Math 242 fall 2008 notes on problem session for week of 9-1-08
This is a short overview of problems that we covered.

1. For the matrix equation LU = A as below, we started with L and U given and computed A.

1 00 6 1 -1 6 1 -1
LU = 210 03 1 |= 12 5 —1 | = A
-3 5 1 00 2 —-18 —12 11

Note that we did not start with A and determine L and U. You should be able to do this.
The negative of the entries in L encode the elementary row operations in reducing A to U.
We add —2 times R1 to R2 and 3 time R1 to R3. Then with the new rows we add —5 times

R2 to R3.
2 I
Givenb= | 1 | wesolved Ax =bforx = | x5 | by substituting LU = A and Uz = c to
3 I3
get Le = L(Ux) = Ax = b. We first solve Le = b for ¢ using forward substitution then solve
1 00 C1 2
Ux = c for « using back substitution. Doing this we solved 2 10 o | =11
-3 5 1 C3 3
2
using forward substitution to get c= | —3 |. Then we solved
24
6 1 —1 1 2 19/6
03 1 xo | = | —3 | using back substitution to get x = -5
00 2 x3 24 12
We also noted that to find the second column of A~! we would solve as above except that we
0
would use b= | 1
0

Finally we discussed the number of operations for computing LU (approximately n?) and
the number of operations for solving Az = b using forward and back substitution on LU
(approximately n®). A detailed discussion of this is in the text on pages 50 and 51.

21 -1 8 —1 -3 1 00
2. Given AA' =02 1 -5 1 2| =101 0] =1 If Bis obtained
5 2 -3 10 -1 —4 0 0 1

from A by multiplying the 3"¢ row by 7, what is B!

To answer this consider the more general setting RS = T. If R is obtained from R by
multiplying the i row of R by a scalar ¢ then if RS = T we can see that 7' is obtained
from T by multiplying the i*" row of T by c. This follows directly from the view of matrix
multiplication that the i*" row of T is the i* row of R times S.

Similarly, using the view of matrix multiplication that the 4t column of T is R times the ;"
column of S we see that if S is obtained from S by multiplying the 5" column of S by a scalar
d then for RS = T we obtain 7' by multiplying the j** column of T by d.



2 1 -1
If B= 0 2 1 | (that is, multiply the 3" row of A by 7 to get B), what is B~1?
35 14 =21
100
Using the information above we see that BA~'is | 0 1 0 |, I5 with the 3" row multiplied
00 7
by 7. So if we let B~! be obtained from A~! by multiplying the 3"¢ column by 1/7 then BB~!

is obtained from BA~! by multiplying the 3" column by 1/7 as we get the identity, as needed.

8 —1 —-3/7

Thus B'=[ -5 1 2/7

10 —1 —4/7
100000
010000
4 3 576 9

. 71 . .

. Determine A= if A = 000100
000O0T1PQ0

000O0O0T1

Use the view of matrix multiplication that the i*" row of RS = T is the i" row of R times S.
That is, the i** row of T is a weighted sum of the rows of S with the weights given by the i
row of R. In particular if this row corresponds to the r** row of an identity matrix then the
i'" row of T is the 7" row of S. So For AA~! = I since the first row of A is the first row of an
identity then the first row of the product, which is I in this case equals the first row of A~
Similar reasoning tells us that every row of A~! except the 3"¢ corresponds to the identity

100000 10000 0 100000
010000 01000 0 010000

. 435769 abedef| 001000
matrix. Thus we get [0 1 ¢ g 0oo0oo0100| looo100
000010 00001 0 000010

00000 1 00000 1 00000 1

where a,b,c,d, e, f are yet to be determined. From matrix multiplication we get 4 + ba =
0,34+5b=0,5c=1,74+5d=0,64+5¢ =0,945f = 0. Solving and filling these values into
1 0 0 0 0 0
0 1 0 0 0 0
-4/5 =-3/5 1/5 =7/5 —6/5 —9/5
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

the matrix we have A~ =



4. Determine if each of the following is True or False assuming the matrices are correct sizes for
the operations to be defined and 0 indicates a zero matrix of appropriate size.

(a) A2=0=A=0.

(b) AB=0=A=0o0r B=0.

() AB=B= A=1.

(d) AB=CA and A~ ! exists = B=C.

Each of these is false. We give specific 2 x 2 counterexamples. This implies that the statements
are false for 2x2 matrices. We then describe more general counterexamples to cover all possible
sizes.
1 —1.

For (4a), < 1 1 ) is one example. Observe here that A must be square. In general, let 27
be any row vector with row sum 0. Let A be a square matrix with every row z?. Then each
row of A? is a weighted sum of multiples of z and since the sum of the weights is 0 the row
is the row vector and A? = 0.

For (4b), note that any counterexample to part (4a) is a counter example to (4b). Here is a

counterexample with A # B: A = ( } :1 ) and B = ( ; ; ) In general, take A as in

part (4a) and take B to be any matrix with identical rows. Note here that A and B do not
need to be square.

For (4¢), A = ( (1) (1) ) and B = ( ; g ) is one counter example. In general, take A to be

any matrix for which each row of A is a row of an identity matrix (possible some rows can be
the same) and take B with identical rows.

For (4c), one way to discover a counterexample is to left multiple by A~ to obtain B =

A7YCA. For example, A = ( (1J (1) ) =A"! B= ( g g ) and C' = ( 3 3 > In general,
take A to be a permutation matrix, so A~! = AT and C' to be any square matrix with identical
rows and distinct entries. Then for B = ATCA note that ATC' = C since left multiplication
by a permutation matrix permutes the rows and rows of C' are identical. So B = C'A which

will not be C since right multiplication by a permutation matrix permutes the columns.

5. The inverse of the 2 x 2 matrix A = ( ¢ 2 ) is A7l = ( L/a 0 ) assuming a # 0 and

b —b/ac 1/c
b # 0 so that the inverse will exist. If A, B, C' are n x n matrices such that A=! and C'~! exist,
determine the inverse of the block matrix M = ( g ((;), ) One way to guess this is to note

. : . A
the pattern for the case with numerical entries and guess at a form M~! = ( ); C”? )

A 0 AL 0 I, 0
_l n _l . .
Then MM~ = ( B C > (X -1 ) = < 0 I, ) If BA=" + CX =0 then this will
be correct. Thus CX = —BA™!. Left multiplying by C~! we get X = —C'BA™!. So

A 0
-1 __
M= ( _CBAT O )



