
Math 242 fall 2008 notes on problem session for week of 9-15-08
This is a short overview of problems that we covered.

1. Let A be an m×m nonsingular matrix. Form Â from A by adding 3 times row two to
row four.

(a) Describe an elementary matrix that encodes this.
Let E be the m ×m elementary matrix with diagonal entries 1, the (4, 2) entry
3 and every other entry 0. That is, Ei,i = 1 for i = 1, 2, . . . ,m, E4,2 = 3 and
Ei,j = 0 otherwise. This is the matrix obtained from Im by adding 3 times row

two to row four. We now have Â = EA. This can easily be checked as follows:
note that every row of E except row 4 is the corresponding identity row, so every
row of Â = EA except row 4 is the same as the corresponding row of A. Row 4
of E has a 3 in position 2, a 1 in position 4 and 0 otherwise. So row 4 of Â = EA
is 3 times row 2 of A plus 1 times row 4 of A. A more formal description of the
action of elementary matrices is in the text.

(b) Describe how to obtain Â−1 from A−1

Since Â = EA we have Â−1 = (EA)−1 = A−1E−1. It is easy to check that E−1 is
the m×m elementary matrix with diagonal entries 1, the (4, 2) entry −3 and every
other entry 0. One way to discover this is that we need an elementary matrix that
undoes the original operation, so we add -3 times row 2 to row 4. Doing this to
the identity yields E−1 as described. Right multiplying by E−1 acts on columns.
Since every column of E−1 except column 2 is the corresponding identity column,
every column of Â−1 = A−1E−1 is the same as the corresponding column of A−1.
The second column has a 1 in position 2 and a -3 in position 4 so column 2 of
Â−1 = A−1E−1 is column 2 of A−1 plus −3 times column 4 of A−1.

(c) If C = AB and Ĉ = ÂB describe how to get Ĉ from C.
Left multiply C = AB by E to get EC = E(AB) = (EA)B = ÂB = Ĉ. Since
Ĉ = EA and Â = EA, Ĉ is obtained from C in the same way that Â is obtained
from A; by adding 3 times row two to row four.

2. If the inverse of A2 is B, show that A has an inverse and say what it is. Note that for
A2 to be defined A must be square. We are given (A2)−1 = B. So I = A2B = A(AB)
hence AB is the inverse of A. Note also that we could do I = BA2 = (BA)A and so
also the inverse of A is BA. Since the inverse is unique we have also shown that is this
case AB = BA = A−1.



3. Let A and B be square matrices with factorizations P1A = L1U1 and P2B = L2U2 where
P1, P2 are permutation matrices, L1, L2 are lower triangular with 1’s on the diagonal
and U1, U2 are upper triangular with nonzero entries on the diagonal. Determine the

PM = LU factorization of the block matrix M =

(
A C
0 B

)
. Once we guess at the

correct form we can show it is correct as follows, using block matrix multiplication and
substituting using the given equations and using the fact that L−1 exists:(

P1 0
0 P2

)(
A C
0 B

)
=

(
P1A P1C

0 P2B

)
=

(
L1 0
0 L2

)(
U1 L−1P1A
0 U2

)
. From

the triangular properties of L1, L2, U1, U2 it is easy to see that the block matrices on
the right are lower and upper triangular as needed.

4. If A =




1 4 2
1 1 −3

−1 5 −1


, determine A−1. Note that the columns of A are orthog-

onal. Since the columns are orthogonal we know that AT A will have 0 in all off

diagonal entries. Checking we get AT A =




3 0 0
0 42 0
0 0 14


. Recall that multiply-

ing a row of the left matrix in a product by a constant multiplies the same row in
the product by the same constant. Using this we ‘adjust’ the rows of AT to get

A−1 =




1/3 1/3 −1/3
4/42 1/42 5/42
2/14 −3/14 −1/14


 which is easily checked to be correct.

5. If A =




3 0 0 0
1 −2 0 0
2 1 2 0
4 3 2 1


. Find a P1AP2 = LU factorization where P1, P2 are permuta-

tion matrices, L is lower triangular with 1’s on the diagonal and U is upper triangular.

Let P1 = P2 =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


. Left multiplying by P1 reversed the order of the rows

and right multiplying by P2 reverses the order of the columns so we then have L = I4

and U =




1 1 3 4
0 2 1 2
0 0 −2 1
0 0 0 3


.


