
Homework solutions for Math 242, Linear Algebra, Lehigh University fall 2008
Here are solutions to a few of the more abstract homework problems. Please remember that
there is often more than one way to do a proof and more than one way to present a particular
proof. So these are examples of answers. Not the only correct way to do them.

1.2.30: Prove that matrix multiplication is associative: A(BC) = (AB)C when it is defined.

Assume that A is m× n, B is n× p and C is p× q. We will show that both have the same
(i, j) entry for every i, j. Using the definition of matrix multiplication we get

[A(BC)]ij =
n∑

r=1

Air(BC)rj =
n∑

r=1

Air(

p∑
s=1

BrsCsj) =
n∑

r=1

p∑
s=1

AirBrsCsj =

p∑
s=1

(
n∑

r=1

AirBrs)Csj =

p∑
s=1

(AB)isCsj = [(AB)C]ij

1.3.13b: A matrix is nilpotent if Ak = 0 for some k. A matrix A is strictly upper triangular
if Aij = 0 for i ≥ j. Prove that strictly upper triangular matrices are nilpotent.

We will prove, by induction, that if A is strictly upper triangular then Ak
ij = 0 for i > j− k.

This implies that Ak = 0 for k ≥ m if A is m×m. The basis for the induction is A1 = 0 for
i > j − 1 follows from the assumption that A is strictly upper triangular (since i ≥ j if and
only if i > j − 1). We assume, by induction that Ak−1

ij = 0 for i > j − (k− 1) and show that

Ak
ij = 0 for i > j − k. The result then follows by induction.

From the definition of matrix multiplication we get for i > j − k:

Ak
ij = (AAk−1)ij =

m∑
r=1

AirA
k−1
rj =

i∑
r=1

AirA
k−1
rj +

m∑
r=i+1

AirA
k−1
rj ==

i∑
r=1

0 · Ak−1
rj +

m∑
r=i+1

Air · 0 = 0.

Here we have used that in the first sum r ≤ i and hence Air = 0 since A is strictly upper
triangular. In the second sum r ≥ i + 1 > (j − k) + 1 = j − (k − 1) and hence Ak−1

rj = 0 by
the induction hypothesis.

1.3.21c: Prove that the product of two special lower triangular matrices is special lower
triangular. If L and M are m×m special lower triangular matrices then Lij = Mij = 0 for
m ≥ j > i ≥ 1 and Lii = Mii = 0 for m ≥ i ≥ 1. We need to show that (LM)ij = 0 for
m ≥ j > i ≥ 1 and (LM)ii = 0 for m ≥ i ≥ 1.

For j > i

(LM)ij =
m∑

k=1

LikMkj =
i∑

k=1

LikMkj +
m∑

k=i+1

LikMkj =
i∑

k=1

Lik · 0 +
m∑

k=i+1

0 ·Mkj = 0.

Here we have used that in the first sum k ≤ i < j so Mkj = 0 and in the second sum
k ≥ i + 1 > i so Lik = 0.

1.5.18c: Write A ∼ B if there exists an invertible matrix S such that B = S−1AS. Prove that
if A ∼ B and B ∼ C then A ∼ C. Since A ∼ B and B ∼ C there are invertible matrices S, T
such that B = S−1AS and C = T−1BT . Then (ST )−1A(ST ) = T−1(S−1AS)T = T−1BT =
C. So using ST we see that A ∼ C.



1.6.13a: Suppose that vT Aw = vT Bw for all vectors w,w. Prove that A = B. Let fT
i

denote the ith row of Im and ej denote the jth column of In. Now fi
T Aej = Aij, the

(i, j) entry of A. This follows since fi
T A is the ith row of A and Rowi(A)ej is the jth

entry of Rowi(A). Similarly, fi
T Bej = Bij. So for any 1 ≤ i ≤ m, 1 ≤ j ≤ n we have

Aij = fi
T Aej = fi

T Aej = Bij. Hence A = B.

1.8.15a: Let A = vwT be the product of an m×1 column vector with vT =
(

v1 v2 · · · vm

)
and a 1×n row vector wT =

(
w1 w2 · · · wm

)
. Prove that the rank of A is 1. You may

assume that w1 6= 0 and v1 6= 0 to simplify notation.

We show that the rank of A is 1 by showing that U has 1 nonzero row in a factorization
PA = LU . We will give a factorization with P = I. Write v̂T =

(
v2 v3 · · · vm

)
and

ŵT =
(

w2 w3 · · · wn

)
. These are v and w with the first entry deleted. Then consider

the following block matrix multiplication where the 0 matrices and vectors and identity
matrix are of the appropriate sizes.

A = vwT =

(
v1

v̂

) (
w1 ŵT

)
=

(
v1w1 v1ŵ

T

v̂w1 v̂ŵT

)
=

(
1 0T

1
v1

v̂ I

)(
v1w1 v1ŵ

T

0 0

)

This is a A = LU factorization with U having one nonzero row. So the rank of A is 1.

Alternate proof: A is




v1w1 v1w2 · · · v1wn

v2w1 v2w2 · · · v2wn
...

. . .
...

vmw1 vmw2 · · · vmwn


 . We see that each row is a multiple of

wT with the multipliers specified by v. Pivoting on the (1, 1) entry which we have assumed
to be nonzero we add −vi

v1
times row 1 to row i resulting in a zero row. So pivoting produces

a matrix with the same first row as A and every other row a zero row. Hence A has rank 1.

1.9.8 Prove that if A is n × n and c is a scalar then det(cA) = cndet(A). Note that cA =
cIA = ÎA where Î is a diagonal matrix with every diagonal entry c. Since Î is diagonal its
determinant is the product of these diagonal entries. That is det(Î) = cn. Then det(cA) =
det(ÎA) = det(Î)det(A) = cndet(A).


