Degrees in Edge Colored Graphs

Garth Isaak
Lehigh University

Will review a variety of results related to degrees in edge colored graphs

Not a survey - just some stuff interesting to me

Tournament

Interpret as Lehigh beats Duke

Score list
 (5, 4, 3, 3, 3, 2, 1)

records number of wins

Score list
 (5, 4, 3, 3, 3, 2, 1)

records number of wins
Necessary condition:
$\sum_{i \in S} s_{i} \geq\binom{|S|}{2}$
Wins for teams in S
as large as number of games played among S

Landau (1954): Sufficient to be a score list

Allow Ties?

$\left(\begin{array}{l}3 \\ 3 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 5\end{array}\right),\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right),\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)$,
Win, Tie, Loss list
FIFA scores?
$12,3,9, \cdots$
$W=3, T=1, L=0$
Necessary and sufficient conditions?

- Win, Tie, Loss Tournament $=$ Oriented graph
- Oriented graph = digraph with no 2-cycles
- Characterization, algorithms for degree lists of these?

Degree lists of oriented graphs should be easy

- Easy to find an orientation of a given graph with specified degrees (network methods Ford and Fulkerson 1957)
- Degree lists of digraphs are characterized (= bipartitie degrees Gale, Ryser, Ore, 1957)
- Win minus loss records/ FIFA like totals with consecutive values are characterized (Avery 1991 tournaments, Mubayi, West, Will 2001 for digraphs/ from network methods)

Degree lists of oriented graphs should be easy

- Easy to find an orientation of a given graph with specified degrees (network methods Ford and Fulkerson 1957)
- Degree lists of digraphs are characterized (= bipartitie degrees Gale, Ryser, Ore, 1957)
- Win minus loss records/ FIFA like totals with consecutive values are characterized (Avery 1991 tournaments, Mubayi, West, Will 2001 for digraphs/ from network methods)

Degree lists of oriented graphs should be hard

- Bipartite oriented graph degree lists are NP-hard (Durr et al 2009 + Benz et al 2008)
- 'big wins', 'regular wins', ties records are NP-hard (same idea as bipartite oriented)
- Certain FIFA like completion problems are NP-hard (Pavlogi 2010)

Bipartite Tournament

$$
\begin{aligned}
& =\text { 3-edge colored } \\
& \text { undirected bigraph }
\end{aligned}
$$

Is there a bipartite graph with given color vectors?
(1, 1, 1, 1, 1)

- $(2,1,1,0,0)$
- $(0,1,1,0,2)$
(1, 1, 1, 1, 1)
- $(2,0,1,1,0)$
$(1,1,1,1,1)$
-
- $(0,2,0,0,2)$
$(1,1,1,1,1)$
-
- $(0,0,1,3,0)$

Is there a bipartite graph with given color vectors?

YES for this instance
In general its NP-hard

Row sums = column sums; use Birkhoff-VonNeumann Theorem

This always works when one part degrees are 1's vectors

‘Equivalent' versions

- Degree Lists of edge colored bipartite graphs
- Discrete tomography problem
- Restricted graph coloring/scheduling
- packing of graphic sequences
- special case of axial 3-way transportation
- Benz et al (2008) connection to discrete tomography - 5 color version is NP-hard from 2001 results
- Durr et. al. 2009 3-color version is NP-hard
- Results for a few special cases

Look at (non-proper) edge colorings of complete graphs

	blue green		
	red		
a	1	1	2
b	2	0	2
c	1	2	1
d	2	2	0
e	0	3	1

Which sequences of vectors can be realized as degrees of an edge colored complete graph?

Columns - color sequences
Rows - color degrees

Look at (non-proper) edge colorings of complete graphs

			blue green			red
a	1	1	2			
b	2	0	2			
c	1	2	1			
d	2	2	0			
e	0	3	1			

Necessary Condition - each color sequence is a degree sequence

≥ 4 colors: sums of color sequences must be degree sequences Not sufficient

Necessary condition is sufficient (3 colors) when:

- One color sequence has all degrees $\in\{k, k+1\}$ (Kundu's Theorem, 1973)
- extends to two outlying degrees and ...
- Two color sequences and their sum can be realized by forests (Kleitman, Koren and Li, 1977)
- also a broader condition on the sum; characterize when both colors can be forests
- $\Delta \leq \sqrt{2} \delta n-\delta+1$ where Δ, δ, min and max degree sum for two of the colors (Busch et al 2011)
- Two lists are identical (switch to get 'nice' Eulerian cycle in these colors then alternate)

8	6	2	8	0	8
8	0	8	8	1	7
7	4	5	7	2	7
5	2	9	3	4	9
4	4	8	4	4	8
3	1	12	3	6	7

Right is 'easier' than left lower in Bruhat order is easier to realize (Hartke and Seacrest 2011)

8	6	2
8	0	8
7	4	5
5	2	9
4	4	8
3	1	12

8	6	2
7	1	8
7	4	5
6	1	9
4	4	8
3	1	12

Right is 'easier' than left 'flatter is easier'

Necessary conditions are sufficient (multiple colors):

- All but 2 colors are ($1,2, \ldots, 1$) (i.e., 1 -factors) Busch et al 2011
- With at most 5 colors
- or one of two remaining colors has all entries $\geq n / 2$
- Sum of all but one color are forest realizable i.e., an edge colored forest with given degrees exists under obvious conditions
- Inductive proof (Carroll 2009), requires pasting two smaller parts
- Switching proof (Alpert, Becker, Hilbert, Iglesius REU 2010)
- One color has all degrees $\geq n-4$
i.e., an edge colored 3-regular graph with given degrees exists under obvious conditions infinite families of minimal 'forbidden graphs' for degree 4 but for fixed number of colors finite number of examples (Alpert, Becker, Hilbert, Iglesius REU 2010)
- Idea of proof for forest realizations using switching
- complete proof uses another trick too
- Similar switching idea used for many of the results

- Idea of proof for forest realizations using switching
- complete proof uses another trick too
- Similar switching idea used for many of the results

Alternate view

- Given list of k-tuples
- Given set of possible host graphs
- Can we k-color one of the host graphs to realize the list?
- Host sets
- complete graph
- complete bipartite graph
- Forests
- graphs with degree at most 3

What if host is a fixed linear forest and we use just 2 colors?
Related problem: Given a list of degrees and a graph when does it have a subgraph with this degree list?

$0-0$
'Degrees': 2 - R; 4 - B; 2 - RB; 1-RR; 0 - BB

Given path lengths $C_{1}, C_{2}, \ldots, C_{p}$ and numbers of each of 5 degree types when can we color to get these degrees? (Ryan - 2012+)

- If no $R B$ vertices - NP-hard (depends on encoding) - exact subset sum
- Else assuming some counting conditions If $\mathrm{R} \leq \mathrm{RB}$ then
if $R R \geq \sum_{i=1}^{(a-x) / 2}\left(C_{i}-2\right)$ and similar for BB
- Else assuming some counting conditions If $\mathrm{R} \leq \mathrm{RB}$ then previous conditions plus conditions on number of odd length paths

