Math 242 fall 2008 notes on problem session for week of 9-15-08
This is a short overview of problems that we covered.

1. Let A be an $m \times m$ nonsingular matrix. Form \hat{A} from A by adding 3 times row two to row four.
(a) Describe an elementary matrix that encodes this.

Let E be the $m \times m$ elementary matrix with diagonal entries 1 , the $(4,2)$ entry 3 and every other entry 0 . That is, $E_{i, i}=1$ for $i=1,2, \ldots, m, E_{4,2}=3$ and $E_{i, j}=0$ otherwise. This is the matrix obtained from I_{m} by adding 3 times row two to row four. We now have $\hat{A}=E A$. This can easily be checked as follows: note that every row of E except row 4 is the corresponding identity row, so every row of $\hat{A}=E A$ except row 4 is the same as the corresponding row of A. Row 4 of E has a 3 in position 2 , a 1 in position 4 and 0 otherwise. So row 4 of $\hat{A}=E A$ is 3 times row 2 of A plus 1 times row 4 of A. A more formal description of the action of elementary matrices is in the text.
(b) Describe how to obtain \hat{A}^{-1} from A^{-1}

Since $\hat{A}=E A$ we have $\hat{A}^{-1}=(E A)^{-1}=A^{-1} E^{-1}$. It is easy to check that E^{-1} is the $m \times m$ elementary matrix with diagonal entries 1 , the $(4,2)$ entry -3 and every other entry 0 . One way to discover this is that we need an elementary matrix that undoes the original operation, so we add -3 times row 2 to row 4 . Doing this to the identity yields E^{-1} as described. Right multiplying by E^{-1} acts on columns. Since every column of E^{-1} except column 2 is the corresponding identity column, every column of $\hat{A}^{-1}=A^{-1} E^{-1}$ is the same as the corresponding column of A^{-1}. The second column has a 1 in position 2 and a -3 in position 4 so column 2 of $\hat{A}^{-1}=A^{-1} E^{-1}$ is column 2 of A^{-1} plus -3 times column 4 of A^{-1}.
(c) If $C=A B$ and $\hat{C}=\hat{A} B$ describe how to get \hat{C} from C.

Left multiply $C=A B$ by E to get $E C=E(A B)=(E A) B=\hat{A} B=\hat{C}$. Since $\hat{C}=E A$ and $\hat{A}=E A, \hat{C}$ is obtained from C in the same way that \hat{A} is obtained from A; by adding 3 times row two to row four.
2. If the inverse of A^{2} is B, show that A has an inverse and say what it is. Note that for A^{2} to be defined A must be square. We are given $\left(A^{2}\right)^{-1}=B$. So $I=A^{2} B=A(A B)$ hence $A B$ is the inverse of A. Note also that we could do $I=B A^{2}=(B A) A$ and so also the inverse of A is $B A$. Since the inverse is unique we have also shown that is this case $A B=B A=A^{-1}$.
3. Let A and B be square matrices with factorizations $P_{1} A=L_{1} U_{1}$ and $P_{2} B=L_{2} U_{2}$ where P_{1}, P_{2} are permutation matrices, L_{1}, L_{2} are lower triangular with 1 's on the diagonal and U_{1}, U_{2} are upper triangular with nonzero entries on the diagonal. Determine the $P M=L U$ factorization of the block matrix $M=\left(\begin{array}{cc}A & C \\ 0 & B\end{array}\right)$. Once we guess at the correct form we can show it is correct as follows, using block matrix multiplication and substituting using the given equations and using the fact that L^{-1} exists:
$\left(\begin{array}{rr}P_{1} & 0 \\ 0 & P_{2}\end{array}\right)\left(\begin{array}{rr}A & C \\ 0 & B\end{array}\right)=\left(\begin{array}{rr}P_{1} A & P_{1} C \\ 0 & P_{2} B\end{array}\right)=\left(\begin{array}{rr}L_{1} & 0 \\ 0 & L_{2}\end{array}\right)\left(\begin{array}{rr}U_{1} & L^{-1} P_{1} A \\ 0 & U_{2}\end{array}\right)$. From the triangular properties of $L_{1}, L_{2}, U_{1}, U_{2}$ it is easy to see that the block matrices on the right are lower and upper triangular as needed.
4. If $A=\left(\begin{array}{rrr}1 & 4 & 2 \\ 1 & 1 & -3 \\ -1 & 5 & -1\end{array}\right)$, determine A^{-1}. Note that the columns of A are orthogonal. Since the columns are orthogonal we know that $A^{T} A$ will have 0 in all off diagonal entries. Checking we get $A^{T} A=\left(\begin{array}{rrr}3 & 0 & 0 \\ 0 & 42 & 0 \\ 0 & 0 & 14\end{array}\right)$. Recall that multiplying a row of the left matrix in a product by a constant multiplies the same row in the product by the same constant. Using this we 'adjust' the rows of A^{T} to get $A^{-1}=\left(\begin{array}{rrr}1 / 3 & 1 / 3 & -1 / 3 \\ 4 / 42 & 1 / 42 & 5 / 42 \\ 2 / 14 & -3 / 14 & -1 / 14\end{array}\right)$ which is easily checked to be correct.
5. If $A=\left(\begin{array}{rrrr}3 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 \\ 2 & 1 & 2 & 0 \\ 4 & 3 & 2 & 1\end{array}\right)$. Find a $P_{1} A P_{2}=L U$ factorization where P_{1}, P_{2} are permutation matrices, L is lower triangular with 1's on the diagonal and U is upper triangular. Let $P_{1}=P_{2}=\left(\begin{array}{cccc}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$. Left multiplying by P_{1} reversed the order of the rows and right multiplying by P_{2} reverses the order of the columns so we then have $L=I_{4}$ and $U=\left(\begin{array}{rrrr}1 & 1 & 3 & 4 \\ 0 & 2 & 1 & 2 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & 3\end{array}\right)$.

