
Homework 5: Due Monday 9-29-08

Turn in:
Section 2.2 # 2,6,22,24
problem 5.1 below

Do (but do not turn in):
Section 2.1 # 2
Section 2.2 # 1, 13

Comments: 2.2.2 You should give a very brief explanation for each case. Do not write too much.
However you do need to justify your answer. If it is a subspace show closure of addition and scalar
multiplication (or show both together using cv+dd). If it is not a subspace either show that closure
of addition or scalar multiplication fails or show that 0 is not in the set.
2.2.6 For (a) consider the union of the x-axis and y-axis (vectors in R2 with either first coordinate
0 or second coordinate 0). For (b) consider the non-negative quadrant (vectors in R2 with nonneg-
ative coordinates).
2.2.22(c) If w+z is in the union it is in one of W or Z. If its in W , show that z ∈ W by considering
an appropriate linear combination of w + z and w.
2.2.24 For (a),(b),(c) just show that only 0 is in both sets. For (d), if w + z = v̂ + ẑ, observe that
w − ŵ = z − ẑ. Explain why this new vectors is in W and Z and use that to to show w = ŵ and
z = ẑ.
hw5.1 (below) - This is really just a matter of rearranging terms to see that the definition coincide.
Stated more formally, show the following: Let V be a vector space and v1,v2, . . . , vk ∈ V . Prove
that {v1,v2, . . . , vk} is linearly dependent if and only if for some i, vi is a linear combination of
{v1,v2, . . . , vi−1, vi+1,vk}.

hw5.1 Prove that a set of vectors in a vector space is linearly dependent if and only if one of them
is a linear combination of the others. Let V be a vector space and v1, v2, . . . , vk ∈ V . Prove
that {v1,v2, . . . , vk} is linearly dependent if and only if for some i, vi is a linear combination of
{v1,v2, . . . , vi−1, vi+1,vk}



Homework 6: Due Friday 10-10-08

Turn in:
Section 2.3 # 3a, 4bd, 8ac, 21ace, 31
Section 2.4 # 2bc, 10, 21
Section 2.5 # 8, 22, 31bd, 39, 46bc
problem 6.1 below

Do (but do not turn in):
Section 2.3 # 3b, 8b, 17, 19, 21df, 29
Section 2.4 # 9ab, 20, 22, 26
Section 2.5 # 20, 31ac, 38, 42, 46a

hw6.1 Let A = LU with

A =




1 1 1 2 2 2 2
2 2 4 4 4 5 7

−1 −1 1 −2 −2 2 4
0 0 −4 0 0 7 3
3 3 5 6 6 13 15




L =




1 0 0 0 0
2 1 0 0 0

−1 1 1 0 0
0 −2 3 1 0
3 1 2 0 1




U =




1 1 1 2 2 2 2
0 0 2 0 0 1 3
0 0 0 0 0 3 3
0 0 0 0 0 0 0
0 0 0 0 0 0 0




L−1 =




1 0 0 0 0
−2 1 0 0 0

3 −1 1 0 0
−13 5 −3 1 0
−7 1 −2 0 1




.

Find a basis for each of the four fundamental subspaces; the kernel, cokernel, range and corange
(i.e., nullspace, left nullspace, column space, row space). For all but one you should be able to write
down the answer directly and the remaining should require very little computation.



Homework 7: Due Wednesday 10-22-08

Turn in:
Section 3.1 # 1
Section 3.2 # 6,8,15
Section 3.3 # 13
Section 3.4 # 7, 10, 31
Section 3.5 # 11, 19a
problem 7.1 below

Do (but do not turn in):
Section 3.1 # 2,3, 7,11
Section 3.2 # 5,16
Section 3.4 # 4,8
Section 3.5 # 1, 19bd

hw7.1 We discussed a proof of the Cauchy-Schwarz inequality in RN by first proving by induction

the inequality (a1+a2+···+an)2
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when each ui > 0 and then making an appropriate

substitution for the ai and ui. Write up this proof neatly and concisely.


