
Math 242 fall 2008 notes on problem session for week of 9-30-08
This is a short overview of problems that we covered.

1. For each of the following sets ask the following: Does it span R3? Is it linearly inde-
pendent? Is it a basis.
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We solved these and discussed the general approach to such problems.
The general approach for such questions is as follows:

For T = {v1, v2, . . . , vn} ⊂ Rm form the ×n matrix A which has ith equal to vi and
determine U for a factorization PA = LU . We describe how to answer these and then
explain why the tests work.

Does T span Rm? If U has a row of all zeroes the answer is no and if U does not the
answer is yes. In particular, if n < m there will be a row of zeroes and T will not span:
we need at least m vectors to span Rm.

Is T linearly independent? If U has a free variable the answer is no and if U does not
the answer is yes. In particular, if n > m there will be a free variable and T is not
linearly independent.

Is T a basis? T must span Rm and be linearly independent. If n < m then T does not
span Rm and if n > m then T is not linearly independent. So a necessary condition
is that n = m. Note that in this case U has a row of zeroes if and only if it has a
free variable. So we observe that m = n (the number of vectors equals the dimension)
spanning implies linear independence and vice-versa.

Recall that the rank of a matrix is the number of pivots. That is, the number of
nonzero rows in U for a PA = LU factorization. So using this terminology, T spans
Rm if rank(A) = m and it does not span if rank(A) < m (and rank(A) cannot be
greater than the number of rows m). T is linearly independent if rank(A) = n and it
is linearly dependent if rank(A) < n (and rank(A) cannot be greater than the number
of columns n).



Explanation for spanning test. We need to test if every b ∈ Rm can be written as a
linear combination of vectors in T . That is, is there a solution xT = (x1, x2, . . . , xn) to
v1x1 +v2x2 + · · ·+vnxn = b? In matrix form this is Ax = b. Consider a factorization
PA = LU . If U has a row of all 0’s then there will be some choice of b for which there
is no solution. Recall that we use the factorization to solve the system by first solving
Lc = Pb and then attempting to solve Ux = c. If U has a row of zeroes we can pick
c with a nonzero corresponding to such a row. Then if we set b = P−1Lc we have no
solution to Ax = b. If U has no row of zeroes we can always solve Ux = c.

Explanation for linear independence test. We need to test if the only solution to v1x1 +
v2x2+· · ·+vnxn = 0 is trivial. In matrix form this is Ax = 0. Consider a factorization
PA = LU . recall that the set of solutions to Ax = 0 is the same as the solutions to
Ux = 0. There are nontrivial solutions exactly when there are free variables.

For the sets above we get the following A and factorization A = LU . In each case P = I.
We only need U to answer our questions but it is useful to see the factorization.

For S1:




1 1 1 1
2 3 4 5
3 4 5 6


 =




1 0 0
2 1 0
3 1 1







1 1 1 1
0 1 2 3
0 0 0 0


. So S1 does not span R3 and

is not linearly independent.

For S2:




1 2
3 7
5 6


 =




1 0 0
3 1 0
5 −4 1







1 2
0 1
0 0


. So S2 does not span R3 and is linearly

independent.

For S3:




1 2 4
0 1 3
0 0 1


 =




1 0 0
0 1 0
0 0 1







1 2 4
0 1 3
0 0 1


. So S3 spans R3 and is linearly

independent. It is a basis.

2. For each of the matrices above determine a basis for the four fundamental subspaces.
(We did not actually do this for these matrices in the problem session.) Also what are
the dimensions and note relations between them.

Bases for the four fundamental subspaces. Given A = LU we determine bases for the
four fundamental subspaces as follows. Explanations as to why these methods work
will be given in another set of notes and (except for the method we use for the cokernel)
on pages 116-119 of the text.

The matrix A for S1. Here L−1 =




1 0 0
−2 1 0
−1 −1 1


.

Basis for Ker(A): Using back substitution in U the set of solutions to Ux = 0 is
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 x4 where x3, x4 can be any real numbers. Thus a

basis is {(1,−2, 1, 0)T , (2,−3, 0, 1)T}. The dimension is 2.
Basis for Corng(A): Use nonzero rows of U : a basis is {(1, 1, 1, 1)T , (0, 1, 2, 3)T}. The
dimension is 2.
Basis for Coker(A): Use the last row of L−1: a basis is {(−1,−1, 1)T}. The dimension
is 1.
Basis for Rng(A): use columns of A corresponding to pivots columns of U : as basis is
{(1, 2, 3)T , (1, 3, 4)T}. The dimension is 2.

The matrix A for S2. Here L−1 =




1 0 0
−3 1 0
−17 4 1


.

Basis for Ker(A): There are no free variables so the kernel is trivial, ker(A) = {0}
which by convention has an empty basis. The dimension is 0.
Basis for Corng(A): Use nonzero rows of U : a basis is {(1, 2)T , (0, 1)T}. The dimension
is 2.
Basis for Coker(A): Use the last row of L−1: a basis is {(−17, 4, 1)T}. The dimension
is 1.
Basis for Rng(A): use columns of A corresponding to pivots columns of U : as basis is
{(1, 3, 5)T , (2, 7, 6)T}. The dimension is 2.

The matrix A for S3. Here L−1 =




1 0 0
0 1 0
0 0 1


 (although we do not need to use it

since there are no zero rows in U).
Basis for Ker(A): There are no free variables so the kernel is trivial, ker(A) = {0}
which by convention has an empty basis. The dimension is 0.
Basis for Corng(A): Use nonzero rows of U : a basis is {(1, 2, 3)T , (0, 1, 3)T , (0, 0, 1)T}.
The dimension is 3.
Basis for Coker(A): There are no zero roes in U so the cokernel is trivial, coker(A) =
{0} which by convention has an empty basis. The dimension is 0.
Basis for Rng(A): use columns of A corresponding to pivots columns of U : as basis is
{(1, 0, 0)T , (2, 1, 0)T , (4, 3, 1)T}. The dimension is 3.

3. We observed Theorem 2.49 in the examples of the dimensions of the subspaces. A
restatement and informal explanation is given here. More formal versions and proofs
can be found in the text on pages 116-119.



For and m× n matrix A and a PA = LU factorization we have:

• dimension of the kernel of A is equal to the number of free variables in U (which
is n minus the rank of A)

• dimension of the corange of A is equal to the number of nonzero rows in U , which
is the number of pivot columns which is the rank of A.

• Thus we have the kernel and corange (i.e., the nullspace and row space) as sub-
spaces of Rn and the sum of their dimensions is n.

We also have

• dimension of the cokernel of A is equal to the number of zero rows in U (which is
m minus the rank of A)

• dimension of the range of A is equal to the number of pivot columns in U , which
is the rank of A.

• Thus we have the cokernel and range (i.e., the left nullspace and column space)
as subspaces of Rm and the sum of their dimensions is m.

In addition, since the corange is the range of AT the dimension of the corange is the
rank of AT . Since we noted above that the dimension of the corange is the rank of A
we have established that the rank of A and the rank of AT are the same. For example
if A is a 42× 99 matrix and the rank is 30 then elementary row operations produce a
U with 30 nonzero rows and 12 zero rows. Elementary row operations on the 99× 42
matrix AT will also produce 30 nonzero rows and for the transpose we will have 69
zero rows.

4. We proved Lemma 2.34: The elements v1,v2, . . . , vn form a basis for vector space V
if and only if every x ∈ V can be written uniquely as a linear combination of the basis
elements. The ‘only if’ direction of the proof is in the text on page 103. The more
obvious ‘if’ direction is not in the tex so we do it here.

Proof of ‘if’: Since every x can be written uniquely in terms of the vectors, it can be
written in terms of these vectors. So v1, v2, . . . , vn span V . Since 0 = 0v1 +0v2 + · · ·+
0vn and this trivial solution is unique, it is the only solution. Hence v1,v2, . . . , vn are
linearly independent. The vectors span V and are linearly independent so they are a
basis.

5. We showed that elementary row operations do not change the corange (row space). An
alternate proof is in the text on page 119. Informally we recognize that permuting rows
and multiplying a row should not change which vectors we can get as combinations of



the rows. In addition, by adding a multiple of one row to another we are replacing a
row by a combination of the rows so this should not change the row space. Formally we
encode the operation on A in matrix notation as B = EA. In fact we will show that left
multiplication by an invertible matrix does not change the corange. We complete the
proof by noting that the matrices E encoding elementary row operations are invertible.

c ∈ corng(EA) ⇒ yT EA = cT for some y ⇒ zT A = (yT )A = EcT where zT = yT A.
So corng(EA) ⊆ corng(A).

c ∈ corng(A) ⇒ yT A = cT for some y ⇒ zT EA = yT E−1EA = yT A = cT where zT =
yT E−1. So corng(A) ⊆ corng(EA).

corng(EA) ⊆ corng(A) and corng(A) ⊆ corng(EA) implies corng(A) = corng(EA).

This establishes that when PA = LU we have corng(A) = corng(U). Observe that
the same is not true for range. In some of the examples above each column of U has
3rd coordinate 0 and hence the 3rd coordinate of every vector in rng(U) is 0 while the
same is not true for vectors in rng(A). In particular, columns of A do not have this
property.


