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These notes review results related to showing that if a square matrix A has a right inverse
then it has a left inverse and vice versa. We begin by reviewing the result from the text
that for square matrices A we have that A is nonsingular if and only if Ax = b has a unique
solution for all b.

Nonsingular if and only if unique solutions

Recall that for a square matrix A with factorization PA = LU we have defined A to be
nonsingular if the diagonal entries of U are all nonzero and it is singular otherwise. Techni-
cally the definition was if there was some such factorization (and it was stated in the text
in terms of Gaussian elimination). In fact it doesn’t matter which factorization we choose,
they will all give the same conclusion. This will follow from the next result that a square
matrix A has some such factorization (A is nonsingular) if and only if and only if Ax = b
has a unique solution for all b.

For square A and PA = LU with U having nonzero diagonal entries, Ax = b has a unique
solution for all b.
In each factorization PA = LU we have P a permutation matrix and L lower triangular
with 1’s on the diagonal and U is upper triangular. If U has nonzero diagonal entries then
when we solve Ux = c for any c we get a unique solution using back substitution. So in this
case we solve Ax = b by solving Lc = Pb for c by forward substitution. This always has a
solution as the diagonals are nonzero. Then we solve Ux = c for any c. So if U has nonzero
diagonal entries then Ax = b has a unique solution for all b.

For an m × m matrix A and PA = LU , if Ax = b has a solution for all b then U has
nonzero diagonal entries.
For the converse we are showing something slightly stronger. We do this by proving the
(equivalent) contrapositive: If ‘Not’ (U has nonzero diagonal entries) then ‘Not’ (Ax = b
has a solution for all b ). This is: If U has some diagonal entry equal to 0 then for some
b, the system Ax = b has no solution. If some diagonal entry of U is 0 then some column
is not a pivot column and hence (because U is square) some row is not a pivot row. Some
row of U has all 0’s, In particular the last row does. Consider em, the vector with every
entry 0 except the mth which is 1. Let b = P−1Lem (since P is a permutation matrix P−1

exists and P−1 = P T ). Then we have Lem = Pb. Attempting to solve Ux = em using back
substitution last row of the system Ux = c becomes 0 = 1. So there is no solution for this
b.

What we have now is A nonsingular ⇒ Ax = b has a unique solution for all b ⇒ Ax = b
has a solution for all b ⇒ A nonsingular. So these are all equivalent. Note this is only true
for square matrices. We also have Ax = b has a solution for all b ⇔ A has a right inverse.
It remains to establish the A has a left inverse if and only if it has a right inverse.



Left inverse if and only if right inverse

We now want to use the results above about solutions to Ax = b to show that a square
matrix A has a left inverse if and only if it has a right inverse. Recall also that this gives
a unique inverse. Note, this statement is not true for non-square matrices. We will assume
that A is square.

For a square matrix A, Ax = b has a solution for all b if and only if A has a right inverse.
If Ax = b has a solution for all b then in particular it does for ei, i = 1, 2, . . . , n which are
columns of an identity matrix. Then the matrix with ith column equal to the solution of
Ax = ei is a right inverse of A. Conversely, if A has a right inverse, Y (such that AY = I)
then given b, the vector Xb solves Ax = b since A(Y xb) = (AY )b = Ib = b.

False Proof
First we give an incorrect ‘proof’ that A has a left inverse implies A has a right inverse. If
XA = I, consider Ax = b. Left multiply this by X to get XAx = Xb which is x = Xb.
So Ax = b always has a solution and by the results above A has a right inverse. This is
not correct. Why? If Ax = b has no solution then the implications that we get be left
multiplying are not necessarily true.

Instead we will show first that A has a right inverse implies that A has a left inverse. Then
we use this fact to prove that left inverse implies right inverse.

If a square matrix A has a right inverse then it has a left inverse.
Assume that A has a right inverse. From above, A has a factorization PA = LU with L
lower triangular with ones on the diagonal and U upper triangular with nonzero diagonal
entries. Because the diagonal entries of these triangular matrices are nonzero we can easily
see that by forward or back substitution we can solve yT L = bT and yT U = bT (uniquely)
for any b. In particular, we can solve for for eT

i , i = 1, 2, . . . , n which are rows of an identity
matrix. Then the matrix with ith row equal to the solution of yT L = ei

T is a left inverse
of L. Similarly U has a left inverse. So we have left inverses L̂ and Û with L̂L = I and
ÛU = I. Now, (Û L̂P )A = Û L̂LU = ÛU = I. So Û L̂P is a left inverse of A.

If a square matrix A has a left inverse then it has a right inverse.
Assume thatA has a left inverse X such that XA = I. Now AT XT = (XA)T = IT = I so
XT is a right inverse of AT . By the previous paragraph XT is a left inverse of AT . Thus
AX = (XT AT )T = IT = I. So A has a right inverse.

Uniqueness of inverses.
Finally we will review the proof from the text of uniqueness of inverses. We note that in fact
the proof shows that if X is a left inverse of A and Y is a right inverse of A then X = Y . We
do not need the more general assumption that X and Y are inverse on both sides. The proof
becomes: If XA = I and AY = I then by associativity X = XI = X(AY ) = (XA)Y =
IY = Y .


