Math 242 fall 2008 notes on problem session for week of 9-8-08 This is a short overview of problems that we covered.

1. Prove that $A^{T} A$ is symmetric. Using $(B C)^{T}=C^{T} B^{T}$ and $\left(A^{T}\right)^{T}=A$ we get $\left(A^{T} A\right)^{T}=A^{T}\left(A^{T}\right)^{T}=A^{T} A$. Thus $A^{T} A$ is symmetric (since it is equal to its transpose).
2. Prove $(A B)^{T}=B^{T} A^{T}$. Assume that A is $m \times n$ and B is $n \times p$.

Use subscripts like $A_{i j}$ to indicate entries in matrix A. We need to show that $(A B)_{i j}^{T}=\left(B^{T} A^{T}\right)_{i j}$. From the definition of transpose, the $i j$ entry of the transpose is the $j i$ entry of the original. Use this and the definition of matrix multiplication.

$$
(A B)_{i j}^{T}=(A B)_{j i}=\sum_{k=1}^{n} A_{j k} B_{k i}=\sum_{k=1}^{n} A_{k j}^{T} B_{i k}^{T}=\sum_{k=1}^{n} B_{i k}^{T} A_{k j}^{T}=\left(B^{T} A^{T}\right)_{i j}
$$

3. The trace of a square matrix is the sum of its diagonal elements. Writing $\operatorname{Tr}(A)$ for the trace of an $n \times n$ matrix this is $\operatorname{Tr}(A)=\sum_{i=1}^{n} A_{i i}$. Prove that $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$ when both are defined. Assume that A is $m \times n$ then B is $n \times m$ in order for both to be defined. Using the definition of trace and matrix multiplication we get
$\operatorname{Tr}(A B)=\sum_{i=1}^{n}(A B)_{i i}=\sum_{i=1}^{n} \sum_{k=1}^{m} A_{i k} B_{k i}=\sum_{k=1}^{m} \sum_{i=1}^{n} B_{k i} A_{i k}=\sum_{k=1}^{m}(B A)_{k k}=\operatorname{Tr}(B A)$.
4. Find an equation for the plane $a x+b y+c z=d$ through the points $(0,2,-1),(-2,4,3),(2,-1,-3)$.

Substituting for x, y, z from each of the three points we get three equations

$$
\begin{array}{r}
2 b-c-d=0 \\
-2 a+4 b+3 c-d=0 \\
2 a-b-3 c-d=0
\end{array}
$$

We get solutions $a=4 d / 3, b=2 d / 3, c=d / 3, d=d$ for any choice of d. Setting $d=3$ yields the plane $4 x+2 y+z=3$.
5. Let $A \boldsymbol{x}=\lambda \boldsymbol{x}$ for some scalar λ. Prove that $A^{k} \boldsymbol{x}=\lambda^{k} \boldsymbol{x}$. Use induction. The case $k=1$ is given. For $k>1$, using the fact that scalars commute with matrices and the induction hypothesis $A^{k-1} \boldsymbol{x}=\lambda^{k-1} \boldsymbol{x}$ we get $A^{k} \boldsymbol{x}=A A^{k-1} \boldsymbol{x}=A\left(\lambda^{k-1} \boldsymbol{x}\right)=\lambda^{k-1} A \boldsymbol{x}=\lambda^{k-1}(\lambda \boldsymbol{x})=\lambda^{k} \boldsymbol{x}$. Hence by induction the result holds for all positive integers k.

