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Abstract

The graph Ramsey number R(G, H) is the smallest integer r such that every
2-coloring of the edges of Kr contains either a red copy of G or a blue copy of
H . We find the largest star that can be removed from Kr such that the under-
lying graph is still forced to have a red G or a blue H . Thus, we introduce the
star-critical Ramsey number r∗(G, H) as the smallest integer k such that every
2-coloring of the edges of Kr−K1,r−1−k contains either a red copy of G or a blue
copy of H . We find the star-critical Ramsey number for trees versus complete
graphs, multiple copies of K2 and K3, and paths versus a 4-cycle. In addition
to finding the star-critical Ramsey numbers, the critical graphs are classified for
R(Tn, Km), R(nK2, mK2) and R(Pn, C4).
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1. Introduction

A 2-coloring of the edges of G is a labeling c : E(G) → [2], where [2] is the
set of possible labels or colors, say red or blue. For the purposes of this paper,
when a graph is referred to as having a specific subgraph it is assumed that
the graph has a 2-coloring. The graph Ramsey number R(G, H) is the smallest
integer n such that every 2-coloring of the edges of Kn contains either a red
copy of G or a blue copy of H . This definition also implies that there exists a
critical graph, that is, a 2-coloring of the edges of Kn−1 that does not contain
a red copy of G or a blue copy of H . Therefore, every 2-coloring of the edges
of Kn contains either a red G or a blue H and there exists a coloring of Kn−1

with neither a red G nor a blue H . These facts propose a question.

For known Ramsey numbers, R(G, H) = n, and a 2-coloring of the graph
Kn−1 + {v}, if we add colored edges individually from v to vertices of Kn−1,
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then at what point must the graph have a red G or a blue H? Alternatively,
what is the largest star that can be removed from Kn so that the underlying
graph is still forced to have either a red G or a blue H?

The vertex set and edge set of a graph G will be denoted as V (G) and E(G),
respectively. The graph G+H or G+{v} is the disjoint union of G and a graph
H or G and a vertex v. The graph G − H is the subgraph of G resulting from
the deletion of the edges of H where H is a subgraph of G. The deletion of
a vertex is G − {v}. The graph G ∪ H is obtained by adding the edges of H

to G where V (H) ⊆ V (G). When discussing the graph G ∪ H in subsequent
definitions and theorems, the vertices of H will be clearly stated as a subset of
vertices of G. The graph G ∨ H is join of G and H obtained by adding the
edges {xy : x ∈ V (G) and y ∈ V (H)} to G ∪ H . For any graph G, the disjoint
union of m copies of G will be denoted as mG.

Definition 1.1. The graph Kn−1 t K1,k is the union of Kn−1 and K1,k such
that v is the vertex of K1,k with degree k and the k vertices adjacent to v are
vertices of Kn−1.

Definition 1.2. The star-critical Ramsey number r∗(G, H) is the smallest in-
teger k such that every 2-coloring of the edges of Kn−1 tK1,k contains either a
red copy of G or a blue copy of H .

In the language of arrowing, the above definition can be restated as the
following: The star-critical Ramsey number r∗(G, H) is the smallest integer k

such that Kn−1 t K1,k −→ (G, H). Also, note that the graph Kn−1 t K1,k is
the graph Kn − K1,n−1−k. We will not be using the arrow notation as it is
cumbersome to write for our purposes. However, it is beneficial to use the “t”
notation to emphasize the size of the star as the number of edges added to Kn−1.

In most cases throughout this paper, we will first classify the critical graphs
of R(G, H) = n and then use the classification to find the star-critical Ramsey
number. We will refer to the critical graphs as having a (G, H)-free coloring,
that is a 2-coloring of Kn−1 that avoids a red G and a blue H . The description
of the (G, H)-free colorings will be as follows. Let G = (V, E) be a graph whose
edges are colored red or blue such that Eρ denotes the red edge set and Eβ

denotes the blue edge set. Then the graph G = (V, Eρ ∪ Eβ) has red subgraph
Gρ = (V, Eρ) and blue subgraph Gβ = (V, Eβ).

When finding Ramsey numbers for 2-colored graphs, it is customary to deal
with a complement of a graph and discuss edges and non-edges instead of red
and blue edges. For example, in proving R(Tm, Kn) = (m − 1)(n − 1) + 1 [3],
we can consider subgraphs of K(m−1)(n−1)+1 that either contain Tm, a tree on
m vertices, or an independent set of size n. We cannot adapt this terminology
since the resulting graph forced to have a red G or a blue H contains a star that
is not necessarily adjacent to every vertex.
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Aside from the star-critical Ramsey number, there are other Ramsey num-
bers concerning edges and subgraphs. The size Ramsey number r̂(G, H), defined
by Erdös, Faudree, Rousseau and Schelp in [7], is the smallest integer m such
that there exists a graph with m edges and every 2-coloring of this graph must
contain a red G or a blue H . Later in [6], Erdös and Faudree also defined size
Ramsey functions: Let r = R(G, H). The lower size Ramsey number l(G, H)
is the smallest integer l such that there exists a graph L with l edges that is a
subgraph of Kr and every 2-coloring of L must contain a red G or a blue H .
The upper size Ramsey number u(G, H) is the smallest integer such that if a
subgraph of Kr has at least u(G, H) edges, then it must contain a red G or
a blue H . Thus, every 2-coloring of every subgraph of Kr with m edges must
contain a red G or a blue H for m ≥ u(G, H) and there exists a 2-coloring of
every subgraph of Kr with m edges that does not contain a red G or a blue
H for m < l(G, H). In comparison to the star-critical Ramsey number, every
2-coloring of Kr−1 t K1,r∗(G,H) must contain a red G or a blue H and there is
a 2-coloring of Kr−1 t K1,r∗(G,H)−1 without a red G or a blue H . Therefore,

l(G, H) ≤
(

r−1
2

)

+ r∗(G, H) ≤ u(G, H).

In the following sections, we will prove

r∗(Tn, Km) = (n − 1)(m − 2) + 1, for any tree on n vertices (1)

r∗(nK2, mK2) = m, for n ≥ m ≥ 1 (2)

r∗(nK3, mK3) = 3n + 2m− 1, for n ≥ m ≥ 1 and n ≥ 2 (3)

r∗(Pn, C4) = 3, for n ≥ 3. (4)

and we will characterize all critical graphs for the Ramsey numbers correspond-
ing to the above star-critical Ramsey numbers except for R(nK3, mK3). For
the critical graphs of R(Tn, Km) and R(nK2, mK2), we show that the graph
that established the lower bound for the Ramsey number is in fact unique. We
present a class of critical graphs for R(Pn, C4) that consists of all (Pn, C4)-free
colorings of KR(Pn,C4)−1.

Before proceeding into the proofs, it is worth noting two facts. First, the
star-critical Ramsey number varies greatly. For example, r∗(mK3, mK3) =
R(mK3, mK3) − 1 which requires all edges between v and V (KR(mK3,mK3)−1)
to be added in the graph KR(mK3,mK3)−1 + {v} to force m monochromatic tri-
angles. In contrast, r∗(Pn, C4) = 3 requiring just three edges between v and
V (KR(Pn,C4)−1) in the graph KR(Pn,C4)−1 + {v} to force either a red Pn or a
blue C4. Secondly, the only case where the Ramsey number is unknown and the
star-critical Ramsey number is known is the Ramsey number of two complete
graphs, R(Kn, Km). If R(Kn, Km) = s, then r∗(Kn, Km) = s − 1 requiring all
edges between v and V (Ks−1) to be present in the graph Ks−1 + {v}. Let w

be any vertex of a (Kn, Km)-free coloring of Ks−1. If we add a vertex v with
the same red and blue adjacencies as w, then the new graph is a (Kn, Km)-free
coloring of Ks − {vw}. This idea was first observed by Chvátal as noted in [7].
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For the figures in this paper, red edges are solid and blue edges are dashed.
A red clique of size n is denoted Kρ

n and a blue clique of size n is denoted Kβ
n .

If all the edges between two cliques are red (or blue), a thick solid (or dashed)
line is drawn between the cliques.

2. Trees versus Complete Graphs

Theorem 2.1. For any tree on n vertices, R(Tn, Km) = (n−1)(m−1)+1. [3]

In order to determine the star-critical Ramsey number r∗(Tn, Km), first we
will show the critical graph that established the lower bound of the Ramsey
number is the unique (Tn, Km)-free coloring of KR(Tn,Km)−1 using the following
well-known proposition for trees.

Proposition 2.2. If T is a tree with k edges and G is a simple graph with
δ(G) ≥ k, then T is a subgraph of G. [10]

Definition 2.3. For given n and m with n, m ≥ 2, let r = R(Tn, Km) =
(n− 1)(m− 1) + 1. Define the graph G1 to be the complete graph Kr−1 with a
2-coloring of the edges such that

G
ρ
1 = (m − 1)Kn−1, and

G
β
1 is the complete (m − 1)-partite graph with partite sets of size n − 1.

K
ρ
n−1 K

ρ
n−1 K

ρ
n−1{

m − 1

Figure 1: G1, Critical graph for R(Tn, Km).

The graph G1 in Definition 2.3 is a (Tn, Km)-free coloring of Kr−1. There
does not exist a blue Km since the blue subgraph is an (m − 1)-partite graph.
In the red subgraph, each component has size n − 1 and so there is no red tree
on n vertices.

Proposition 2.4. For given n and m with n, m ≥ 2, let r = R(Tn, Km) =
(n − 1)(m − 1) + 1. If c is a (Tn, Km)-free coloring of Kr−1, then the resulting
graph must be the graph G1 described in Definition 2.3.

Proof. We will proceed by using induction on m with base case m = 2. Since
R(Tn, K2) = n, the critical graph has n− 1 vertices. If there are no blue edges,
then the graph must be a red (n− 1)-clique which does not contain a tree on n

vertices. Therefore, the unique (Tn, K2)-free coloring of Kn−1 is the graph G1
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in Definition 2.3 with m = 2.

Let c be a (Tn, Km)-free coloring of Kr−1. If the blue degree of each vertex
is at most (n − 1)(m − 2) − 1, then the red degree of each vertex is at least
[(n− 1)(m− 1)− 1]− [(n− 1)(m− 2)− 1] = n− 1. By Proposition 2.2, there is
a red tree with n − 1 edges. Hence, there is a red tree on n vertices.

Thus, there is a vertex v with blue degree (n − 1)(m − 2). Let H be the
subgraph induced by the blue neighbors of v. Then, by induction, H has either
a red Tn, a blue Km−1, or the structure of the graph in Definition 2.3. Clearly,
H does not have a red Tn. If H has a blue Km−1, then this blue Km−1 and v

form a blue Km. Hence, H must be the graph such that Hρ = (m−2)Kn−1 and
Hβ is an (m−2)-partite graph with partite sets of size n−1. Since every vertex
h in H belongs to a red Kn−1 containing a red Tn−1, a red edge vh creates a
red Tn with v as a leaf. This implies that v has a blue edge to every vertex of
H . Similarly, every vertex of Kr−1−H has a blue edge to every vertex of H . If
there is a blue edge vw for v, w ∈ V (Kr−1−H), then the graph has a blue Km,
namely v, w and a vertex from each of the m − 2 partite sets, since both v and
w have blue edges to all the vertices of Kr−1 − H . Therefore, among the n − 1
vertices of Kr−1 − H , there cannot be any more blue edges and the vertices
outside of H are a red Kn−1. Thus, the graph is G1 in Definition 2.3.

To find the star-critical Ramsey number r∗(Tn, Km), consider the (Tn, Km)-
free coloring of Kr−1 described above in Definition 2.3 and a vertex v. If v is
adjacent to (n − 1)(m − 2) + 1 vertices of Kr−1, then there does not exist a
(Tn, Km)-free coloring of Kr−1 t K1,(n−1)(m−2)+1.

Theorem 2.5. For any tree on n vertices, r∗(Tn, Km) = (n − 1)(m − 2) + 1.

Proof. Let r = (n − 1)(m − 1) + 1 = R(Tn, Km). For the lower bound, a
(Tn, Km)-free coloring of Kr−1 t K1,(n−1)(m−2) is the unique coloring of Kr−1

as in Proposition 2.4 and a vertex v with all blue edges adjacent to every vertex
in (m − 2) copies of Kn−1. Hence, r∗(Tn, Km) ≥ (n − 1)(m − 2) + 1.

For the upper bound, consider the graph Kr−1 and a vertex v. By Proposi-
tion 2.4, a (Tn, Km)-free coloring of Kr−1 must have the structure of the critical
graph. A red edge adjacent to v and a vertex of Kr−1 produces a red Tn since
any vertex in Kr−1 belongs to a red clique of size n−1. Thus, all edges adjacent
to v must be blue and (n − 1)(m − 2) + 1 edges adjacent to v forces v to have
a blue edge to each copy of Kn−1. If v has a blue edge to each of the (m − 1)
copies of Kn−1, then v along with an edge to each Kn−1 yields a blue Km.

3. Multiple copies of graphs

3.1. Multiple copies of K2

Theorem 3.1. For n ≥ m ≥ 1, R(nK2, mK2) = 2n + m − 1. [4, 5, 9]
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In determining the star-critical Ramsey number r∗(nK2, mK2), we will show
that if n > m, then the critical graph of the Ramsey number is unique, and if
n = m, then there are two (mK2, mK2)-free colorings of KR(mK2,mK2)−1.

We include the following easy lemma that will be referenced in both the
proof of the critical graphs and the proof of the star-critical Ramsey number.

Lemma 3.2. The graphs K2m−1 t K1,1 and K2m−1 + K2 both contain mK2.

Proof. The graph K2m−1 has
⌊

2m−1
2

⌋

= m − 1 disjoint edges. If a vertex v is
adjacent to any vertex of K2m−1, then there are m disjoint edges in the graph.
Also, if there is an edge disjoint from K2m−1, there are m disjoint edges in the
graph.

Definition 3.3. For given n and m with n ≥ m ≥ 1, let r = R(nK2, mK2) =
2n+m− 1 and c be a 2-coloring of Kr−1. The graphs G1 and G2 defined below
are colorings of Kr−1.

If n ≥ m, G1 : G
ρ
1 = K2n−1 + (m − 1)K1

G
β
1 = Km−1 ∨ (2n − 1)K1

If n = m, G2 : G
ρ
2 = Km−1 ∨ (2m − 1)K1

G
β
2 = K2m−1 + (m − 1)K1

K
ρ
2n−1 K

β
m−1

G1

K
β
2m−1

K
ρ
m−1

G2

Figure 2: Critical graphs of R(nK2, mK2).

The graphs in Definition 3.3 are (nK2, mK2)-free colorings of Kr−1. The
graph G1 does not contain n disjoint red edges since G

ρ
1 has at most b 2n−1

2 c
disjoint red edges. Also, G1 contains at most m − 1 disjoint blue edges with
one endpoint of each edge in the red clique. Similarly, the graph G2 does not
contain m disjoint monochromatic edges. Note that when n = m switching the
red and blue edges gives two (mK2, mK2)-free colorings of Kr−1. This is not
the case when n > m. If we switch the colors of the graph G1, then the blue
subgraph is K2n−1 which has m disjoint blue edges.

Proposition 3.4. For given n and m with n ≥ m ≥ 1, let r = R(nK2, mK2) =
2n + m − 1. If c is an (nK2, mK2)-free coloring of Kr−1, then if n > m, the
resulting graph must be the graph G1 described in Definition 3.3, and if n = m,
the resulting graph must be either the graph G1 or the graph G2 described in
Definition 3.3.
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Proof. For given n and m, let r = R(nK2, mK2) = 2n + m − 1 and c be an
(nK2, mK2)-free coloring of Kr−1. We will proceed by induction on n+m. For
the base case with m = 1 and any n ≥ 1, R(nK2, K2) = 2n and the critical
graph on 2n− 1 vertices cannot have any blue edges. Hence, the graph is a red
K2n−1 except in the case of n = m = 1 the graph is single vertex which can be
thought of as either a red 1-clique or a blue 1-clique.

The graph Kr−1 has a vertex v with both a red edge and a blue edge adjacent
to vertices a and b, respectively. Note that if such a vertex v did not exist then
the either every vertex has all red edges or all blue edges and the graph would
either be entirely a red or blue clique which is not an (nK2, mK2)-free coloring
for m ≥ 2. Now, let H be the induced subgraph of Kr−1 − {v, a, b}. Since
R((n − 1)K2, (m − 1)K2) = 2n + m − 4 and H consists of 2n + m − 5 vertices,
the graph H must be one of the two following graphs by induction.

H1 : H
ρ
1 = K2n−3 + (m − 2)K1, H

β
1 = Km−2 ∨ (2n − 3)K1, if n ≥ m.

H2 : H
ρ
2 = Km−2 ∨ (2m − 3)K1, H

β
2 = K2m−3 + (m − 2)K1, if n = m.

If n > m, then H is the graph H1. Let A be the red K2n−3 and B be the
blue Km−2. The graph H1 has n−2 disjoint red edges contained in A and m−2
disjoint blue edges where each edge has an endpoint in A and B. Note that the
entire graph has n− 1 disjoint red edges and m− 1 disjoint blue edges since the
edges va and vb are disjoint from H1. This implies that a cannot have any blue
edges to A and b cannot have any red edges to B. Therefore, A ∪ {a} is a red
K2n−2 and B ∪ {b} is a blue Km−1. Since there are n − 1 disjoint red edges in
K2n−2, v must have all blue edges to B. If ab and vai are both blue for any
ai in V (A), then these blue edges along with the m − 2 disjoint blue edges in
H create a blue mK2. Similarly, if ab and vai are both red for any ai in V (A),
then these red edges along with the n − 2 disjoint red edges in H create a red
nK2. Thus, ab and vai must have distinct colors. If ab is red and vai is blue,
then b must have all red edges to A and the graph contains a red nK2. Hence,
ab is blue, v has all red edges to A and A∪{v, a} is a red K2n−1. By Lemma 3.2,
there cannot be any more red edges and the resulting graph is G1 in Definition
3.3.

If n = m, there is symmetry and H could be either H1 or H2. If the graph
is H1, then the same proof as above holds and the resulting graph is G1 in
Definition 3.3. Note that H2 is the graph H1 with the colors reversed. If the
graph is H2, then the same proof as above follows with red and blue interchanged
and the resulting graph is G2 in Definition 3.3.

Theorem 3.5. For n ≥ m ≥ 1, r∗(nK2, mK2) = m.

Proof. An (nK2, mK2)-free coloring of K2n+m−2 t K1,m−1 is the graph G1 as
in Definition 3.3 and a vertex v with all blue edges to the blue Km−1 in the
coloring of K2n+m−2. Hence, r∗(nK2, mK2) ≥ m.
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Let n > m and consider the graph K2n+m−2 and a vertex v. By Proposition
3.4, an (nK2, mK2)-free coloring of K2n+m−2 must have the structure of the
graph G1 in Definition 3.3, i.e. a red subgraph of K2n−1. If the red subgraph
is K2n−1, then v cannot have any adjacent red edges by Lemma 3.2. Thus, all
edges adjacent to v must be blue and m edges adjacent to v forces v to have a
blue edge to the red K2n−1. If v has a blue edge to the red K2n−1, then there
are m disjoint blue edges.

Let n = m and consider the graph K3m−2 and a vertex v. By Proposition 3.4,
an (mK2, mK2)-free coloring of K3m−2 must have the structure of the critical
graphs G1 or G2, i.e. a blue subgraph of Km−1 ∨ (2m − 1)K1 or K2m−1. If
the blue subgraph is Km−1 ∨ (2m− 1)K1, then the red subgraph is K2m−1 and
the same proof as above holds. If the blue subgraph is K2m−1, v cannot have
any adjacent blue edges by Lemma 3.2. Thus, all edges adjacent to v must be
red and m edges adjacent to v forces v to have a red edge to the blue K2m−1

yielding m disjoint red edges.

3.2. Multiple copies of K3

Theorem 3.6. For n ≥ m ≥ 1 and n ≥ 2, R(nK3, mK3) = 3n + 2m. [2]

The graph G1 defined below is similar to the critical graph for R(mK3, mK3)
constructed by Burr, Erdös, and Spencer in [2].

Definition 3.7. For given n and m with n ≥ m ≥ 1 and n ≥ 2, let r =
R(nK3, mK3) = 3n + 2m. Define the graph G1 to be the complete graph Kr−1

with a 2-coloring of the edges such that

G
ρ
1 = K3n−1 + K1,2m−1, and

G
β
1 = (3n − 1)K1 ∨ (K2m−1 ∪ K1).

x

K
β
2m−1 K

ρ
3n−1

Figure 3: G1, Critical graph for R(nK3, mK3).

The graph G1 in Definition 3.7 does not have n disjoint red triangles since
every red triangle would be contained in the red clique K3n−1 and there are
not enough vertices. Similarly, the coloring does not contain m disjoint blue
triangles since every blue triangle would need to use at least 2 vertices of the
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blue clique K2m−1 and there are not enough vertices.

For the star-critical Ramsey number r∗(nK3, mK3), we will construct a crit-
ical graph on K3n+2m minus an edge using the above construction and Chvátal’s
observation, mentioned in the introduction, for the Ramsey number for a pair
of complete graphs. This will imply that the star must be adjacent to every ver-
tex of K3n+2m−1. Hence, there does not exist an intermediate graph between
K3n+2m−1 and K3n+2m with a 2-coloring that has n disjoint red triangles or m

disjoint blue triangles.

Theorem 3.8. For n ≥ m ≥ 1 and n ≥ 2, r∗(nK3, mK3) = 3n + 2m − 1.

Proof. Consider the graph G1 in Definition 3.7. It consists of two cliques, K2m−1

and K3n−1, and a vertex in G
ρ
1 of degree 2m − 1, say x. Add a vertex x′ with

the same red and blue adjacencies as the vertex x. No new red or blue triangles
have been formed and the only non-edge is xx′.

Note that the classification of critical graphs of R(nK3, mK3) is not needed
in the proof of r∗(nK3, mK3). In fact, the critical graph in Definition 3.7 is
not unique. Let G be the disjoint union of a blue clique K2m−1, a red clique
K3m−1, and a vertex x with red edges to the blue clique and blue edges to
the red clique. If the edges between the cliques are all blue, then this graph is
the critical graph in Definition 3.7. Another critical graph can be created by
allowing both red and blue edges between the cliques. However, the red edges
between the cliques must be restricted in the following matter. The vertices of
the blue K2m−1 can have red degree at most two; each vertex has a red edge to
x and possibly another red edge to a vertex in the red K3n−1. If v is a vertex of
the blue K2m−1 of red degree three, then v has two red edges to distinct vertices
of a red clique forming a red triangle. We conjecture that this class of graphs
consists of all (nK3, mK3)-free colorings of K3n+2m−1.

4. Paths versus cycles

A path Pn and cycle Cn on n vertices will be denoted as p1p2. . .pn and
(c1c2. . .cn), respectively.

Theorem 4.1. For all n ≥ 3, R(Pn, C4) = n + 1. [1]

In order to determine the star-critical Ramsey number r∗(Pn, C4), we will
classify the critical graphs of the Ramsey number.

Definition 4.2. For a given n ≥ 3, let r = R(Pn, C4) = n + 1. Define the class
of graphs G to consist of the graphs Gi for i = 0, . . . ,

⌊

n−1
2

⌋

such that

G
ρ
i = (Kn−1 − iK2) + K1

G
β
i = K1,n−1 ∪ iK2.
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v

G0

v

G1
v

G2

Figure 4: Critical graphs of R(Pn, C4) with i = 0, 1, 2.

The graphs Gi do not contain a red path on n vertices since the red subgraph
is at most Kn−1. Clearly, the blue subgraph of G0 does not contain a blue C4

since it is a star. For i = 1, . . . ,
⌊

n−1
2

⌋

, the blue subgraph of Gi has circumference
3 since it is a star with the central vertex joined to i disjoint K2 and hence is
C4-free.

Proposition 4.3. For a given n ≥ 3, let r = R(Pn, C4) = n + 1. If c is a
(Pn, C4)-free coloring of Kr−1, then the resulting graph must belong to the class
of graphs G in Definition 4.2.

Proof. Let c be a (Pn, C4)-free coloring of Kr−1. Note that for n = 3, the only
(P3, C4)-free colorings of K3 are G0 and G1. We will now proceed for n ≥ 4.
By Theorem 4.1, R(Pn−1, C4) = n. Since r − 1 = n, the graph must have a red
Pn−1, namely p1p2. . .pn−1. Let v be the vertex not on the red Pn−1. Clearly,
v must have blue edges to the endpoints of the red path. Suppose v has a red
edge to pk for some k ∈ {2, 3, . . . , n − 2}. Note that v cannot have red edges
to adjacent vertices on the path and so vpk−1 and vpk+1 must be blue. Also,
p1pn−1 must be blue or else vpk. . .p1pn−1. . .pk+1 is a red Pn. (See Figure 5.)
If pk−1pn−1 is blue, then (vp1pn−1pk−1) is a blue C4. If pk−1pn−1 is red, then
p1. . .pk−1pn−1. . .pkv is a red Pn. Note that the previous two statements hold
for k = 2 by symmetry with k = n − 2. Therefore, v must have all blue edges
to the red Pn−1.

Suppose that pk for some k has blue degree three, that is, pk has a blue edge
to v and two other vertices on the red Pn−1, say pj and pl. But, both vpj and
vpl are blue and so (vpjpkpl) is a blue C4. Therefore, each pk has blue degree
at most two and can have at most one blue edge to another vertex on the the
path. The vertices pk are either a red clique or a red clique minus a matching.
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v

p1
pk−1

pk

pk+1 pn−1

Figure 5: A red edge from v to the path forces either a red Pn or a blue C4.

Hence, the red subgraph is Kn−1 − iK2 for some i = 0, 1, . . . ,
⌊

n−1
2

⌋

.

Theorem 4.4. For all n ≥ 3, r∗(Pn, C4) = 3.

Proof. A (Pn, C4)-free coloring of Kn tK1,2 is the graph Gi as in Definition 4.2
and a vertex x with a red edge to v and a blue edge to any vertex in G − v.
Hence, r∗(Pn, C4) ≥ 3.

Consider the graph Kn and a vertex x. By Proposition 4.3, a (Pn, C4)-free
coloring of Kn must have the structure of a graph Gi in Definition 4.2. A red
edge from x to a vertex in G − v yields a red Pn. Two blue edges from x to
vertices in G − v yield a blue C4. Therefore, three edges from x force either a
red Pn or a blue C4.

The star-critical Ramsey numbers in this paper are a portion of the first
author’s dissertation under the advisement of the second author [8]. Further
results have been obtained including cycles Cn versus complete graphs of size
three and four, wheels versus K3 and paths Pn versus Pm. Within these results,
we classify the critical graphs of R(Cn, K4) and R(Pn, Pm).
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