Math 242 fall 2008 notes on problem session for week of 9-1-08 This is a short overview of problems that we covered.

1. For the matrix equation LU = A as below, we started with L and U given and computed A.

$$LU = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 5 & 1 \end{pmatrix} \begin{pmatrix} 6 & 1 & -1 \\ 0 & 3 & 1 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 6 & 1 & -1 \\ 12 & 5 & -1 \\ -18 & -12 & 11 \end{pmatrix} = A.$$

Note that we did not start with A and determine L and U. You should be able to do this. The negative of the entries in L encode the elementary row operations in reducing A to U. We add -2 times R1 to R2 and 3 time R1 to R3. Then with the new rows we add -5 times R2 to R3.

Given $\boldsymbol{b} = \begin{pmatrix} 2\\1\\3 \end{pmatrix}$ we solved $A\boldsymbol{x} = \boldsymbol{b}$ for $\boldsymbol{x} = \begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix}$ by substituting LU = A and $U\boldsymbol{x} = \boldsymbol{c}$ to get $L\boldsymbol{c} = L(U\boldsymbol{x}) = A\boldsymbol{x} = \boldsymbol{b}$. We first solve $L\boldsymbol{c} = \boldsymbol{b}$ for \boldsymbol{c} using forward substitution then solve $U\boldsymbol{x} = c \text{ for } \boldsymbol{x} \text{ using back substitution. Doing this we solved } \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 5 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ using forward substitution to get $\boldsymbol{c} = \begin{pmatrix} 2 \\ -3 \\ 24 \end{pmatrix}$. Then we solved $\begin{pmatrix} 6 & 1 & -1 \\ 0 & 3 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \\ 24 \end{pmatrix} \text{ using back substitution to get } \boldsymbol{x} = \begin{pmatrix} 19/6 \\ -5 \\ 12 \end{pmatrix}.$

We also noted that to find the second column of A^{-1} we would solve as above except that we would use $\boldsymbol{b} = \begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix}$.

Finally we discussed the number of operations for computing LU (approximately n^2) and the number of operations for solving $A \boldsymbol{x} = \boldsymbol{b}$ using forward and back substitution on LU (approximately n^3). A detailed discussion of this is in the text on pages 50 and 51.

2. Given
$$AA^{-1} = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 2 & 1 \\ 5 & 2 & -3 \end{pmatrix} \begin{pmatrix} 8 & -1 & -3 \\ -5 & 1 & 2 \\ 10 & -1 & -4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I_3$$
. If *B* is obtained from *A* by multiplying the 3^{rd} row by 7 what is B^{-1}

A by multiplying the $3^{\prime a}$ row by 7, what is B

To answer this consider the more general setting RS = T. If \hat{R} is obtained from R by multiplying the i^{th} row of R by a scalar c then if $\hat{R}S = \hat{T}$ we can see that \hat{T} is obtained from T by multiplying the i^{th} row of T by c. This follows directly from the view of matrix multiplication that the i^{th} row of T is the i^{th} row of R times S.

Similarly, using the view of matrix multiplication that the j^{th} column of T is R times the j^{th} column of S we see that if \tilde{S} is obtained from S by multiplying the j^{th} column of S by a scalar d then for $R\tilde{S} = \tilde{T}$ we obtain \tilde{T} by multiplying the j^{th} column of T by d.

If $B = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 2 & 1 \\ 35 & 14 & -21 \end{pmatrix}$ (that is, multiply the 3rd row of A by 7 to get B), what is B^{-1} ?

 $\begin{pmatrix} 35 & 14 & -21 \end{pmatrix}$ Using the information above we see that BA^{-1} is $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 7 \end{pmatrix}$, I_3 with the 3^{rd} row multiplied by 7. So if we let B^{-1} be obtained from A^{-1} by multiplying the 3^{rd} column by 1/7 then BB^{-1}

is obtained from BA^{-1} by multiplying the 3^{rd} column by 1/7 as we get the identity, as needed. $\begin{pmatrix} 8 & -1 & -3/7 \end{pmatrix}$

Thus
$$B^{-1} = \begin{pmatrix} -5 & 1 & 2/7 \\ 10 & -1 & -4/7 \end{pmatrix}$$

3. Determine A^{-1} if $A = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 4 & 3 & 5 & 7 & 6 & 9 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$.

Use the view of matrix multiplication that the i^{th} row of RS = T is the i^{th} row of R times S. That is, the i^{th} row of T is a weighted sum of the rows of S with the weights given by the i^{th} row of R. In particular if this row corresponds to the r^{th} row of an identity matrix then the i^{th} row of T is the r^{th} row of S. So For $AA^{-1} = I$ since the first row of A is the first row of an identity then the first row of the product, which is I in this case equals the first row of A^{-1} . Similar reasoning tells us that every row of A^{-1} except the 3^{rd} corresponds to the identity

$$\text{matrix. Thus we get} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 4 & 3 & 5 & 7 & 6 & 9 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ a & b & c & d & e & f \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

where a, b, c, d, e, f are yet to be determined. From matrix multiplication we get 4 + 5a = 0, 3 + 5b = 0, 5c = 1, 7 + 5d = 0, 6 + 5e = 0, 9 + 5f = 0. Solving and filling these values into

the matrix we have
$$A^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ -4/5 & -3/5 & 1/5 & -7/5 & -6/5 & -9/5 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

- 4. Determine if each of the following is True or False assuming the matrices are correct sizes for the operations to be defined and 0 indicates a zero matrix of appropriate size.
 - (a) $A^2 = 0 \Rightarrow A = 0$.
 - (b) $AB = 0 \Rightarrow A = 0$ or B = 0.
 - (c) $AB = B \Rightarrow A = I$.
 - (d) AB = CA and A^{-1} exists $\Rightarrow B = C$.

Each of these is false. We give specific 2×2 counterexamples. This implies that the statements are false for 2×2 matrices. We then describe more general counterexamples to cover all possible sizes.

For (4a), $\begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$ is one example. Observe here that A must be square. In general, let \boldsymbol{z}^T be any row vector with row sum 0. Let A be a square matrix with every row \boldsymbol{z}^T . Then each row of A^2 is a weighted sum of multiples of \boldsymbol{z} and since the sum of the weights is 0 the row is the row vector and $A^2 = 0$.

For (4b), note that any counterexample to part (4a) is a counter example to (4b). Here is a counterexample with $A \neq B$: $A = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & 3 \\ 2 & 3 \end{pmatrix}$. In general, take A as in part (4a) and take B to be any matrix with identical rows. Note here that A and B do not need to be square.

For (4c), $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & 3 \\ 2 & 3 \end{pmatrix}$ is one counter example. In general, take A to be any matrix for which each row of A is a row of an identity matrix (possible some rows can be the same) and take B with identical rows.

For (4c), one way to discover a counterexample is to left multiple by A^{-1} to obtain $B = A^{-1}CA$. For example, $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = A^{-1}$, $B = \begin{pmatrix} 2 & 3 \\ 2 & 3 \end{pmatrix}$ and $C = \begin{pmatrix} 3 & 3 \\ 2 & 2 \end{pmatrix}$. In general, take A to be a permutation matrix, so $A^{-1} = A^T$ and C to be any square matrix with identical rows and distinct entries. Then for $B = A^TCA$ note that $A^TC = C$ since left multiplication by a permutation matrix permutes the rows and rows of C are identical. So B = CA which will not be C since right multiplication by a permutation matrix permutes the columns.

5. The inverse of the 2×2 matrix $A = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix}$ is $A^{-1} = \begin{pmatrix} 1/a & 0 \\ -b/ac & 1/c \end{pmatrix}$ assuming $a \neq 0$ and $b \neq 0$ so that the inverse will exist. If A, B, C are $n \times n$ matrices such that A^{-1} and C^{-1} exist, determine the inverse of the block matrix $M = \begin{pmatrix} A & 0 \\ B & C \end{pmatrix}$. One way to guess this is to note the pattern for the case with numerical entries and guess at a form $M^{-1} = \begin{pmatrix} A_1 & 0 \\ X & C^{-1} \end{pmatrix}$. Then $MM^{-1} = \begin{pmatrix} A & 0 \\ B & C \end{pmatrix} \begin{pmatrix} A^{-1} & 0 \\ X & C^{-1} \end{pmatrix} = \begin{pmatrix} I_n & 0 \\ 0 & I_n \end{pmatrix}$. If $BA^{-1} + CX = 0$ then this will be correct. Thus $CX = -BA^{-1}$. Left multiplying by C^{-1} we get $X = -C^{-1}BA^{-1}$. So $M^{-1} = \begin{pmatrix} A^{-1} & 0 \\ -C^{-1}BA^{-1} & C^{-1} \end{pmatrix}$.