Math 242 Exam 2 This is closed book, closed notes etc. Points for each problem are indicated as $[\cdot]$. Lehigh University 10-29-2008 You have 50 minutes to take this exam.

1: [9] Prove that if $U \subseteq V$ are vector spaces with dim(U) = dim(V) = n then U = V.

2: [9] For vectors in \mathbb{R}^2 , $\boldsymbol{v} = (v_1, v_2)^T$ and $\boldsymbol{w} = (w_1, w_2)^T$ define $\langle \boldsymbol{v}, \boldsymbol{w} \rangle = v_1 w_1 - v_1 w_2 - v_2 w_1 + b v_2 w_2$. One can check that this satisfies the bilinearity and symmetry conditions for an inner product. Prove that this satisfies positivity: $\langle \boldsymbol{v}, \boldsymbol{v} \rangle > 0$ whenever $\boldsymbol{v} \neq \boldsymbol{0}$ while $\langle \boldsymbol{0}, \boldsymbol{0} \rangle = 0$ if and only if b > 1. Note, you do not need to check bilinearity and symmetry.

3: [9] Prove that for matrices A, B, if BA is defined then $ker(A) \subseteq ker(BA)$.

4: [13] Answer one of the following.

(a) Suppose that v_1, v_2, \ldots, v_n form a basis for \mathbb{R}^n and that A is a nonsingular matrix. Prove that Av_1, Av_2, \ldots, Av_n also form a basis for \mathbb{R}^n .

(b) Prove that v_1, v_2, \ldots, v_n form a basis for a vector space V if and only if every vector $x \in V$ can be written uniquely as a linear combination of the basis elements.

5: [13] Prove the Cauchy-Schwarz inequality $\langle \boldsymbol{x}, \boldsymbol{y} \rangle \leq \|\boldsymbol{x}\| \|\boldsymbol{y}\|$.

6: [10] Use the Cauchy-Schwarz inequality to prove the triangle inequality $\|\boldsymbol{x} + \boldsymbol{y}\| \leq \|\boldsymbol{x}\| + \|\boldsymbol{y}\|$.

7: [25] Let A = LU with

$$A = \begin{bmatrix} 1 & 1 & 1 & 2 & 2 & 2 & 2 \\ 2 & 2 & 4 & 4 & 4 & 5 & 7 \\ -1 & -1 & 1 & -2 & -2 & 2 & 4 \\ 0 & 0 & -4 & 0 & 0 & 7 & 3 \\ 3 & 3 & 5 & 6 & 6 & 13 & 15 \end{bmatrix} L = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 \\ -1 & 1 & 1 & 0 & 0 \\ 0 & -2 & 3 & 1 & 0 \\ 3 & 1 & 2 & 0 & 1 \end{bmatrix}$$
$$U = \begin{bmatrix} 1 & 1 & 1 & 2 & 2 & 2 & 2 \\ 0 & 0 & 2 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} L^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 & 0 \\ -3 & -1 & 1 & 0 & 0 \\ -13 & 5 & -3 & 1 & 0 \\ -7 & 1 & -2 & 0 & 1 \end{bmatrix}.$$

(a) Find a basis for each of the four fundamental subspaces; the kernel, cokernel, range and corange (i.e., nullspace, left nullspace, column space, row space).

(b) Let S be the set of vectors in \mathbb{R}^5 consisting of the 7 columns of A. Does S span \mathbb{R}^5 ? Is S linearly independent? Explain why in each case.

(c) Pick two of the subspaces in part (a) and give a brief explanation of the general method for finding this basis and why the method works.

8: [12] Let $S = \{v_1, v_2, \ldots, v_k\}$ be a set of vectors in \mathbb{R}^n . Let A be the matrix with i^{th} column v_i for $i = 1, 2, \ldots, k$ and let A = LU be an LU decomposition of A. Let r be the rank of A. This is the number of nonzero rows in U. For the following you do not need a formal proof. Just give an explanation in terms of solving systems of equations.

(a) Explain why S must be linearly dependent when k > n

(b) Explain why S cannot span \mathbb{R}^n when k < n.

(c) Explain why S is linearly independent if and only if S spans \mathbb{R}^n when k = n.