This is closed book, closed notes etc.
Points for each problem are indicated as [•].
1: [12] Find a $P A=L U$ factorization for $A=\left(\begin{array}{rrr}2 & 4 & 6 \\ -2 & -4 & -5 \\ 4 & 7 & 9\end{array}\right)$.
2: [16] Let $A=L U$ with

$$
A=\left[\begin{array}{rrrrr}
2 & 1 & 1 & 0 & -1 \\
4 & 2 & 3 & 1 & -3 \\
-4 & -2 & 1 & 3 & -1
\end{array}\right] L=\left[\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
-2 & 3 & 1
\end{array}\right] U=\left[\begin{array}{lllll}
2 & 1 & 1 & 0 & -1 \\
0 & 0 & 1 & 1 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] L^{-1}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
8 & -3 & 1
\end{array}\right] .
$$

For

$$
\boldsymbol{x}^{T}=\left(\begin{array}{lllll}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5}
\end{array}\right) \quad \boldsymbol{b}^{\prime}=\left(\begin{array}{l}
1 \\
4 \\
4
\end{array}\right) \quad \boldsymbol{b}^{\prime \prime}=\left(\begin{array}{l}
1 \\
4 \\
5
\end{array}\right) .
$$

Consider both $A \boldsymbol{x}=\boldsymbol{b}^{\prime}$ and $A \boldsymbol{x}=\boldsymbol{b}^{\prime \prime}$. For each either solve the system (making use of $L U$, not Gaussian elimination) or give a certificate (relating to A and \boldsymbol{b} not L or U) showing that there is no solution.
3: [12] Prove that matrix multiplication is associative: If A is $m \times n, B$ is $n \times p$ and C is $p \times q$ then $A(B C)=(A B) C$.
4: [12] If L and M are $n \times n$ lower triangular matrices, prove that the product $L M$ is lower triangular. Make sure that you clearly state a condition for a matrix to be lower triangular and prove that it holds for $L M$.
5: [10] Assume that A, B are invertible matrices of the same size. Prove that $(A B)^{-1}$ exists.
6: [18] Assume that A is an 6×6 invertible matrix.
Let B be obtained from A by multiplying the $4^{\text {th }}$ row of A by 42 .
Let C be obtained from A by adding 13 times the second row of A to the $5^{\text {th }}$ row.
Let D be obtained from A by rearranging the rows so that the new row 2 is the old row 6 , the new row 4 is the old row 2 and the new row 6 is the old row 4 .
For each of B, C, D describe how to obtain its inverse from A^{-1} using words. In addition, justify your answer by describing and using appropriate elementary matrices.
7: [10] Prove that $A=\left(\begin{array}{rr}1 & 2 \\ 0 & 1 \\ -2 & -2\end{array}\right)$ has a left inverse but no right inverse.
8: [10] One of the statements below is true and the other false. Give a proof for the one that is true and a counterexample for the one that is false.
(i) If the first and third columns of A are the same, so are the first and third columns of $A B$.
(ii) If the first and third rows of A are the same, so are the first and third rows of $A B$.

