Homework solutions for Math 242, Linear Algebra, Lehigh University fall 2008
Here are solutions to a few of the more abstract homework problems. Please remember that there is often more than one way to do a proof and more than one way to present a particular proof. So these are examples of answers. Not the only correct way to do them.
1.2.30: Prove that matrix multiplication is associative: $A(B C)=(A B) C$ when it is defined. Assume that A is $m \times n, B$ is $n \times p$ and C is $p \times q$. We will show that both have the same (i, j) entry for every i, j. Using the definition of matrix multiplication we get
$[A(B C)]_{i j}=\sum_{r=1}^{n} A_{i r}(B C)_{r j}=\sum_{r=1}^{n} A_{i r}\left(\sum_{s=1}^{p} B_{r s} C_{s j}\right)=\sum_{r=1}^{n} \sum_{s=1}^{p} A_{i r} B_{r s} C_{s j}=$
$\sum_{s=1}^{p}\left(\sum_{r=1}^{n} A_{i r} B_{r s}\right) C_{s j}=\sum_{s=1}^{p}(A B)_{i s} C_{s j}=[(A B) C]_{i j}$
1.3.13b: A matrix is nilpotent if $A^{k}=0$ for some k. A matrix A is strictly upper triangular if $A_{i j}=0$ for $i \geq j$. Prove that strictly upper triangular matrices are nilpotent.
We will prove, by induction, that if A is strictly upper triangular then $A_{i j}^{k}=0$ for $i>j-k$. This implies that $A^{k}=0$ for $k \geq m$ if A is $m \times m$. The basis for the induction is $A^{1}=0$ for $i>j-1$ follows from the assumption that A is strictly upper triangular (since $i \geq j$ if and only if $i>j-1$). We assume, by induction that $A_{i j}^{k-1}=0$ for $i>j-(k-1)$ and show that $A_{i j}^{k}=0$ for $i>j-k$. The result then follows by induction.
From the definition of matrix multiplication we get for $i>j-k$:
$A_{i j}^{k}=\left(A A^{k-1}\right)_{i j}=\sum_{r=1}^{m} A_{i r} A_{r j}^{k-1}=\sum_{r=1}^{i} A_{i r} A_{r j}^{k-1}+\sum_{r=i+1}^{m} A_{i r} A_{r j}^{k-1}==\sum_{r=1}^{i} 0 \cdot A_{r j}^{k-1}+\sum_{r=i+1}^{m} A_{i r} \cdot 0=0$.
Here we have used that in the first sum $r \leq i$ and hence $A_{i r}=0$ since A is strictly upper triangular. In the second sum $r \geq i+1>(j-k)+1=j-(k-1)$ and hence $A_{r j}^{k-1}=0$ by the induction hypothesis.
1.3.21c: Prove that the product of two special lower triangular matrices is special lower triangular. If L and M are $m \times m$ special lower triangular matrices then $L_{i j}=M_{i j}=0$ for $m \geq j>i \geq 1$ and $L_{i i}=M_{i i}=0$ for $m \geq i \geq 1$. We need to show that $(L M)_{i j}=0$ for $m \geq j>i \geq 1$ and $(L M)_{i i}=0$ for $m \geq i \geq 1$.
For $j>i$
$(L M)_{i j}=\sum_{k=1}^{m} L_{i k} M_{k j}=\sum_{k=1}^{i} L_{i k} M_{k j}+\sum_{k=i+1}^{m} L_{i k} M_{k j}=\sum_{k=1}^{i} L_{i k} \cdot 0+\sum_{k=i+1}^{m} 0 \cdot M_{k j}=0$.
Here we have used that in the first sum $k \leq i<j$ so $M_{k j}=0$ and in the second sum $k \geq i+1>i$ so $L_{i k}=0$.
1.5.18c: Write $A \sim B$ if there exists an invertible matrix S such that $B=S^{-1} A S$. Prove that if $A \sim B$ and $B \sim C$ then $A \sim C$. Since $A \sim B$ and $B \sim C$ there are invertible matrices S, T such that $B=S^{-1} A S$ and $C=T^{-1} B T$. Then $(S T)^{-1} A(S T)=T^{-1}\left(S^{-1} A S\right) T=T^{-1} B T=$ C. So using $S T$ we see that $A \sim C$.
1.6.13a: Suppose that $\boldsymbol{v}^{T} A \boldsymbol{w}=\boldsymbol{v}^{T} B \boldsymbol{w}$ for all vectors $\boldsymbol{w}, \boldsymbol{w}$. Prove that $A=B$. Let f_{i}^{T} denote the $i^{\text {th }}$ row of I_{m} and e_{j} denote the $j^{\text {th }}$ column of I_{n}. Now $\boldsymbol{f}_{i}{ }^{T} A \boldsymbol{e}_{\boldsymbol{j}}=A_{i j}$, the (i, j) entry of A. This follows since $\boldsymbol{f}_{i}^{T} A$ is the $i^{\text {th }}$ row of A and $\operatorname{Row}_{i}(A) e_{j}$ is the $j^{\text {th }}$ entry of $\operatorname{Row}_{i}(A)$. Similarly, $\boldsymbol{f}_{\boldsymbol{i}}{ }^{T} B \boldsymbol{e}_{\boldsymbol{j}}=B_{i j}$. So for any $1 \leq i \leq m, 1 \leq j \leq n$ we have $A_{i j}=\boldsymbol{f}_{\boldsymbol{i}}^{T} A \boldsymbol{e}_{\boldsymbol{j}}=\boldsymbol{f}_{\boldsymbol{i}}^{T} A \boldsymbol{e}_{\boldsymbol{j}}=B_{i j}$. Hence $A=B$.
1.8.15a: Let $A=\boldsymbol{v} \boldsymbol{w}^{T}$ be the product of an $m \times 1$ column vector \boldsymbol{w} ith $\boldsymbol{v}^{T}=\left(\begin{array}{llll}v_{1} & v_{2} & \cdots & v_{m}\end{array}\right)$ and a $1 \times n$ row vector $\boldsymbol{w}^{T}=\left(\begin{array}{llll}w_{1} & w_{2} & \cdots & w_{m}\end{array}\right)$. Prove that the rank of A is 1 . You may assume that $w_{1} \neq 0$ and $v_{1} \neq 0$ to simplify notation.

We show that the rank of A is 1 by showing that U has 1 nonzero row in a factorization $P A=L U$. We will give a factorization with $P=I$. Write $\hat{\boldsymbol{v}}^{T}=\left(\begin{array}{llll}v_{2} & v_{3} & \cdots & v_{m}\end{array}\right)$ and $\hat{\boldsymbol{w}}^{T}=\left(\begin{array}{llll}w_{2} & w_{3} & \cdots & w_{n}\end{array}\right)$. These are \boldsymbol{v} and \boldsymbol{w} with the first entry deleted. Then consider the following block matrix multiplication where the 0 matrices and vectors and identity matrix are of the appropriate sizes.

$$
A=\boldsymbol{v} \boldsymbol{w}^{T}=\binom{v_{1}}{\hat{\boldsymbol{v}}}\left(\begin{array}{ll}
w_{1} & \hat{\boldsymbol{w}}^{T}
\end{array}\right)=\left(\begin{array}{rr}
v_{1} w_{1} & v_{1} \hat{\boldsymbol{w}}^{T} \\
\hat{\boldsymbol{v}} w_{1} & \hat{\boldsymbol{v}} \hat{\boldsymbol{w}}^{T}
\end{array}\right)=\left(\begin{array}{rr}
1 & \mathbf{0}^{T} \\
\frac{1}{v_{1}} \hat{\boldsymbol{v}} & I
\end{array}\right)\left(\begin{array}{rr}
v_{1} w_{1} & v_{1} \hat{\boldsymbol{w}}^{T} \\
0 & 0
\end{array}\right)
$$

This is a $A=L U$ factorization with U having one nonzero row. So the rank of A is 1 .
Alternate proof: A is $\left(\begin{array}{rrrr}v_{1} w_{1} & v_{1} w_{2} & \cdots & v_{1} w_{n} \\ v_{2} w_{1} & v_{2} w_{2} & \cdots & v_{2} w_{n} \\ \vdots & & \ddots & \vdots \\ v_{m} w_{1} & v_{m} w_{2} & \cdots & v_{m} w_{n}\end{array}\right)$. We see that each row is a multiple of \boldsymbol{w}^{T} with the multipliers specified by \boldsymbol{v}. Pivoting on the $(1,1)$ entry which we have assumed to be nonzero we add $\frac{-v_{i}}{v_{1}}$ times row 1 to row i resulting in a zero row. So pivoting produces a matrix with the same first row as A and every other row a zero row. Hence A has rank 1.
1.9.8 Prove that if A is $n \times n$ and c is a scalar then $\operatorname{det}(c A)=c^{n} \operatorname{det}(A)$. Note that $c A=$ $c I A=\hat{I} A$ where \hat{I} is a diagonal matrix with every diagonal entry c. Since \hat{I} is diagonal its determinant is the product of these diagonal entries. That is $\operatorname{det}(\hat{I})=c^{n}$. Then $\operatorname{det}(c A)=$ $\operatorname{det}(\hat{I} A)=\operatorname{det}(\hat{I}) \operatorname{det}(A)=c^{n} \operatorname{det}(A)$.

