Degrees and Trees

Garth Isaak Lehigh University

47th SEICCGTC at FAU, March 2016

Acknowledgements to: Kathleen Ryan,

REU Students (Hannah Alpert, Amy Becker, Jenny Iglesius, James Hilbert) $T.S. \ Michael$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recall degree sequence conditions for trees Basic exercise in a first graph theory course

- Degrees are positive integers and degree sum is even (always assume this)
- Trees (on *n* vertices) have n-1 edges \Rightarrow Degree sum is 2n-2

Positive integers $d_1, d_2, ..., d_n$ are degrees of a tree $\Leftrightarrow \sum d_i = 2n - 2$

(5, 4, 3, 1, 1, 1, 1, 1, 1, 1, 1)

(One) proof (Leaf Removal) of

Positive integers $d_1, d_2, ..., d_n$ are degrees of a tree $\Leftarrow \sum d_i = 2n - 2$

- $d_1 \ge \cdots \ge d_{n-1} \ge d_n$ with $\sum d_i = 2n 2$ $\Rightarrow d_n = 1$ and $d_1 \ge 2$
- By induction, tree with $d_1 1, d_2, \ldots, d_{n-1}$
- Add edge v₁v_n

• Added edge has degree $1 \Rightarrow$ no cycle created

Recall degree sequence conditions for (loopless) multigraphs Another basic exercise in a first graph theory course

- Degrees are positive integers and degree sum is even
- No loops
 - \Rightarrow edges from max degree vertex go to other vertices
 - \Rightarrow max degree \leq sum of other degrees

Positive integers $d_1 \ge d_2 \ge \cdots \ge d_n$ with even degree sum, are degrees of a loopless multigraph $\Leftrightarrow d_1 \le \sum_{i=2}^n d_i$

(one) proof of

Positive integers $d_1 \ge d_2 \ge \cdots \ge d_n$ with even degree sum, are degrees of a loopless multigraph $\Leftrightarrow d_1 \le \sum_{i=2}^n d_i$

- $d_1 \leq d_2 + \cdots + d_n \Rightarrow d_1 d_n \leq d_2 + \cdots + d_{n-1}$
- $d_2 \leq d_1$ and $d_n \leq d_{n-1} \Rightarrow d_2 \leq (d_1 d_n) + d_3 + \cdots + d_{n-1}$
- By induction multigraph with $d_1 d_n, d_2, \ldots, d_{n-1}$
- Add edges v₁v_n

(7,5,2,2,2) \Rightarrow (5,5,5,2,) \Rightarrow (3,5,2, ,) \Rightarrow (3,3, , ,

• Underlying added edge has degree $1 \Rightarrow$ no cycle created

Non-Theorem: Positive integers $d_1 \ge d_2 \ge \cdots \ge d_n$ with even degree sum, are degrees of a loopless multitree $\Leftrightarrow d_1 \le \sum_{i=2}^n d_i$ i.e. Multigraph \Rightarrow Multitree with same degrees

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Non-Theorem: Positive integers $d_1 \ge d_2 \ge \cdots \ge d_n$ with even degree sum, are degrees of a loopless multitree $\Leftrightarrow d_1 \le \sum_{i=2}^n d_i$ i.e. Multigraph \Rightarrow Multitree with same degrees

Non-Theorem: Positive integers $d_1 \ge d_2 \ge \cdots \ge d_n$ with even degree sum, are degrees of a loopless multitree $\Leftrightarrow d_1 \le \sum_{i=2}^n d_i$ i.e. Multigraph \Rightarrow Multitree with same degrees

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Non-Theorem: Positive integers $d_1 \ge d_2 \ge \cdots \ge d_n$ with even degree sum, are degrees of a loopless multitree $\Leftrightarrow d_1 \le \sum_{i=2}^n d_i$ i.e. Multigraph \Rightarrow Multitree with same degrees

- (2,2,2,2) and (5,4,3) fail
- ٠

Non-Theorem: Positive integers $d_1 \ge d_2 \ge \cdots \ge d_n$ with even degree sum, are degrees of a loopless multitree $\Leftrightarrow d_1 \le \sum_{i=2}^n d_i$ i.e. Multigraph \Rightarrow Multitree with same degrees

- (2,2,2,2) and (5,4,3) fail
- Forests are bipartite so d₁ ≤ d₂ + · · · d_n ⇒ can partition d_i into two parts with equal sum
- Test if given integer list partitions into 2 equal sum parts? NP-hard problem so something is really wrong

What went wrong with multgraph proof?

Positive integers $d_1 \ge d_2 \ge \cdots \ge d_n$ with even degree sum, are degrees of a loopless multigraph $\Leftrightarrow d_1 \le \sum_{i=2}^n d_i$

- $d_1 \leq d_2 + \cdots + d_n \Rightarrow d_1 d_n \leq d_2 + \cdots + d_{n-1}$
- $d_2 \leq d_1$ and $d_n \leq d_{n-1} \Rightarrow d_2 \leq (d_1 d_n) + d_3 + \cdots + d_{n-1}$

- By induction multigraph with $d_1 d_n, d_2, \ldots, d_{n-1}$
- Add edges v₁v_n

What went wrong with multgraph proof?

Positive integers $d_1 \ge d_2 \ge \cdots \ge d_n$ with even degree sum, are degrees of a loopless multigraph $\Leftrightarrow d_1 \le \sum_{i=2}^n d_i$

- $d_1 \leq d_2 + \cdots + d_n \Rightarrow d_1 d_n \leq d_2 + \cdots + d_{n-1}$
- $d_2 \leq d_1$ and $d_n \leq d_{n-1} \Rightarrow d_2 \leq (d_1 d_n) + d_3 + \cdots + d_{n-1}$

IF *n* ≥ 4

- By induction multigraph with $d_1 d_n, d_2, \ldots, d_{n-1}$
- Add edges v₁v_n

 $(6,5,3,2) \qquad \Rightarrow \quad (4,5,3, \)$

With correct basis for n = 3 we get

Degrees of a multigraph $d_1 \leq d_2 + \cdots + d_n$ have a realization with underlying graph a forest or a graph with exactly one cycle (which is a triangle)

Note that partitioning integer lists into equal sum parts is NP-hard. So might not detect forest realization if there is one.

Good example why need basis for induction

With correct basis for n = 3 we get

Degrees of a multigraph $d_1 \le d_2 + \cdots + d_n$ have a realization with underlying graph a forest or a graph with exactly one cycle (which is a triangle)

Note that partitioning integer lists into equal sum parts is NP-hard. So might not detect forest realization if there is one.

Good example why need basis for induction

- What are conditions for a multiforest?
- What if we want connected? i.e., multitree?

Loopless multitree

Degree conditions for multitrees?

Positive integers $d_1, d_2, ..., d_n$ are degrees of a multiforest \Leftrightarrow degrees partition into two parts with equal sum I.e., Bipartite multigraph degree sequences have multiforest realizations

- easy exercise(s), induction; switching, ...
- Get $d_1 \leq \sum_{i=1}^n d_i$ and even degree sum for free
- Need a little more for (connected) multitrees

In a multiforest: If all d_i are even then edge multiplicities are all even

- 'Proof': simple parity argument
- In general edge multiplicities are multiples of $gcd(d_1, \ldots, d_n)$

• For multiforest realizations may as well divide by $gcd(d_1, \ldots, d_n)$

Positive integers $d_1, d_2, ..., d_n$ that partition into two parts with equal sum realize a multitree if $\frac{\sum d_i}{gcd} \ge 2n - 2$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof: Get multiforest and use switching to get multitree

Positive integers $d_1, d_2, ..., d_n$ that partition into two parts with equal sum realize a multitree if $\frac{\sum d_i}{gcd} \ge 2n - 2$

Proof: Get multiforest and use switching to get multitree

Degrees of a multigraph $d_1 \leq d_2 + \cdots + d_n$ have a realization with underlying graph a forest or a graph with exactly one cycle (which is a triangle)

Alternate Proofs:

- Induction
- Switching (Will and Hulett 2004)
- Split one degree to get degree partition
 ⇒ forest ⇒ merge to get one cycle

Positive integers $d_1, d_2, ..., d_n$ that partition into two parts with equal sum realize a multitree if $\frac{\sum d_i}{gcd} \ge 2n - 2$

Alternate Proofs:

- Switching
- Induction with careful choice of values to reduce

Multigraph degrees result \Rightarrow Realization with at most *n* underlying edges

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Multigraph degrees result \Rightarrow Realization with at most *n* underlying edges

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question

What is range of number of underlying edges for multigraph sequences?

Multigraph degrees result \Rightarrow Realization with at most *n* underlying edges

Question

What is range of number of underlying edges for multigraph sequences?

- Realization to minimize number of underlying edges is NP-hard (Hulett, Will, Woeginger 2008)
- Realization to maximize number of underlying edges: Minimize number of 2's to add to degree sequence to get (simple) graph (Owens and Trent 1967)

Question

What are Degree Sequences of 2-multitrees ? Each edge multiplicity 1 or 2

2-multitree

2-multiforest conditions, $d_1 \ge \ldots, \ge d_n$ with even degree sum

If all d_i even ⇒ edge multiplicities all 2 ⇒ d₁/2, d₂/2, ..., d_n/2 are degrees of a forest
 i.e., sum is a multiple of 4 and at most 2(2n - 2) = 4n - 4

- At most 2 edges to each vertex $\Rightarrow d_1 \leq 2(n-1)$
- At least 2 'leaves' \Rightarrow at least two d_i are 1 or 2
- At most 2(n-1) edges \Rightarrow degree sum at most 4n-4

These 3 will be implied by further conditions

More 2-multiforest conditions

- Each odd degree vertex adjacent to edge with multiplicity 1
 ⇒ degree sum ≤ 4n 4 #odd degrees
- Remove degree 1 vertices
 - \Rightarrow what is left can't have too large a degree sum
 - \Rightarrow degree sum $\leq 4n 4 2 \cdot (\#$ degree 1 vertices)

Conditions are also sufficient

Positive integers d_1, d_2, \ldots, d_n with even degree sum are degrees of a 2-multiforest \Leftrightarrow

• When all d_i even: $\sum d_i \le 4n - 4$ and a multiple of 4

• Some $d_i \text{ odd: } \sum d_i \le 4n - 4 - \max\{n_{odd}, 2n_1\}$

Proof Version 1 Idea: Leaf Removal

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Some d_i odd: $\sum d_i \leq 4n - 4 - \max\{n_{odd}, 2n_1\} \Rightarrow 2$ -Multitree

- Remove 1 or 2 from list and reduce another term
- Multiple cases to consider

Proof Version 2 Idea: Caterpillar Construction

Some d_i odd: $\sum d_i \leq 4n - 4 - \max\{n_{odd}, 2n_1\} \Rightarrow 2$ -Multitree

Proof Version 2 Idea: Caterpillar Construction

Some d_i odd: $\sum d_i \leq 4n - 4 - \max\{n_{odd}, 2n_1\} \Rightarrow 2$ -Multitree

Proof Version 2 Idea: Lobster Construction

Some d_i odd: $\sum d_i \leq 4n - 4 - \max\{n_{odd}, 2n_1\} \Rightarrow 2$ -Multitree

For 2 MultiTrees:

Proof Version 2 Idea: Lobster Construction

Some d_i odd: $\sum d_i \leq 4n - 4 - \max\{n_{odd}, 2n_1\} \Rightarrow 2$ -Multitree

For 2 MultiTrees:

Proof Version 3 Idea: Branch Repair

Some d_i odd: $\sum d_i \leq 4n - 4 - \max\{n_{odd}, 2n_1\} \Rightarrow 2$ -Multitree

(5, 4, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 4, 4, 3, 3, 2, 2 5, 2

・ロト・日本・モート モー うへぐ

Proof Version 3 Idea: Branch Repair

Some
$$d_i$$
 odd: $\sum d_i \leq 4n - 4 - \max\{n_{odd}, 2n_1\} \Rightarrow 2$ -Multitree

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Proof Version 3 Idea: Branch Repair

Some
$$d_i$$
 odd: $\sum d_i \leq 4n - 4 - \max\{n_{odd}, 2n_1\} \Rightarrow 2$ -Multitree

With 2-multitrees split degree \geq 4 and distribute 3,2,1's

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For 2-multitrees the degree partition matters

- Degree partition does not matter for trees and multitrees
- Degree partition matters for 2-multitrees and bipartite
- Similar conditions for parititon lists and 2-multitrees

(4, 4); (3, 3, 1, 1) with degree bipartition 2-multibipartite graph

bipartition (4, 4); (3, 3, 1, 1) 3-multitree with degree

bipartition (4, 3, 1); (4, 3, 1) 2-multitree with degree

・ロット (雪) () () () ()

Question What are Degree Sequences of 2-trees

'Build' by repeatedly attaching a 'pendent' vertex to an edge

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Question What are Degree Sequences of 2-trees

'Build' by repeatedly attaching a 'pendent' vertex to an edge

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

'Build' by repeatedly attaching a 'pendent' vertex to an edge

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

'Build' by repeatedly attaching a 'pendent' vertex to an edge

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

'Build' by repeatedly attaching a 'pendent' vertex to an edge

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

'Build' by repeatedly attaching a 'pendent' vertex to an edge

Necessary Conditions for degrees of a 2-tree

- degree sum is 4n 6
- $n-1 \ge d_1 \ge \ldots \ge d_n \ge 2$
- There are at least two $d_i = 2$

'Build' by repeatedly attaching a 'pendent' vertex to an edge

Necessary Conditions for degrees of a 2-tree

- degree sum is 4n 6
- $n-1 \ge d_1 \ge \ldots \ge d_n \ge 2$
- There are at least two $d_i = 2$
- sequence is not $\left< \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, 2, 2, \dots, 2 \right>$

• All d_i even $\Rightarrow (\# d_i = 2) \ge \frac{n+3}{3}$

Necessary Conditions for degrees of a 2-tree

- degree sum is 4n 6
- $n-1 \ge d_1 \ge \ldots \ge d_n \ge 2$
- There are at least two $d_i = 2$
- sequence is not $\left< \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, 2, 2, \dots, 2 \right>$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• All d_i even $\Rightarrow (\# d_i = 2) \ge \frac{n+3}{3}$

Necessary Conditions for degrees of a 2-tree

- degree sum is 4n − 6
- $n-1 \ge d_1 \ge \ldots \ge d_n \ge 2$
- There are at least two $d_i = 2$
- sequence is not $\langle \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, 2, 2, \dots, 2 \rangle$
- All d_i even $\Rightarrow (\# d_i = 2) \ge \frac{n+3}{3}$

Theorem (Bose, Dujmovic, Kriznac, Langerman, Morin, Wood, Wuher 2008)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Necessary and sufficient for degree sequences of 2-trees

Necessary Conditions for degrees of a 2-tree

- degree sum is 4n − 6
- $n-1 \ge d_1 \ge \ldots \ge d_n \ge 2$
- There are at least two $d_i = 2$
- sequence is not $\langle \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, 2, 2, \dots, 2 \rangle$
- All d_i even $\Rightarrow (\# d_i = 2) \ge \frac{n+3}{3}$

Theorem (Bose, Dujmovic, Kriznac, Langerman, Morin, Wood, Wuher 2008)

Necessary and sufficient for degree sequences of 2-trees

• If some d_i is odd 'almost always' works if degree sum is 4n - 6

• If all d_i even need 'about' 1/3 of the d_i to be 2

Partial 2-tree: subgraph of a 2-tree

Partial 2-tree: subgraph of a 2-tree

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Partial 2-tree: subgraph of a 2-tree

- *K*₄ minor free graphs
- series-parallel graphs construction : add pendent edge; replace edge with a path, add parallel edges

Necessary conditions for degrees of a partial 2-tree g is the number of 'missing' edges $\Rightarrow \sum d_I = 4n - 6 - 2g$

• When g = 0 sequence is not $\langle \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, 2, 2, ..., 2 \rangle$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $d_n \leq n-1$
- There are at least two $d_i \in \{1, 2\}$

Necessary conditions for degrees of a partial 2-tree g is the number of 'missing' edges $\Rightarrow \sum d_I = 4n - 6 - 2g$

• When g = 0 sequence is not $\langle \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, 2, 2, ..., 2 \rangle$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $d_n \leq n-1$
- There are at least two $d_i \in \{1,2\}$
- All d_i even $\Rightarrow (\# d_i = 2) \ge \frac{n+3-2g}{3}$

•
$$(\# d_i = 1) \leq g$$

Necessary conditions for degrees of a partial 2-tree g is the number of 'missing' edges $\Rightarrow \sum d_l = 4n - 6 - 2g$

- When g = 0 sequence is not $\langle \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, 2, 2, ..., 2 \rangle$
- $d_n \leq n-1$
- There are at least two $d_i \in \{1,2\}$
- All d_i even $\Rightarrow (\# d_i = 2) \ge \frac{n+3-2g}{3}$

•
$$(\# d_i = 1) \leq g$$

Theorem (Ryan 2013)

Necessary and sufficient for degree sequences of partial 2-trees

Necessary conditions for degrees of a partial 2-tree g is the number of 'missing' edges $\Rightarrow \sum d_I = 4n - 6 - 2g$

- When g = 0 sequence is not $\langle \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, 2, 2, ..., 2 \rangle$
- $d_n \leq n-1$
- There are at least two $d_i \in \{1,2\}$
- All d_i even $\Rightarrow (\# d_i = 2) \ge \frac{n+3-2g}{3}$

•
$$(\# d_i = 1) \leq g$$

Theorem (Ryan 2013)

Necessary and sufficient for degree sequences of partial 2-trees

• When some d_i is odd condition is essentially $(\# d_i = 1) \leq g$

• If all d_i even $(\# d_i = 2) \ge \frac{n+3-2g}{3}$ holds whenever $\sum d_i \le \frac{18}{5}(n-1)$

Question

What are degee sequences of edge colored trees?

Question

What are degee sequences of edge colored trees?

Necessary Condition: 'Collapse' each subset of colors \Rightarrow forest realizable

Degree sequence of edge colored tree \Leftrightarrow each subset of colors realizable as a forest

- Carroll and Isaak 2008 inductive proof
- Alpert, Becker, Iglesius, Hilbert 2010 extremal and switching proof

• Hillebrand and McDiarmid 2015 - extend to unicyclic with extra condition

Degree sequences of 2-edge colored graphs (degree sequence packing): a hint of some results

Assume both sequences and their sum realizable

- Realize if one color sequence has all degrees $\in \{k, k+1\}$ (Kundu's Theorem, 1973)
- Realize if both sequences and their sum can be realized by forests (Kleitman, Koren and Li, 1977)
- Realize if $\Delta_2 \ge \Delta_1$, $\delta_1 \ge 1$ and $(\Delta_1 + 1)(\Delta_2 + 1) \le n + 1$ (Diemunsch, Ferrara, Jahanbekam, Shook 2015)

- Realize if sequences are identical (switch to get 'nice' Eulerian cycle in these colors then alternate) (Alpert, Becker, Iglesius, Hilbert 2010)
- Checking is NP-hard (Durr, Guinez, Matamala 2009)

•

Degree sequences of k-edge colored graphs $k \ge 3$ (degree sequence packing): a hint of some results

Assume all sums of subsets of colors realizable

- Polynomial for fixed k and fixed maximum degree (Alpert, Beck, Hilbert, Iglesius 2010)
- n even, total degree sum is ≤ ⁿ/₂ + 1 and all but one color constant (Busch, Ferrara, Hartke, Jacobson, Kaul, West 2012)

e.g., Realization of the sum with all but one color a 1-factor $% \left({{{\rm{T}}_{{\rm{T}}}}_{{\rm{T}}}} \right)$

• Realize if complete bipartite and each color constant on one part: next ...

 k-edge colored general graphs = k + 1 coloring of complete graph Is there a complete bipartite graph with given color vectors?

- (1, 1, 1, 1, 1) •
- (1, 1, 1, 1, 1)
- (1, 1, 1, 1, 1) •
- **(1**, 1, 1, **1**, **1**) •

- (2, 1, 1, 0, 0)
- (0, 1, 1, 0, 2)
- (2, 0, 1, 1, 0)
- (0, 2, 0, <mark>0</mark>, 2)
- (0, 0, 1, 3, 0)

Is there a complete bipartite graph with given color vectors?

YES for this instance

In general checking is NP-hard

If all $(1, 1, \dots, 1)$ in one part then always a solution i.e. a proper edge coloring in one part

Is there a complete bipartite graph with given color vectors?

Fill array to get specified margins?

R	G	R	(0 , 1, 2)
G	G	G	(0, 3, 0)
R	В	В	(2,0,1)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(0,1,2) (1,2,0) (1,1,1)

Fill array to get specified margins?

(0, 1, 2) (1, 2, 0) (1, 1, 1)

- 2-colors = degree sequences of bipartite graph
- 3-colors: NP-hard (Durr et al 2009) 'discrete tomography'
- test for degree sequence of oriented bipartite graph is NP-hard

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Fill array to get specified margins?

R	G	R	(0 , 1, 2)
G	G	G	(0, 3, 0)
R	В	В	(2,0,1)

(0,1,2) (1,2,0) (1,1,1) Use variable $x_{i,j,k}$ 1 if entry *i*, *j* is color *k* 0 if not

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Contingency table fill with 0,1's to meet specified marginals Assume 'obvious' sum conditions
- Arbitrary marginals encodes all integer linear programming problems (DeLoera and Onn 2006)
- One face all 1's: Discrete Tomography, edge colored complete bipartite graphs ... NP-hard
- Two faces all 1's (or constant rows) then easy

а	Ь	с	е	d	(1,1,1, <mark>1,1</mark>)
а	е	d	b	с	(1,1,1, <mark>1,1</mark>)
Ь	С	а	е	d	(1,1,1,1,1)
с	е	а	Ь	d	(1,1,1, <mark>1,1</mark>)
(2,1,1,0,0)	(0,1,1,0,2)	(2,0,1,1,0)	(0,2,0,0,2)	(0,0,1,3,0)	<u>,</u>

Question

Discrete Tomography - Can we fill array with specified margins when rows are permutations?

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Question

Does a complete bipartite graph have an edge coloring with one side proper?

Array specifies edge multiplicities

2	1	1	0	0
0	1	1	0	2
Ž	Ō	ī	Ĩ	ō
Ō	Ž	Ō	Ō	Ž
Ŏ	ō	ĭ	3	ō

イロト イポト イヨト イヨト

э

Question

Does a regular bipartite multigraph have a proper coloring?

5 candidates, 4 votes rank all candidates

Voter 1: B, C, K, T, R Voter 2: B, T, R, C, K, Voter 3: C, K, B, T, R Voter 4: K, T, B, C, R

Candidate Profile

Question

Are there votes to realize any possible Candidate profile?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Birkhoff - Von Neumann Theorem

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

<ロ> (四) (四) (日) (日) (日)

æ

< □ > < □ > < □ > < □ > < □ > < □ >

æ

Same Problem

Different Notation

- Can we decompose an integer matrix with constant row/colum sums into permutation matrices?
- Can we fill in a 3-dimensional contingency table with 0/1's when marginals in 2 dimensions are 1's?
- Discrete Tomography Can we fill array with specified margins when rows are permutations?
- Does a complete bipartite graph have an edge coloring with one side proper?
- Does a regular bipartite multigraph have a proper coloring?
- Are there votes to realize any possible Candidate profile?