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Highly Structured Families

Tree Block Graph Threshold Graph



General strategy:

• NP hard problem

• Polynomial on structured families
For our families sometimes trivially polynomial

• Find certifying algorithm/ structure theorem

Explanation of result notation:

• Fact - well known = old, probably wrong if attempt attribution

• Fact - exercise = possibly new, undergraduate homework level

• Proposition = possibly new and requires some work

Note - no attempt to survey



Hamiltonian Path = spanning path

Does T have a Hamiltonian Path?



Hamiltonian Path = spanning path

Does T have a Hamiltonian Path?

Well NO



Hamiltonian Path = spanning path

Does T have a Hamiltonian Path?

Well NO WHY?



Hamiltonian Path = spanning path

Does T have a Hamiltonian Path?

Well NO WHY?

• Each leaf must be an end

• cut vertex splits graph into > 2 components



How close to Hamiltonian is T?

Hamiltonian Path = Spanning Path

• Spanning PathS - minimum number

• Spanning Walk - minimum ?



Minimum Number of Paths needed to span vertices?

Disjoint (vertex and edge) = Path Partition - PP(G )
often called path cover

Edge Disjoint Cover (vertices may repeat)

Path Cover (vertices and edges may repeat) = PC (G )

For today skip Edge (but not vertex) disjoint



Different values for different path cover versions



Minimum Spanning Walk?

Minimize length = MLSW (G )

Minimize maximum vertex repeat = MRSW (G )



All min repeat spanning walks are ‘long’
and
All min length spanning walks, vertex with ‘many’ repeats



Reminder of basic bound for path partition - Scattering Number

≥ 7− 3 = 4 paths

U

Fact (Well known)

Min Path Partition ≥ Max C (G − U)− |U |

Equality for trees, threshold graphs, co-comparability graphs,...

Goal - get nice minimax thms for Hamiltonian variants on
structured classes



TREES
Well Known: Min Path Partition = Max C (G − U)− |U|



TREES
Exercise: Min Path Cover =

⌈
#leaves

2

⌉
Hararay and Schwenk (1972): can cover edges with same number



TREES
Well Known: Tree on n vertices

Min length spanning walk = 2(n − 1)− diameter(T )



TREES
Fact: Tree maximum degree ∆ has

Min repeats in spanning walk = ∆ or ∆− 1

MRSW (T ) = ∆− 1 if some path contains all degree ∆ vertices
MRSW (T ) = ∆ otherwise



TREES

Fact

If T is a tree

• PP(T ) = maxC (G − U)− |U| (scattering number)

• PC (T ) =
⌈
#leaves

2

⌉
• MLSW (T ) = 2(n − 1)− diameter(T )

• MRSW (T ) = ∆− 1 or ∆ ...



BLOCK GRAPHS

Fact

If G is a block graph with blocks Bi and
∆B the maximum number of blocks containing a cut vertex

• PP(G ) is NOT the scattering number. .....

• PC (T ) =
⌈
#endblocks

2

⌉
• MLSW (T ) =

∑
|Bi | − diameter(G )

• MRSW (T ) = ∆B − 1 or ∆B ...



Path Partition in Block Graphs

Decompose on certain cut vertices
count end blocks and ...



THRESHOLD GRAPHS
Well known: Min Path Partition = Max C (G − U)− |U|
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THRESHOLD GRAPHS
Fact: LB ≤ Min Path Cover ≤ UB
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• 4 ≤ PC (G ) ≤ 5

• Bottom greedy algorithm yields optimal cover



THRESHOLD GRAPHS
Fact: LB ≤ Min Path Cover ≤ UB
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• LB , UB gap can be arbitrarily large

• If LB ≥ Gap2 then full spectrum of values



Threshold graph path cover algorithm:



THRESHOLD GRAPHS
Fact: Min repeats in spanning walk = max

⌈
C(G−S)−1
|S |

⌉
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THRESHOLD GRAPHS
Fact: Min length spanning walk = n − 2 + PP(G )

True in general for diameter 2 graphs



THRESHOLD GRAPHS

Fact

If G is a threshold graph

• PP(T ) = maxC (G − U)− |U| (scattering number)

• LB ≤ PC (T ) ≤ UB ....

• MLSW (T ) = n − 2 + PP(G )

• MRSW (T ) = max
⌈
C(G−U)−1
|U|

⌉


