
Math 242 fall 2008 notes on problem session for week of 10-7-08
This is a short overview of problems that we covered.

1. Recall that a left inverse of an m×n matrix A is an n×m matrix B such that BA = In

and a right inverse is an n × m matrix C such that AC = Im. Show that if AT A is
nonsingular then A has a left inverse and if AAT is nonsingular then A has a right
inverse.

If (AT A)−1 exists, let B = (AT A)−1AT . Then BA = ((AT A)−1AT )A = (AT A)−1(AT A) =
In. So (AT A)−1AT is a left inverse.

If (AAT )−1 exists, let C = AT (AAT )−1. Then AC = A(AT (AAT )−1) = (AAT )(AAT )−1 =
Im. So AT (AAT )−1 is a right inverse.

2. Prove that for matrices A,B, if BA is defined then ker(A) ⊆ ker(BA). (This is
exercise 2.5.38.)

x ∈ ker(A) ⇒ Ax = 0 ⇒ (BA)x = B(Ax) = B0 = 0 ⇒ x ∈ ker(BA).

3. Show that if S = v1,v2, . . . , vn span a nontrivial vector space V then there is a basis
T for V contained in S. (This is exercise 2.4.22.)

Let dim(V ) = m. If n = m then S is a basis since any spanning set of m vectors in
an m dimensional vectors space is a basis. We will show that if m > n then S − vi

spans V for some i. We repeat such deletions until we obtain a spanning set of size m
contained in S which is a basis.

Since m > n the vectors in S are linearly dependent so we have c1v1+c2v2+· · ·+cnvn =
0 for some c1, c2, . . . , cn not all 0. By relabeling we may assume that cn 6= 0. Then
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S spans V . Substituting the expression for vn we get v = d1v1+d2v2+· · ·+dn−1vn−1+
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So v ∈ span(S − vn).

4. Show that if T = v1,v2, . . . , vn are a linearly independent set of vectors in a vector
space V then there is a basis for V containing T . (This is similar to exercise 2.4.24.)

Let dim(V ) = m. If n = m then T is a basis since any independent set of m vectors
in an m dimensional vectors space is a basis. We will show that if n < m then adding
any vector not in the span of T to T produces a new independent set. We repeat such
additions until we obtain an independent set of size m containing T which is a basis.

Pick any vector in V − span(T ) and call it vn+1. Consider solutions to c1v1 + c2v2 +
· · · + cnvn + cn+1vn+1 = 0. If cn+1 6= 0 then vn+1 = −c1
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This contradict the choice vn+1 6∈ span(T ). So cn+1 = 0 and we have c1v1 + c2v2 +



· · ·+ cnvn = 0. Now since T is linearly independent c1 = c2 = · · · = cn = 0. Thus the
only solution is the trivial solution and T ∪ {vn+1} is linearly independent.

5. 2.3.17 - Prove or give a counterexample: If z is a linear combination of u, v and w
then w is a linear combination of u, v and z. This is false. For example (1, 1, 0) =
1 · (1, 0, 0) + 1 · (0, 1, 0) + 0 · (0, 0, 1) but clearly (0, 0, 1) is not a linear combination of
(1, 0, 0), (0, 1, 0), (1, 1, 0).

6. 2.3.29 - Prove or give a counterexample to the following: If v1, v2, . . . , vk are elements
of a vector space V and do not span V , then they are linearly independent. False. For
example if any two of the vi are identical. Another example, (1, 1, 0), (1, 0, 0), (0, 1, 0)
do not span R3 and are linearly dependent.

7. 2.4.20 - Give an example where uniqueness of representation as for bases fails for
linearly dependent sets of vectors. For example (1, 1, 0), (1, 0, 0), (0, 1, 0) are linearly
dependent and (2, 2, 0) = 2(1, 1, 0) + 0(1, 0, 0) + 0(0, 1, 0) and (2, 2, 0) = 0(1, 0, 0) +
2(1, 0, 0) + 2(0, 1, 0).

8. 2.5.42 - True or false: If ker(A) = ker(B), then rank(A) = rank(B). True. Since
ker(A) = ker(B) ,A and B must have the same number n of columns. Then since
n− rank(B) = dim(ker(B)) = dim(ker(A)) = n− rank(A) so the ranks are the same.


