Math 242: Linear Algebra Fall 2008 Homeworks before the first exam
All problems are from the text unless otherwise noted.
Homework 1: Due Monday 9-1-08
Turn in:
Section 1.1 \# 2
Section 1.2 \# 11b, 22, 24, 30, 37abe
Do (but do not turn in):
Section 1.2 \# 1,2,4e,8,11a
Comments: For 1.2.11b provide a proof
For 1.2.30 use \sum notation.

Homework 2: Due Monday 9-8-08
Turn in:
Section 1.3 \# 1f, 4, 13, 20bd, 21
Section 1.4 \# 13b, 15c, 19f
Do (but do not turn in):
Section 1.3 \# 1c, 14ace, 21, 22ce, 27, 31ce
Section 1.4 \# 9,13ac, 15ab, 19ce, 24
Comments: For 1.3.13 use induction to prove that $A_{i j}=0$ for $i>j-k$ which then proves the result.

Homework 3: Due Friday 9-12-08
Turn in:
Section 1.5 \# 4,18c,21,24e,31e
Section 1.6 \# 12,13a,15
Do (but do not turn in):
Section 1.5 \# 1b, 2, 9, 14, 18ab, 24ad
Section 1.6 \# 1d, 5, 13b, 14

Homework 4: Due Wednesday 9-17-08
Turn in:
Section 1.8 \# 4, 9, 10bd, 15, 22d, 23h
Section 1.9 \# 1ceg, 6, 8
problem 4.1 below
Do (but do not turn in):
Section 1.8 \# 7, 10ac, 13, 22ae
Section 1.9 \# 1bf
Comments: The answer to 1.8 .4 is in the back of the book and it is incorrect. Make sure you give an explanation, not just the answer.
For 1.8.15a describe the $L U$ factorization. Write $\boldsymbol{v}^{T}=\left(\begin{array}{llll}v_{1} & v_{2} & \cdots & v_{m}\end{array}\right)$ and
$\boldsymbol{w}^{T}=\left(\begin{array}{llll}w_{1} & w_{2} & \cdots & w_{n}\end{array}\right)$ and assume that $w_{1} \neq 0$ and $v_{1} \neq 0$.
hw4.1: Let $A=L U$ with

$$
\begin{gathered}
A=\left[\begin{array}{llllll}
1 & 2 & 0 & 1 & 2 & 1 \\
2 & 4 & 2 & 4 & 4 & 2 \\
2 & 4 & 2 & 4 & 4 & 3 \\
3 & 6 & 4 & 7 & 6 & 7
\end{array}\right] L=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
2 & 1 & 1 & 0 \\
3 & 2 & 4 & 1
\end{array}\right] \\
U=\left[\begin{array}{llllll}
1 & 2 & 0 & 1 & 2 & 1 \\
0 & 0 & 2 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] L^{-1}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
1 & 2 & -4 & 1
\end{array}\right] .
\end{gathered}
$$

For

$$
\boldsymbol{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right) \quad \boldsymbol{b}^{\prime}=\left(\begin{array}{l}
1 \\
2 \\
3 \\
7
\end{array}\right) \quad \boldsymbol{b}^{\prime \prime}=\left(\begin{array}{r}
1 \\
2 \\
3 \\
14
\end{array}\right)
$$

Consider both $A \boldsymbol{x}=\boldsymbol{b}^{\prime}$ and $A \boldsymbol{x}=\boldsymbol{b}^{\prime \prime}$. For each either solve the system (making use of $L U$, not Gaussian elimination) or give a certificate (relating to A and \boldsymbol{b} not L or U) showing that there is no solution.

