Star Avoiding Ramsey Numbers Jonelle Hook, Garth Isaak Department of Mathematics Lehigh University MCCCC Rochester October 3, 2009 Midwest Conference on Combinatorics, Computing and Cryptography # **Graph Ramsey Numbers** #### Example $$R(C_5, K_4) = 13$$ - There exists a 2-coloring of K₁₂ with no red C₅ and no blue K₄. - Every 2-coloring of K_{13} has a red C_5 or a blue K_4 . # **Graph Ramsey Numbers** ### Example $$R(C_5, K_4) = 13$$ • There exists a 2-coloring of K_{12} with no red C_5 and no blue K_4 . 4 # **Graph Ramsey Numbers** #### Example $$R(C_5, K_4) = 13$$ - There exists a 2-coloring of K_{12} with no red C_5 and no blue K_4 . - Every 2-coloring of K_{13} has a red C_5 or a blue K_4 . 'Proof' that $R(C_5, K_4) = 13$ - 2 red edges to one part \Rightarrow red C_5 - • 'Proof' that $R(C_5, K_4) = 13$ - 2 red edges to one part \Rightarrow red C_5 - blue edge to each part \Rightarrow blue K_4 'Proof' that $R(C_5, K_4) = 13$ - 2 red edges to one part \Rightarrow red C_5 - blue edge to each part ⇒ blue K₄ Can color 9 edges but 10th forces red C₅ or K₄ 'Proof' that $R(C_5, K_4) = 13$ - 2 red edges to one part \Rightarrow red C_5 - blue edge to each part \Rightarrow blue K_4 Can color 9 edges but 10th forces red C_5 or K_4 NOT a proof 'Proof' that $R(C_5, K_4) = 13$ - 2 red edges to one part \Rightarrow red C_5 - blue edge to each part ⇒ blue K₄ Can color 9 edges but 10th forces red C_5 or K_4 NOT a proof Would be a proof if this is *only* good coloring of K_{12} 'Proof' that $R(C_5, K_4) = 13$ - 2 red edges to one part \Rightarrow red C_5 - blue edge to each part \Rightarrow blue K_4 Can color 9 edges but 10th forces red C_5 or K_4 NOT a proof Would be a proof if this is *only* good coloring of K_{12} There are 6 critical colorings (later) #### Questions - When can we classify all sharpness examples for R(G, H) = r? - What are all good colorings of K_{r-1} (critical colorings) 0 #### Questions - When can we classify all sharpness examples for R(G, H) = r? - What are all good colorings of K_{r-1} (critical colorings) - How many edges to the rth vertex must be colored before a red G or blue H is forced? • Graph Ramsey: smallest r with no good coloring $$\ldots$$ K_{r-1} , K_r , K_{r+1} , \ldots • Graph Ramsey: smallest *r* with no good coloring $$\ldots$$ K_{r-1} , K_r , K_{r+1} , \ldots Size Ramsey: smallest s with no good coloring for some F ... $$|E(F)| = s - 1$$, $|E(F)| = s$, $|E(F)| = s + 1$, ... - Graph Ramsey: smallest r with no good coloring ... K_{r-1}, K_r, K_{r+1}, ... - Size Ramsey: smallest s with no good coloring for some F ... |E(F)| = s 1, |E(F)| = s, |E(F)| = s + 1, ... - Upper and lower Ramsey for R(G, H) = r: Lower: smallest s with no good coloring for some FUpper: smallest s with no good coloring for every F... |E(F)| = s - 1, |E(F)| = s, |E(F)| = s + 1, ... - Graph Ramsey: smallest r with no good coloring ... K_{r-1} , K_r , K_{r+1} , ... - Size Ramsey: smallest s with no good coloring for some F ... |E(F)| = s 1, |E(F)| = s, |E(F)| = s + 1, ... - Upper and lower Ramsey for R(G, H) = r: Lower: smallest s with no good coloring for some FUpper: smallest s with no good coloring for every F... |E(F)| = s - 1, |E(F)| = s, |E(F)| = s + 1, ... - Star avoiding Ramsey for R(G, H) = r: smallest r 1 t with no good coloring $$\ldots \qquad K_{r-1} \setminus S(1,t-1), \qquad K_{r-1} \setminus S(1,t) \qquad K_{r-1}, \setminus S(1,t+1),$$ R(G, H) = r add/color edges to K_{r-1} one at a time: R(G, H) = r add/color edges to K_{r-1} one at a time: R(G, H) = r add/color edges to K_{r-1} one at a time: R(G, H) = r add/color edges to K_{r-1} one at a time: R(G, H) = r add/color edges to K_{r-1} one at a time: R(G, H) = r add/color edges to K_{r-1} one at a time: R(G, H) = r add/color edges to K_{r-1} one at a time: - Proofs: First classify sharpness examples Good colorings of K_{r-1} - Examples with 'few' extra edges needed and with 'many' extra edges needed - $R(K_m, K_n) = r$: must add *all* r 1 edges (Chvatal 1974) even though we do not know what r is - • - 4 - $R(K_m, K_n) = r$: must add all r 1 edges (Chvatal 1974) even though we do not know what r is - make a copy of a vertex 0 - $R(K_m, K_n) = r$: must add all r 1 edges (Chvatal 1974) even though we do not know what r is - make a copy of a vertex - similar for $R(mK_3, mK_3) = 5m$ - $P(P_n, P_3) = n$ - 0 - • - 0 - $P(P_n, P_3) = n$ - Sharpness examples: Blue graph is a matching plus isolated vertices • - 0 - 0 - $P(P_n, P_3) = n$ - Sharpness examples: Blue graph is a matching plus isolated vertices • - Red edge \Rightarrow red P_n - • - $R(P_n, P_3) = n$ - Sharpness examples: Blue graph is a matching plus isolated vertices - Can only add *one* edge to K_{n-1} before a red P_n or blue P_3 is forced. - Red edge \Rightarrow red P_n - Two Blue edges ⇒ blue P₃ # Example $(R(P_n, P_m))$ (Gerencser and Gyrafas 1967)) - $P(P_n, P_m) = n + \lfloor \frac{m}{2} \rfloor 1 \text{ for } n \geq m \geq 4$ - Sharpness examples for $n \ge m + 2$. Black graph is arbitrary. Red clique can have one blue edge for odd m - 3 other families when n = m or n = m + 1 - 0 - 0 # Example $(R(P_n, P_m))$ (Gerencser and Gyrafas 1967)) - $R(P_n, P_m) = n + \lfloor \frac{m}{2} \rfloor 1$ for $n \geq m \geq 4$ - Sharpness examples for n ≥ m + 2. Black graph is arbitrary. Red clique can have one blue edge for odd m - 3 other families when n = m or n = m + 1 - Red or Blue edge to red K_{n-1} forces red P_n or blue P_m - • # Example $(R(P_n, P_m))$ (Gerencser and Gyrafas 1967)) - $R(P_n, P_m) = n + \lfloor \frac{m}{2} \rfloor 1$ for $n \geq m \geq 4$ - Sharpness examples for n ≥ m + 2. Black graph is arbitrary. Red clique can have one blue edge for odd m - 3 other families when n = m or n = m + 1 - • - (only) add all red edges to $A_{\lfloor \frac{m}{2} \rfloor 1}$ • Unique sharpness example: Red graph is $(m-1)K_{n-1}$ Blue graph is $K_{n-1,n-1,\dots,n-1}$ 0 • • Unique sharpness example: Red graph is $(m-1)K_{n-1}$ Blue graph is $K_{n-1,n-1,\dots,n-1}$ - Red edge \Rightarrow red T_n - • • Unique sharpness example: Red graph is $(m-1)K_{n-1}$ Blue graph is $K_{n-1,n-1,\dots,n-1}$ _ - • - Blue edges to all parts ⇒ blue K_m - Unique sharpness example: Red graph is $(m-1)K_{n-1}$ Blue graph is $K_{n-1,n-1,\dots,n-1}$ - (only) add all (n-1)(m-2) blue edges avoiding one part - • - 0 ### Example ($R(C_5, K_4) = 13$) - Exactly 6 good colorings of K_{12} (Jayawardene and Rousseau 2000) - Ends must be different (or same) for 3 extra red edges - Extends to $R(C_n, K_4) = 3n 2$ (but not n = 4) #### Example ($R(C_5, K_4) = 13$) - Exactly 6 good colorings of K₁₂ (Jayawardene and Rousseau 2000) - Ends must be the same for 3 extra red edges for $n \ge 6$ - Extends to $R(C_n, K_4) = 3n 2$ # Summary of Results | Ramsey number | Minimum Number of edges to force bad coloring | |---|---| | $R(mK_2, mK_2) = 3m - 1 \text{ [L 1984]}$ | m | | $R(mK_3, mK_3) = 5m$ [BES 1975] | 5 <i>m</i> | | $R(T_n, K_m) = (n-1)(m-1) + 1$ [C 1977] | (n-1)(m-2)+1 | | $R(C_n, K_3) = 2n - 1$ [FS 1974] | n+1 | | $R(C_n, K_4) = 3n - 2$ [SRM 1999] | 2 <i>n</i> | | $R(P_n, P_3) = n [GG 1967]$ | 2 | | $R(P_n, P_4) = n + 1$ [GG 1967] | 2 | | $R(P_n, P_5) = n + 1$ [GG 1967] | 3 | | $R(P_n, P_m) = n + \lfloor \frac{m}{2} \rfloor - 1$ [GG 1967] | $\lceil \frac{m}{2} \rceil$ | | for all $n \ge m \ge 2$ | |