Math 242 fall 2008 notes on problem session for week of 10-7-08
This is a short overview of problems that we covered.

1. Recall that a left inverse of an $m \times n$ matrix A is an $n \times m$ matrix B such that $B A=I_{n}$ and a right inverse is an $n \times m$ matrix C such that $A C=I_{m}$. Show that if $A^{T} A$ is nonsingular then A has a left inverse and if $A A^{T}$ is nonsingular then A has a right inverse.
If $\left(A^{T} A\right)^{-1}$ exists, let $B=\left(A^{T} A\right)^{-1} A^{T}$. Then $B A=\left(\left(A^{T} A\right)^{-1} A^{T}\right) A=\left(A^{T} A\right)^{-1}\left(A^{T} A\right)=$ I_{n}. So $\left(A^{T} A\right)^{-1} A^{T}$ is a left inverse.
If $\left(A A^{T}\right)^{-1}$ exists, let $C=A^{T}\left(A A^{T}\right)^{-1}$. Then $A C=A\left(A^{T}\left(A A^{T}\right)^{-1}\right)=\left(A A^{T}\right)\left(A A^{T}\right)^{-1}=$ I_{m}. So $A^{T}\left(A A^{T}\right)^{-1}$ is a right inverse.
2. Prove that for matrices A, B, if $B A$ is defined then $\operatorname{ker}(A) \subseteq \operatorname{ker}(B A)$. (This is exercise 2.5.38.)
$\boldsymbol{x} \in \operatorname{ker}(A) \Rightarrow A \boldsymbol{x}=\mathbf{0} \Rightarrow(B A) \boldsymbol{x}=B(A \boldsymbol{x})=B \mathbf{0}=\mathbf{0} \Rightarrow \boldsymbol{x} \in \operatorname{ker}(B A)$.
3. Show that if $S=\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ span a nontrivial vector space V then there is a basis T for V contained in S. (This is exercise 2.4.22.)
Let $\operatorname{dim}(V)=m$. If $n=m$ then S is a basis since any spanning set of m vectors in an m dimensional vectors space is a basis. We will show that if $m>n$ then $S-\boldsymbol{v}_{i}$ spans V for some i. We repeat such deletions until we obtain a spanning set of size m contained in S which is a basis.
Since $m>n$ the vectors in S are linearly dependent so we have $c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\cdots+c_{n} \boldsymbol{v}_{n}=$ 0 for some $c_{1}, c_{2}, \ldots, c_{n}$ not all 0 . By relabeling we may assume that $c_{n} \neq 0$. Then $\boldsymbol{v}_{n}=\frac{c_{1}}{c_{n}} \boldsymbol{v}_{1}+\frac{c_{2}}{c_{n}} \boldsymbol{v}_{2}+\cdots+\frac{c_{n-1}}{c_{n}} \boldsymbol{v}_{n-1}$. Given $\boldsymbol{v} \in V$ we have $\boldsymbol{v}=d_{1} \boldsymbol{v}_{1}+d_{2} \boldsymbol{v}_{2}+\cdots+d_{n} \boldsymbol{v}_{n}$ since S spans V. Substituting the expression for \boldsymbol{v}_{n} we get $\boldsymbol{v}=d_{1} \boldsymbol{v}_{1}+d_{2} \boldsymbol{v}_{2}+\cdots+d_{n-1} \boldsymbol{v}_{n-1}+$ $d_{n}\left(\frac{c_{1}}{c_{n}} \boldsymbol{v}_{1}+\frac{c_{2}}{c_{n}} \boldsymbol{v}_{2}+\cdots+\frac{c_{n-1}}{c_{n}} \boldsymbol{v}_{n-1}\right)=\left(d_{1}+\frac{d_{n} c_{1}}{c_{n}}\right) \boldsymbol{v}_{1}+\left(d_{2}+\frac{d_{n} c_{2}}{c_{n}}\right) \boldsymbol{v}_{2}+\cdots+\left(d_{n-1}+\frac{d_{n} c_{n-1}}{c_{n}}\right) \boldsymbol{v}_{n-1}$. So $\boldsymbol{v} \in \operatorname{span}\left(S-\boldsymbol{v}_{n}\right)$.
4. Show that if $T=\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ are a linearly independent set of vectors in a vector space V then there is a basis for V containing T. (This is similar to exercise 2.4.24.)
Let $\operatorname{dim}(V)=m$. If $n=m$ then T is a basis since any independent set of m vectors in an m dimensional vectors space is a basis. We will show that if $n<m$ then adding any vector not in the span of T to T produces a new independent set. We repeat such additions until we obtain an independent set of size m containing T which is a basis.
Pick any vector in $V-\operatorname{span}(T)$ and call it \boldsymbol{v}_{n+1}. Consider solutions to $c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+$ $\cdots+c_{n} \boldsymbol{v}_{n}+c_{n+1} \boldsymbol{v}_{n+1}=\mathbf{0}$. If $c_{n+1} \neq 0$ then $\boldsymbol{v}_{n+1}=\frac{-c_{1}}{c_{n+1}} \boldsymbol{v}_{1}+\frac{-c_{2}}{c_{n+1}} \boldsymbol{v}_{2}+\cdots+\frac{-c_{n}}{c_{n+1}} \boldsymbol{v}_{n}$. This contradict the choice $\boldsymbol{v}_{n+1} \notin \operatorname{span}(T)$. So $c_{n+1}=0$ and we have $c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+$
$\cdots+c_{n} \boldsymbol{v}_{n}=\mathbf{0}$. Now since T is linearly independent $c_{1}=c_{2}=\cdots=c_{n}=0$. Thus the only solution is the trivial solution and $T \cup\left\{\boldsymbol{v}_{n+1}\right\}$ is linearly independent.
5. 2.3.17-Prove or give a counterexample: If \boldsymbol{z} is a linear combination of $\boldsymbol{u}, \boldsymbol{v}$ and \boldsymbol{w} then \boldsymbol{w} is a linear combination of $\boldsymbol{u}, \boldsymbol{v}$ and \boldsymbol{z}. This is false. For example $(1,1,0)=$ $1 \cdot(1,0,0)+1 \cdot(0,1,0)+0 \cdot(0,0,1)$ but clearly $(0,0,1)$ is not a linear combination of $(1,0,0),(0,1,0),(1,1,0)$.
6. 2.3.29 - Prove or give a counterexample to the following: If $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}$ are elements of a vector space V and do not span V, then they are linearly independent. False. For example if any two of the \boldsymbol{v}_{i} are identical. Another example, $(1,1,0),(1,0,0),(0,1,0)$ do not span \mathbb{R}^{3} and are linearly dependent.
7. 2.4.20-Give an example where uniqueness of representation as for bases fails for linearly dependent sets of vectors. For example $(1,1,0),(1,0,0),(0,1,0)$ are linearly dependent and $(2,2,0)=2(1,1,0)+0(1,0,0)+0(0,1,0)$ and $(2,2,0)=0(1,0,0)+$ $2(1,0,0)+2(0,1,0)$.
8. 2.5.42 - True or false: If $\operatorname{ker}(A)=\operatorname{ker}(B)$, then $\operatorname{rank}(A)=\operatorname{rank}(B)$. True. Since $\operatorname{ker}(A)=\operatorname{ker}(B), A$ and B must have the same number n of columns. Then since $n-\operatorname{rank}(B)=\operatorname{dim}(\operatorname{ker}(B))=\operatorname{dim}(\operatorname{ker}(A))=n-\operatorname{rank}(A)$ so the ranks are the same.
