Math 242 fall 2008 notes on problem session for week of 9-1-08
This is a short overview of problems that we covered.

1. For the matrix equation $L U=A$ as below, we started with $L$ and $U$ given and computed $A$.
$L U=\left(\begin{array}{rrr}1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 5 & 1\end{array}\right)\left(\begin{array}{rrr}6 & 1 & -1 \\ 0 & 3 & 1 \\ 0 & 0 & 2\end{array}\right)=\left(\begin{array}{rrr}6 & 1 & -1 \\ 12 & 5 & -1 \\ -18 & -12 & 11\end{array}\right)=A$.
Note that we did not start with $A$ and determine $L$ and $U$. You should be able to do this. The negative of the entries in $L$ encode the elementary row operations in reducing $A$ to $U$. We add -2 times R1 to R2 and 3 time R1 to R3. Then with the new rows we add -5 times R2 to R3.
Given $\boldsymbol{b}=\left(\begin{array}{c}2 \\ 1 \\ 3\end{array}\right)$ we solved $A \boldsymbol{x}=\boldsymbol{b}$ for $\boldsymbol{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ by substituting $L U=A$ and $U \boldsymbol{x}=\boldsymbol{c}$ to get $L \boldsymbol{c}=L(U \boldsymbol{x})=A \boldsymbol{x}=\boldsymbol{b}$. We first solve $L \boldsymbol{c}=\boldsymbol{b}$ for $\boldsymbol{c}$ using forward substitution then solve $U \boldsymbol{x}=c$ for $\boldsymbol{x}$ using back substitution. Doing this we solved $\left(\begin{array}{rrr}1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 5 & 1\end{array}\right)\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)=\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)$ using forward substitution to get $\boldsymbol{c}=\left(\begin{array}{r}2 \\ -3 \\ 24\end{array}\right)$. Then we solved $\left(\begin{array}{rrr}6 & 1 & -1 \\ 0 & 3 & 1 \\ 0 & 0 & 2\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{r}2 \\ -3 \\ 24\end{array}\right)$ using back substitution to get $\boldsymbol{x}=\left(\begin{array}{r}19 / 6 \\ -5 \\ 12\end{array}\right)$.
We also noted that to find the second column of $A^{-1}$ we would solve as above except that we would use $\boldsymbol{b}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$.
Finally we discussed the number of operations for computing $L U$ (approximately $n^{2}$ ) and the number of operations for solving $A \boldsymbol{x}=\boldsymbol{b}$ using forward and back substitution on $L U$ (approximately $n^{3}$ ). A detailed discussion of this is in the text on pages 50 and 51 .
2. Given $A A^{-1}=\left(\begin{array}{rrr}2 & 1 & -1 \\ 0 & 2 & 1 \\ 5 & 2 & -3\end{array}\right)\left(\begin{array}{rrr}8 & -1 & -3 \\ -5 & 1 & 2 \\ 10 & -1 & -4\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)=I_{3}$. If $B$ is obtained from $A$ by multiplying the $3^{\text {rd }}$ row by 7 , what is $B^{-1}$.
To answer this consider the more general setting $R S=T$. If $\hat{R}$ is obtained from $R$ by multiplying the $i^{\text {th }}$ row of $R$ by a scalar $c$ then if $\hat{R} S=\hat{T}$ we can see that $\hat{T}$ is obtained from $T$ by multiplying the $i^{\text {th }}$ row of $T$ by $c$. This follows directly from the view of matrix multiplication that the $i^{\text {th }}$ row of $T$ is the $i^{\text {th }}$ row of $R$ times $S$.
Similarly, using the view of matrix multiplication that the $j^{\text {th }}$ column of $T$ is $R$ times the $j^{\text {th }}$ column of $S$ we see that if $\tilde{S}$ is obtained from $S$ by multiplying the $j^{\text {th }}$ column of $S$ by a scalar $d$ then for $R \tilde{S}=\tilde{T}$ we obtain $\tilde{T}$ by multiplying the $j^{\text {th }}$ column of $T$ by $d$.

If $B=\left(\begin{array}{rrr}2 & 1 & -1 \\ 0 & 2 & 1 \\ 35 & 14 & -21\end{array}\right)$ (that is, multiply the $3^{\text {rd }}$ row of $A$ by 7 to get $B$ ), what is $B^{-1}$ ? Using the information above we see that $B A^{-1}$ is $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 7\end{array}\right), I_{3}$ with the $3^{\text {rd }}$ row multiplied by 7 . So if we let $B^{-1}$ be obtained from $A^{-1}$ by multiplying the $3^{r d}$ column by $1 / 7$ then $B B^{-1}$ is obtained from $B A^{-1}$ by multiplying the $3^{r d}$ column by $1 / 7$ as we get the identity, as needed.
Thus $B^{-1}=\left(\begin{array}{rrr}8 & -1 & -3 / 7 \\ -5 & 1 & 2 / 7 \\ 10 & -1 & -4 / 7\end{array}\right)$
3. Determine $A^{-1}$ if $A=\left(\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 4 & 3 & 5 & 7 & 6 & 9 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$.

Use the view of matrix multiplication that the $i^{\text {th }}$ row of $R S=T$ is the $i^{\text {th }}$ row of $R$ times $S$. That is, the $i^{\text {th }}$ row of $T$ is a weighted sum of the rows of $S$ with the weights given by the $i^{\text {th }}$ row of $R$. In particular if this row corresponds to the $r^{\text {th }}$ row of an identity matrix then the $i^{\text {th }}$ row of $T$ is the $r^{\text {th }}$ row of $S$. So For $A A^{-1}=I$ since the first row of $A$ is the first row of an identity then the first row of the product, which is I in this case equals the first row of $A^{-1}$. Similar reasoning tells us that every row of $A^{-1}$ except the $3^{r d}$ corresponds to the identity matrix. Thus we get $\left(\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 4 & 3 & 5 & 7 & 6 & 9 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ a & b & c & d & e & f \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)=\left(\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$ where $a, b, c, d, e, f$ are yet to be determined. From matrix multiplication we get $4+5 a=$ $0,3+5 b=0,5 c=1,7+5 d=0,6+5 e=0,9+5 f=0$. Solving and filling these values into the matrix we have $A^{-1}=\left(\begin{array}{rrrrrr}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ -4 / 5 & -3 / 5 & 1 / 5 & -7 / 5 & -6 / 5 & -9 / 5 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$.
4. Determine if each of the following is True or False assuming the matrices are correct sizes for the operations to be defined and 0 indicates a zero matrix of appropriate size.
(a) $A^{2}=0 \Rightarrow A=0$.
(b) $A B=0 \Rightarrow A=0$ or $B=0$.
(c) $A B=B \Rightarrow A=I$.
(d) $A B=C A$ and $A^{-1}$ exists $\Rightarrow B=C$.

Each of these is false. We give specific $2 \times 2$ counterexamples. This implies that the statements are false for $2 \times 2$ matrices. We then describe more general counterexamples to cover all possible sizes.
For (4a), $\left(\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right)$ is one example. Observe here that $A$ must be square. In general, let $\boldsymbol{z}^{T}$ be any row vector with row sum 0 . Let $A$ be a square matrix with every row $\boldsymbol{z}^{T}$. Then each row of $A^{2}$ is a weighted sum of multiples of $\boldsymbol{z}$ and since the sum of the weights is 0 the row is the row vector and $A^{2}=0$.
For (4b), note that any counterexample to part (4a) is a counter example to (4b). Here is a counterexample with $A \neq B: A=\left(\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right)$ and $B=\left(\begin{array}{ll}2 & 3 \\ 2 & 3\end{array}\right)$. In general, take $A$ as in part (4a) and take $B$ to be any matrix with identical rows. Note here that $A$ and $B$ do not need to be square.
For (4c), $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}2 & 3 \\ 2 & 3\end{array}\right)$ is one counter example. In general, take $A$ to be any matrix for which each row of $A$ is a row of an identity matrix (possible some rows can be the same) and take $B$ with identical rows.
For (4c), one way to discover a counterexample is to left multiple by $A^{-1}$ to obtain $B=$ $A^{-1} C A$. For example, $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=A^{-1}, B=\left(\begin{array}{ll}2 & 3 \\ 2 & 3\end{array}\right)$ and $C=\left(\begin{array}{ll}3 & 3 \\ 2 & 2\end{array}\right)$. In general, take $A$ to be a permutation matrix, so $A^{-1}=A^{T}$ and $C$ to be any square matrix with identical rows and distinct entries. Then for $B=A^{T} C A$ note that $A^{T} C=C$ since left multiplication by a permutation matrix permutes the rows and rows of $C$ are identical. So $B=C A$ which will not be $C$ since right multiplication by a permutation matrix permutes the columns.
5. The inverse of the $2 \times 2$ matrix $A=\left(\begin{array}{ll}a & 0 \\ b & c\end{array}\right)$ is $A^{-1}=\left(\begin{array}{rr}1 / a & 0 \\ -b / a c & 1 / c\end{array}\right)$ assuming $a \neq 0$ and $b \neq 0$ so that the inverse will exist. If $A, B, C$ are $n \times n$ matrices such that $A^{-1}$ and $C^{-1}$ exist, determine the inverse of the block matrix $M=\left(\begin{array}{cc}A & 0 \\ B & C\end{array}\right)$. One way to guess this is to note the pattern for the case with numerical entries and guess at a form $M^{-1}=\left(\begin{array}{rr}A_{1} & 0 \\ X & C^{-1}\end{array}\right)$. Then $M M^{-1}=\left(\begin{array}{cc}A & 0 \\ B & C\end{array}\right)\left(\begin{array}{ll}A^{-1} & 0 \\ X & C^{-1}\end{array}\right)=\left(\begin{array}{rr}I_{n} & 0 \\ 0 & I_{n}\end{array}\right)$. If $B A^{-1}+C X=0$ then this will be correct. Thus $C X=-B A^{-1}$. Left multiplying by $C^{-1}$ we get $X=-C^{-1} B A^{-1}$. So $M^{-1}=\left(\begin{array}{ll}A^{-1} & 0 \\ -C^{-1} B A^{-1} & C^{-1}\end{array}\right)$.

