This is closed book, closed notes etc.
Points for each problem are indicated as [•].
1: [9] Prove that if $U \subseteq V$ are vector spaces with $\operatorname{dim}(U)=\operatorname{dim}(V)=n$ then $U=V$.
2: [9] For vectors in $\mathbb{R}^{2}, \boldsymbol{v}=\left(v_{1}, v_{2}\right)^{T}$ and $\boldsymbol{w}=\left(w_{1}, w_{2}\right)^{T}$ define $\langle\boldsymbol{v}, \boldsymbol{w}\rangle=v_{1} w_{1}-v_{1} w_{2}-v_{2} w_{1}+b v_{2} w_{2}$. One can check that this satisfies the bilinearity and symmetry conditions for an inner product. Prove that this satisfies positivity: $\langle\boldsymbol{v}, \boldsymbol{v}\rangle>0$ whenever $\boldsymbol{v} \neq \mathbf{0}$ while $\langle\mathbf{0}, \mathbf{0}\rangle=0$ if and only if $b>1$. Note, you do not need to check bilinearity and symmetry.

3: [9] Prove that for matrices A, B, if $B A$ is defined then $\operatorname{ker}(A) \subseteq \operatorname{ker}(B A)$.
4: [13] Answer one of the following.
(a) Suppose that $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ form a basis for \mathbb{R}^{n} and that A is a nonsingular matrix. Prove that $A \boldsymbol{v}_{1}, A \boldsymbol{v}_{2}, \ldots, A \boldsymbol{v}_{n}$ also form a basis for \mathbb{R}^{n}.
(b) Prove that $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ form a basis for a vector space V if and only if every vector $\boldsymbol{x} \in V$ can be written uniquely as a linear combination of the basis elements.
5: [13] Prove the Cauchy-Schwarz inequality $\langle\boldsymbol{x}, \boldsymbol{y}\rangle \leq\|\boldsymbol{x}\|\|\boldsymbol{y}\|$.
6: [10] Use the Cauchy-Schwarz inequality to prove the triangle inequality $\|\boldsymbol{x}+\boldsymbol{y}\| \leq\|\boldsymbol{x}\|+\|\boldsymbol{y}\|$.
7: [25] Let $A=L U$ with

$$
\begin{gathered}
A=\left[\begin{array}{rrrrrrr}
1 & 1 & 1 & 2 & 2 & 2 & 2 \\
2 & 2 & 4 & 4 & 4 & 5 & 7 \\
-1 & -1 & 1 & -2 & -2 & 2 & 4 \\
0 & 0 & -4 & 0 & 0 & 7 & 3 \\
3 & 3 & 5 & 6 & 6 & 13 & 15
\end{array}\right] L=\left[\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 \\
-1 & 1 & 1 & 0 & 0 \\
0 & -2 & 3 & 1 & 0 \\
3 & 1 & 2 & 0 & 1
\end{array}\right] \\
U=\left[\begin{array}{lrrrrrr}
1 & 1 & 1 & 2 & 2 & 2 & 2 \\
0 & 0 & 2 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] L^{-1}=\left[\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 & 0 \\
3 & -1 & 1 & 0 & 0 \\
-13 & 5 & -3 & 1 & 0 \\
-7 & 1 & -2 & 0 & 1
\end{array}\right] .
\end{gathered}
$$

(a) Find a basis for each of the four fundamental subspaces; the kernel, cokernel, range and corange (i.e., nullspace, left nullspace, column space, row space).
(b) Let S be the set of vectors in \mathbb{R}^{5} consisting of the 7 columns of A. Does S span \mathbb{R}^{5} ? Is S linearly independent? Explain why in each case.
(c) Pick two of the subspaces in part (a) and give a brief explanation of the general method for finding this basis and why the method works.
8: [12] Let $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\}$ be a set of vectors in \mathbb{R}^{n}. Let A be the matrix with $i^{\text {th }}$ column \boldsymbol{v}_{i} for $i=1,2, \ldots, k$ and let $A=L U$ be an $L U$ decomposition of A. Let r be the rank of A. This is the number of nonzero rows in U. For the following you do not need a formal proof. Just give an explanation in terms of solving systems of equations.
(a) Explain why S must be linearly dependent when $k>n$
(b) Explain why S cannot span \mathbb{R}^{n} when $k<n$.
(c) Explain why S is linearly independent if and only if S spans \mathbb{R}^{n} when $k=n$.

