
Math 242 fall 2008 notes on problem session for week of 9-1-08
This is a short overview of problems that we covered.

1. For the matrix equation LU = A as below, we started with L and U given and computed A.

LU =




1 0 0
2 1 0

−3 5 1







6 1 −1
0 3 1
0 0 2


 =




6 1 −1
12 5 −1

−18 −12 11


 = A.

Note that we did not start with A and determine L and U . You should be able to do this.
The negative of the entries in L encode the elementary row operations in reducing A to U .
We add −2 times R1 to R2 and 3 time R1 to R3. Then with the new rows we add −5 times
R2 to R3.

Given b =




2
1
3


 we solved Ax = b for x =




x1

x2

x3


 by substituting LU = A and Ux = c to

get Lc = L(Ux) = Ax = b. We first solve Lc = b for c using forward substitution then solve

Ux = c for x using back substitution. Doing this we solved




1 0 0
2 1 0

−3 5 1







c1

c2

c3


 =




2
1
3




using forward substitution to get c =




2
−3
24


. Then we solved




6 1 −1
0 3 1
0 0 2







x1

x2

x3


 =




2
−3
24


 using back substitution to get x =




19/6
−5
12


.

We also noted that to find the second column of A−1 we would solve as above except that we

would use b =




0
1
0


.

Finally we discussed the number of operations for computing LU (approximately n2) and
the number of operations for solving Ax = b using forward and back substitution on LU
(approximately n3). A detailed discussion of this is in the text on pages 50 and 51.

2. Given AA−1 =




2 1 −1
0 2 1
5 2 −3







8 −1 −3
−5 1 2
10 −1 −4


 =




1 0 0
0 1 0
0 0 1


 = I3. If B is obtained

from A by multiplying the 3rd row by 7, what is B−1.

To answer this consider the more general setting RS = T . If R̂ is obtained from R by
multiplying the ith row of R by a scalar c then if R̂S = T̂ we can see that T̂ is obtained
from T by multiplying the ith row of T by c. This follows directly from the view of matrix
multiplication that the ith row of T is the ith row of R times S.

Similarly, using the view of matrix multiplication that the jth column of T is R times the jth

column of S we see that if S̃ is obtained from S by multiplying the jth column of S by a scalar
d then for RS̃ = T̃ we obtain T̃ by multiplying the jth column of T by d.



If B =




2 1 −1
0 2 1

35 14 −21


 (that is, multiply the 3rd row of A by 7 to get B), what is B−1?

Using the information above we see that BA−1 is




1 0 0
0 1 0
0 0 7


, I3 with the 3rd row multiplied

by 7. So if we let B−1 be obtained from A−1 by multiplying the 3rd column by 1/7 then BB−1

is obtained from BA−1 by multiplying the 3rd column by 1/7 as we get the identity, as needed.

Thus B−1 =




8 −1 −3/7
−5 1 2/7
10 −1 −4/7




3. Determine A−1 if A =




1 0 0 0 0 0
0 1 0 0 0 0
4 3 5 7 6 9
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




.

Use the view of matrix multiplication that the ith row of RS = T is the ith row of R times S.
That is, the ith row of T is a weighted sum of the rows of S with the weights given by the ith

row of R. In particular if this row corresponds to the rth row of an identity matrix then the
ith row of T is the rth row of S. So For AA−1 = I since the first row of A is the first row of an
identity then the first row of the product, which is I in this case equals the first row of A−1.
Similar reasoning tells us that every row of A−1 except the 3rd corresponds to the identity

matrix. Thus we get




1 0 0 0 0 0
0 1 0 0 0 0
4 3 5 7 6 9
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1







1 0 0 0 0 0
0 1 0 0 0 0
a b c d e f
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




=




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




where a, b, c, d, e, f are yet to be determined. From matrix multiplication we get 4 + 5a =
0, 3 + 5b = 0, 5c = 1, 7 + 5d = 0, 6 + 5e = 0, 9 + 5f = 0. Solving and filling these values into

the matrix we have A−1 =




1 0 0 0 0 0
0 1 0 0 0 0

−4/5 −3/5 1/5 −7/5 −6/5 −9/5
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




.



4. Determine if each of the following is True or False assuming the matrices are correct sizes for
the operations to be defined and 0 indicates a zero matrix of appropriate size.

(a) A2 = 0 ⇒ A = 0.

(b) AB = 0 ⇒ A = 0 or B = 0.

(c) AB = B ⇒ A = I.

(d) AB = CA and A−1 exists ⇒ B = C.

Each of these is false. We give specific 2×2 counterexamples. This implies that the statements
are false for 2×2 matrices. We then describe more general counterexamples to cover all possible
sizes.

For (4a),

(
1 −1
1 −1

)
is one example. Observe here that A must be square. In general, let zT

be any row vector with row sum 0. Let A be a square matrix with every row zT . Then each
row of A2 is a weighted sum of multiples of z and since the sum of the weights is 0 the row
is the row vector and A2 = 0.

For (4b), note that any counterexample to part (4a) is a counter example to (4b). Here is a

counterexample with A 6= B: A =

(
1 −1
1 −1

)
and B =

(
2 3
2 3

)
. In general, take A as in

part (4a) and take B to be any matrix with identical rows. Note here that A and B do not
need to be square.

For (4c), A =

(
0 1
1 0

)
and B =

(
2 3
2 3

)
is one counter example. In general, take A to be

any matrix for which each row of A is a row of an identity matrix (possible some rows can be
the same) and take B with identical rows.

For (4c), one way to discover a counterexample is to left multiple by A−1 to obtain B =

A−1CA. For example, A =

(
0 1
1 0

)
= A−1, B =

(
2 3
2 3

)
and C =

(
3 3
2 2

)
. In general,

take A to be a permutation matrix, so A−1 = AT and C to be any square matrix with identical
rows and distinct entries. Then for B = AT CA note that AT C = C since left multiplication
by a permutation matrix permutes the rows and rows of C are identical. So B = CA which
will not be C since right multiplication by a permutation matrix permutes the columns.

5. The inverse of the 2× 2 matrix A =

(
a 0
b c

)
is A−1 =

(
1/a 0

−b/ac 1/c

)
assuming a 6= 0 and

b 6= 0 so that the inverse will exist. If A,B,C are n×n matrices such that A−1 and C−1 exist,

determine the inverse of the block matrix M =

(
A 0
B C

)
. One way to guess this is to note

the pattern for the case with numerical entries and guess at a form M−1 =

(
A1 0
X C−1

)
.

Then MM−1 =

(
A 0
B C

)(
A−1 0
X C−1

)
=

(
In 0
0 In

)
. If BA−1 + CX = 0 then this will

be correct. Thus CX = −BA−1. Left multiplying by C−1 we get X = −C−1BA−1. So

M−1 =

(
A−1 0
−C−1BA−1 C−1

)
.


