonacci numbers give the worst case number of steps for the Euclidean
algorithm. We will say that the number of steps for the Euclidean algorithm is the
number of times that the division algorithm is used. This is the number of lines in
the examples above.

Observe also that the x, y columns are also Fibonacci numbers. We see the identity
Fk+2Fk−1(−1)k +Fk+1Fk(−1)k+1 = 1 from the table above. This can be easily proved
by induction with no reference to the Euclidean algorithm, although we will not do
so here.

Lame’s Theorem: If the Euclidean algorithm applied to a > b ≥ 1 requires
k steps then b ≥ Fk+1 and a ≥ Fk+2.

Proof: Use induction on the number of steps k. For k = 1 we have from a > b ≥ 1
that a ≥ 2 = F3 and b ≥ 1 = F2. For k ≥ 2 steps we write a = qb + r and apply
the algorithm to b > r. By induction, since we use k − 1 steps for b > r we have
b ≥ F(k−1)+2 = Fk+1 and r ≥ F(k−1)+1 = Fk. Since q ≥ 1 we have a = qb+ r ≥ b+ r ≥
Fk+1 + Fk = Fk+2. 2

Since the number of digits in n is blog nc + 1 and the kth Fibonacci number is the

integer closest to 1√
5

(
1+
√

5
2

)k

we can show that the number of steps in the Euclidean

algorithm applied to a ≥ b is at most 5 times (actually 1

log( 1+
√

5
2

)
≈ 4.785) times the

number of digits in b.
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