Star Avoiding Ramsey Numbers

Jonelle Hook, Garth Isaak

Department of Mathematics Lehigh University

MCCCC Rochester October 3, 2009

Midwest Conference on Combinatorics, Computing and
Cryptography

Graph Ramsey Numbers

Example

$$R(C_5, K_4) = 13$$

- There exists a 2-coloring of K₁₂ with no red C₅ and no blue K₄.
- Every 2-coloring of K_{13} has a red C_5 or a blue K_4 .

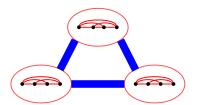
Graph Ramsey Numbers

Example

$$R(C_5, K_4) = 13$$

• There exists a 2-coloring of K_{12} with no red C_5 and no blue K_4 .

4

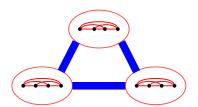


Graph Ramsey Numbers

Example

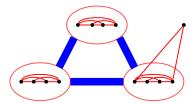
$$R(C_5, K_4) = 13$$

- There exists a 2-coloring of K_{12} with no red C_5 and no blue K_4 .
- Every 2-coloring of K_{13} has a red C_5 or a blue K_4 .



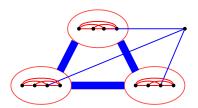
'Proof' that $R(C_5, K_4) = 13$

- 2 red edges to one part \Rightarrow red C_5
- •



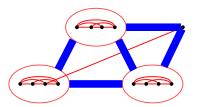
'Proof' that $R(C_5, K_4) = 13$

- 2 red edges to one part \Rightarrow red C_5
- blue edge to each part \Rightarrow blue K_4



'Proof' that $R(C_5, K_4) = 13$

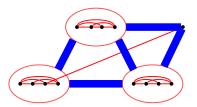
- 2 red edges to one part \Rightarrow red C_5
- blue edge to each part ⇒ blue K₄



Can color 9 edges but 10th forces red C₅ or K₄

'Proof' that $R(C_5, K_4) = 13$

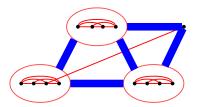
- 2 red edges to one part \Rightarrow red C_5
- blue edge to each part \Rightarrow blue K_4



Can color 9 edges but 10th forces red C_5 or K_4 NOT a proof

'Proof' that $R(C_5, K_4) = 13$

- 2 red edges to one part \Rightarrow red C_5
- blue edge to each part ⇒ blue K₄

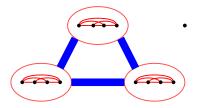


Can color 9 edges but 10th forces red C_5 or K_4 NOT a proof

Would be a proof if this is *only* good coloring of K_{12}

'Proof' that $R(C_5, K_4) = 13$

- 2 red edges to one part \Rightarrow red C_5
- blue edge to each part \Rightarrow blue K_4



Can color 9 edges but 10th forces red C_5 or K_4 NOT a proof

Would be a proof if this is *only* good coloring of K_{12} There are 6 critical colorings (later)

Questions

- When can we classify all sharpness examples for R(G, H) = r?
 - What are all good colorings of K_{r-1} (critical colorings)

0

Questions

- When can we classify all sharpness examples for R(G, H) = r?
 - What are all good colorings of K_{r-1} (critical colorings)
- How many edges to the rth vertex must be colored before a red G or blue H is forced?

• Graph Ramsey: smallest r with no good coloring

$$\ldots$$
 K_{r-1} , K_r , K_{r+1} , \ldots

• Graph Ramsey: smallest *r* with no good coloring

$$\ldots$$
 K_{r-1} , K_r , K_{r+1} , \ldots

Size Ramsey: smallest s with no good coloring for some F

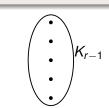
...
$$|E(F)| = s - 1$$
, $|E(F)| = s$, $|E(F)| = s + 1$, ...

- Graph Ramsey: smallest r with no good coloring
 ... K_{r-1}, K_r, K_{r+1}, ...
- Size Ramsey: smallest s with no good coloring for some F ... |E(F)| = s 1, |E(F)| = s, |E(F)| = s + 1, ...
- Upper and lower Ramsey for R(G, H) = r: Lower: smallest s with no good coloring for some FUpper: smallest s with no good coloring for every F... |E(F)| = s - 1, |E(F)| = s, |E(F)| = s + 1, ...

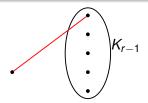
- Graph Ramsey: smallest r with no good coloring ... K_{r-1} , K_r , K_{r+1} , ...
- Size Ramsey: smallest s with no good coloring for some F ... |E(F)| = s 1, |E(F)| = s, |E(F)| = s + 1, ...
- Upper and lower Ramsey for R(G, H) = r: Lower: smallest s with no good coloring for some FUpper: smallest s with no good coloring for every F... |E(F)| = s - 1, |E(F)| = s, |E(F)| = s + 1, ...
- Star avoiding Ramsey for R(G, H) = r: smallest r 1 t with no good coloring

$$\ldots \qquad K_{r-1} \setminus S(1,t-1), \qquad K_{r-1} \setminus S(1,t) \qquad K_{r-1}, \setminus S(1,t+1),$$

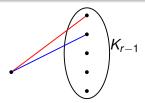
R(G, H) = r add/color edges to K_{r-1} one at a time:



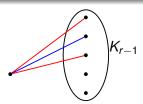
R(G, H) = r add/color edges to K_{r-1} one at a time:



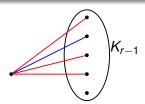
R(G, H) = r add/color edges to K_{r-1} one at a time:



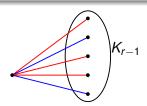
R(G, H) = r add/color edges to K_{r-1} one at a time:



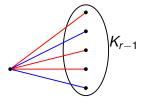
R(G, H) = r add/color edges to K_{r-1} one at a time:



R(G, H) = r add/color edges to K_{r-1} one at a time:

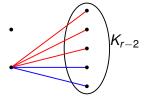


R(G, H) = r add/color edges to K_{r-1} one at a time:



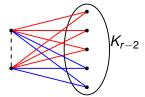
- Proofs: First classify sharpness examples Good colorings of K_{r-1}
- Examples with 'few' extra edges needed and with 'many' extra edges needed

- $R(K_m, K_n) = r$: must add *all* r 1 edges (Chvatal 1974) even though we do not know what r is
- •
- 4

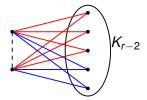


- $R(K_m, K_n) = r$: must add all r 1 edges (Chvatal 1974) even though we do not know what r is
- make a copy of a vertex

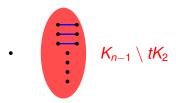
0



- $R(K_m, K_n) = r$: must add all r 1 edges (Chvatal 1974) even though we do not know what r is
- make a copy of a vertex
- similar for $R(mK_3, mK_3) = 5m$



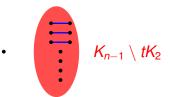
- $P(P_n, P_3) = n$
- 0



- •
- 0

- $P(P_n, P_3) = n$
- Sharpness examples: Blue graph is a matching plus isolated vertices

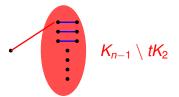
•



- 0
- 0

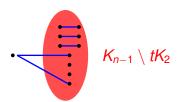
- $P(P_n, P_3) = n$
- Sharpness examples: Blue graph is a matching plus isolated vertices

•



- Red edge \Rightarrow red P_n
- •

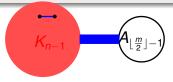
- $R(P_n, P_3) = n$
- Sharpness examples: Blue graph is a matching plus isolated vertices
- Can only add *one* edge to K_{n-1} before a red P_n or blue P_3 is forced.



- Red edge \Rightarrow red P_n
- Two Blue edges ⇒ blue P₃

Example $(R(P_n, P_m))$ (Gerencser and Gyrafas 1967))

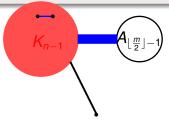
- $P(P_n, P_m) = n + \lfloor \frac{m}{2} \rfloor 1 \text{ for } n \geq m \geq 4$
- Sharpness examples for $n \ge m + 2$. Black graph is arbitrary. Red clique can have one blue edge for odd m
- 3 other families when n = m or n = m + 1



- 0
- 0

Example $(R(P_n, P_m))$ (Gerencser and Gyrafas 1967))

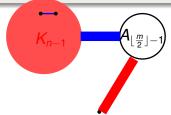
- $R(P_n, P_m) = n + \lfloor \frac{m}{2} \rfloor 1$ for $n \geq m \geq 4$
- Sharpness examples for n ≥ m + 2. Black graph is arbitrary. Red clique can have one blue edge for odd m
- 3 other families when n = m or n = m + 1



- Red or Blue edge to red K_{n-1} forces red P_n or blue P_m
- •

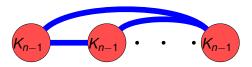
Example $(R(P_n, P_m))$ (Gerencser and Gyrafas 1967))

- $R(P_n, P_m) = n + \lfloor \frac{m}{2} \rfloor 1$ for $n \geq m \geq 4$
- Sharpness examples for n ≥ m + 2. Black graph is arbitrary. Red clique can have one blue edge for odd m
- 3 other families when n = m or n = m + 1



- •
- (only) add all red edges to $A_{\lfloor \frac{m}{2} \rfloor 1}$

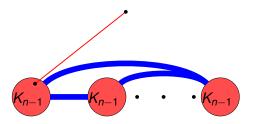
• Unique sharpness example: Red graph is $(m-1)K_{n-1}$ Blue graph is $K_{n-1,n-1,\dots,n-1}$



0

•

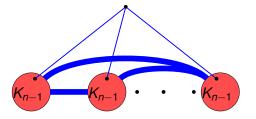
• Unique sharpness example: Red graph is $(m-1)K_{n-1}$ Blue graph is $K_{n-1,n-1,\dots,n-1}$



- Red edge \Rightarrow red T_n
- •

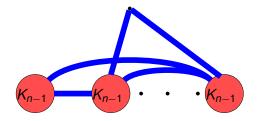
• Unique sharpness example: Red graph is $(m-1)K_{n-1}$ Blue graph is $K_{n-1,n-1,\dots,n-1}$

_



- •
- Blue edges to all parts ⇒ blue K_m

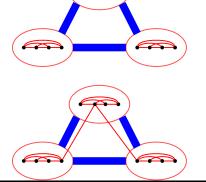
- Unique sharpness example: Red graph is $(m-1)K_{n-1}$ Blue graph is $K_{n-1,n-1,\dots,n-1}$
- (only) add all (n-1)(m-2) blue edges avoiding one part

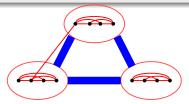


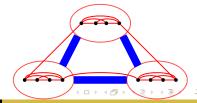
- •
- 0

Example ($R(C_5, K_4) = 13$)

- Exactly 6 good colorings of K_{12} (Jayawardene and Rousseau 2000)
- Ends must be different (or same) for 3 extra red edges
- Extends to $R(C_n, K_4) = 3n 2$ (but not n = 4)

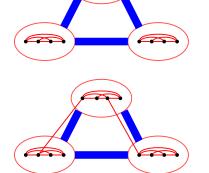


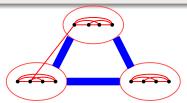


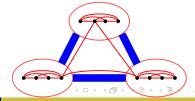


Example ($R(C_5, K_4) = 13$)

- Exactly 6 good colorings of K₁₂ (Jayawardene and Rousseau 2000)
- Ends must be the same for 3 extra red edges for $n \ge 6$
- Extends to $R(C_n, K_4) = 3n 2$







Summary of Results

Ramsey number	Minimum Number of edges to force bad coloring
$R(mK_2, mK_2) = 3m - 1 \text{ [L 1984]}$	m
$R(mK_3, mK_3) = 5m$ [BES 1975]	5 <i>m</i>
$R(T_n, K_m) = (n-1)(m-1) + 1$ [C 1977]	(n-1)(m-2)+1
$R(C_n, K_3) = 2n - 1$ [FS 1974]	n+1
$R(C_n, K_4) = 3n - 2$ [SRM 1999]	2 <i>n</i>
$R(P_n, P_3) = n [GG 1967]$	2
$R(P_n, P_4) = n + 1$ [GG 1967]	2
$R(P_n, P_5) = n + 1$ [GG 1967]	3
$R(P_n, P_m) = n + \lfloor \frac{m}{2} \rfloor - 1$ [GG 1967]	$\lceil \frac{m}{2} \rceil$
for all $n \ge m \ge 2$	