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Recall degree sequence conditions for trees
Basic exercise in a first graph theory course

• Degrees are positive integers and degree sum is even
(always assume this)

• Trees (on n vertices) have n − 1 edges
⇒ Degree sum is 2n − 2

Positive integers d1, d2, . . . , dn are degrees of a tree ⇔∑
di = 2n − 2

(5, 4, 3, 1, 1, 1, 1, 1, 1, 1, 1)



(One) proof (Leaf Removal) of

Positive integers d1, d2, . . . , dn are degrees of a tree ⇐∑
di = 2n − 2

• d1 ≥ · · · ≥ dn−1 ≥ dn with
∑

di = 2n − 2
⇒ dn = 1 and d1 ≥ 2

• By induction, tree with d1 − 1, d2, . . . , dn−1

• Add edge v1vn

(3, 2, 1, 1, 1) (2, 2, 1, 1, ) (1, 2, 1, , ) (1, 1, , , )

⇐ ⇐ ⇐

⇒ ⇒ ⇒

• Added edge has degree 1 ⇒ no cycle created



Recall degree sequence conditions for (loopless) multigraphs
Another basic exercise in a first graph theory course

• Degrees are positive integers and degree sum is even

• No loops
⇒ edges from max degree vertex go to other vertices
⇒ max degree ≤ sum of other degrees

Positive integers d1 ≥ d2 ≥ · · · ≥ dn with even degree sum,
are degrees of a loopless multigraph ⇔ d1 ≤

∑n
i=2 di



(one) proof of

Positive integers d1 ≥ d2 ≥ · · · ≥ dn with even degree sum,
are degrees of a loopless multigraph ⇔ d1 ≤

∑n
i=2 di

• d1 ≤ d2 + · · ·+ dn ⇒ d1 − dn ≤ d2 + · · ·+ dn−1

• d2 ≤ d1 and dn ≤ dn−1 ⇒ d2 ≤ (d1 − dn) + d3 + · · ·+ dn−1

• By induction multigraph with d1 − dn, d2, . . . , dn−1

• Add edges v1vn

(7, 5, 2, 2, 2) (5, 5, 5, 2, ) (3, 5, 2, , ) (3, 3, , , )

⇐ ⇐ ⇐

⇒ ⇒ ⇒

• Underlying added edge has degree 1 ⇒ no cycle created



Both proofs added a ‘leaf’ ⇒ no cycles created

Have we just proved?

Non-Theorem: Positive integers d1 ≥ d2 ≥ · · · ≥ dn with even
degree sum, are degrees of a loopless multitree ⇔ d1 ≤

∑n
i=2 di

i.e. Multigraph ⇒ Multitree with same degrees

(5, 4, 4, 3, 2) (5, 4, 4, 3, 2)



Both proofs added a ‘leaf’ ⇒ no cycles created

Have we just proved?

Non-Theorem: Positive integers d1 ≥ d2 ≥ · · · ≥ dn with even
degree sum, are degrees of a loopless multitree ⇔ d1 ≤

∑n
i=2 di

i.e. Multigraph ⇒ Multitree with same degrees

(2, 2, 2, 2) (2, 2, 2, 2)



Both proofs added a ‘leaf’ ⇒ no cycles created

Have we just proved?

Non-Theorem: Positive integers d1 ≥ d2 ≥ · · · ≥ dn with even
degree sum, are degrees of a loopless multitree ⇔ d1 ≤

∑n
i=2 di

i.e. Multigraph ⇒ Multitree with same degrees

(5, 4, 3)



Both proofs added a ‘leaf’ ⇒ no cycles created

Have we just proved?

Non-Theorem: Positive integers d1 ≥ d2 ≥ · · · ≥ dn with even
degree sum, are degrees of a loopless multitree ⇔ d1 ≤

∑n
i=2 di

i.e. Multigraph ⇒ Multitree with same degrees

• (2, 2, 2, 2) and (5, 4, 3) fail

•
•



Both proofs added a ‘leaf’ ⇒ no cycles created

Have we just proved?

Non-Theorem: Positive integers d1 ≥ d2 ≥ · · · ≥ dn with even
degree sum, are degrees of a loopless multitree ⇔ d1 ≤

∑n
i=2 di

i.e. Multigraph ⇒ Multitree with same degrees

• (2, 2, 2, 2) and (5, 4, 3) fail

• Forests are bipartite so d1 ≤ d2 + · · · dn ⇒
can partition di into two parts with equal sum

• Test if given integer list partitions into 2 equal sum parts?
NP-hard problem so something is really wrong



What went wrong with multgraph proof?

Positive integers d1 ≥ d2 ≥ · · · ≥ dn with even degree sum,
are degrees of a loopless multigraph ⇔ d1 ≤

∑n
i=2 di

• d1 ≤ d2 + · · ·+ dn ⇒ d1 − dn ≤ d2 + · · ·+ dn−1

• d2 ≤ d1 and dn ≤ dn−1 ⇒ d2 ≤ (d1 − dn) + d3 + · · ·+ dn−1

• By induction multigraph with d1 − dn, d2, . . . , dn−1

• Add edges v1vn

(6, 5, 3, 2) ⇒

⇐

(4, 5, 3, )



What went wrong with multgraph proof?

Positive integers d1 ≥ d2 ≥ · · · ≥ dn with even degree sum,
are degrees of a loopless multigraph ⇔ d1 ≤

∑n
i=2 di

• d1 ≤ d2 + · · ·+ dn ⇒ d1 − dn ≤ d2 + · · ·+ dn−1

• d2 ≤ d1 and dn ≤ dn−1 ⇒ d2 ≤ (d1 − dn) + d3 + · · ·+ dn−1

IF n ≥ 4

• By induction multigraph with d1 − dn, d2, . . . , dn−1

• Add edges v1vn

(6, 5, 3, 2) ⇒

⇐

(4, 5, 3, )



With correct basis for n = 3 we get

Degrees of a multigraph d1 ≤ d2 + · · ·+ dn
have a realization with underlying graph a forest or a graph with
exactly one cycle (which is a triangle)

Note that partitioning integer lists into equal sum parts is
NP-hard. So might not detect forest realization if there is one.

Good example why need basis for induction



With correct basis for n = 3 we get

Degrees of a multigraph d1 ≤ d2 + · · ·+ dn
have a realization with underlying graph a forest or a graph with
exactly one cycle (which is a triangle)

Note that partitioning integer lists into equal sum parts is
NP-hard. So might not detect forest realization if there is one.

Good example why need basis for induction

• What are conditions for a multiforest?

• What if we want connected? i.e., multitree?



Loopless multitree

Degree conditions for multitrees?

Positive integers d1, d2, . . . , dn are degrees of a multiforest
⇔ degrees partition into two parts with equal sum
I.e., Bipartite multigraph degree sequences have multiforest
realizations

• easy exercise(s), induction; switching, ...

• Get d1 ≤
∑n

i=1 di and even degree sum for free

• Need a little more for (connected) multitrees



In a multiforest:
If all di are even then edge multiplicities are all even

• ‘Proof’: simple parity argument

• In general edge multiplicities are multiples of gcd(d1, . . . , dn)

• For multiforest realizations may as well divide by
gcd(d1, . . . , dn)



Positive integers d1, d2, . . . , dn that partition into two parts with

equal sum realize a multitree if

∑
di

gcd
≥ 2n − 2

Proof: Get multiforest and use switching to get multitree



Positive integers d1, d2, . . . , dn that partition into two parts with

equal sum realize a multitree if

∑
di

gcd
≥ 2n − 2

Proof: Get multiforest and use switching to get multitree

⇓



Degrees of a multigraph d1 ≤ d2 + · · ·+ dn
have a realization with underlying graph a forest or a graph with
exactly one cycle (which is a triangle)

Alternate Proofs:

• Induction

• Switching (Will and Hulett 2004)

• Split one degree to get degree partition
⇒ forest ⇒ merge to get one cycle

Positive integers d1, d2, . . . , dn that partition into two parts with

equal sum realize a multitree if

∑
di

gcd
≥ 2n − 2

Alternate Proofs:

• Switching

• Induction with careful choice of values to reduce



Multigraph degrees result
⇒ Realization with at most n underlying edges



Multigraph degrees result
⇒ Realization with at most n underlying edges

Question

What is range of number of underlying edges
for multigraph sequences?



Multigraph degrees result
⇒ Realization with at most n underlying edges

Question

What is range of number of underlying edges
for multigraph sequences?

• Realization to minimize number of underlying edges is
NP-hard (Hulett, Will, Woeginger 2008)

• Realization to maximize number of underlying edges:
Minimize number of 2’s to add to degree sequence to get
(simple) graph (Owens and Trent 1967)



Question

What are Degree Sequences of 2-multitrees ?
Each edge multiplicity 1 or 2

2-multitree



2-multiforest conditions, d1 ≥ . . . ,≥ dn with even degree sum

• If all di even ⇒ edge multiplicities all 2 ⇒ d1
2 ,

d2
2 , . . . ,

dn
2 are

degrees of a forest
i.e., sum is a multiple of 4 and at most 2(2n − 2) = 4n − 4

• At most 2 edges to each vertex ⇒ d1 ≤ 2(n − 1)

• At least 2 ‘leaves’ ⇒ at least two di are 1 or 2

• At most 2(n − 1) edges ⇒ degree sum at most 4n − 4

These 3 will be implied by further conditions



More 2-multiforest conditions

• Each odd degree vertex adjacent to edge with multiplicity 1
⇒ degree sum ≤ 4n − 4−#odd degrees

• Remove degree 1 vertices
⇒ what is left can’t have too large a degree sum
⇒ degree sum ≤ 4n − 4− 2 · (#degree 1 vertices)

Conditions are also sufficient

Positive integers d1, d2, . . . , dn with even degree sum
are degrees of a 2-multiforest ⇔
• When all di even:

∑
di ≤ 4n − 4 and a multiple of 4

• Some di odd:
∑

di ≤ 4n − 4−max{nodd , 2n1}



Proof Version 1 Idea: Leaf Removal

Some di odd:
∑

di ≤ 4n − 4−max{nodd , 2n1} ⇒ 2-Multitree

• Remove 1 or 2 from list and reduce another term

• Multiple cases to consider



Proof Version 2 Idea: Caterpillar Construction

Some di odd:
∑

di ≤ 4n − 4−max{nodd , 2n1} ⇒ 2-Multitree

For Trees: Dominated Subtree on degree ≥ 2 vertices
⇒ add leaves

(3, 3, 3, 2, 1, 1, 1, 1, 1)3

3 3 2
3 3 3 2



Proof Version 2 Idea: Caterpillar Construction

Some di odd:
∑

di ≤ 4n − 4−max{nodd , 2n1} ⇒ 2-Multitree

For Trees: Dominated Subtree on degree ≥ 2 vertices
⇒ add leaves

(3, 3, 3, 2, 1, 1, 1, 1, 1)3

3 3 2
3 3 3 2



Proof Version 2 Idea: Lobster Construction

Some di odd:
∑

di ≤ 4n − 4−max{nodd , 2n1} ⇒ 2-Multitree

For 2 MultiTrees:

Shell Attachments



Proof Version 2 Idea: Lobster Construction

Some di odd:
∑

di ≤ 4n − 4−max{nodd , 2n1} ⇒ 2-Multitree

For 2 MultiTrees:

Shell Attachments



Proof Version 3 Idea: Branch Repair

Some di odd:
∑

di ≤ 4n − 4−max{nodd , 2n1} ⇒ 2-Multitree

(5, 4, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

4, 4, 3, 3, 2, 2 5, 2



Proof Version 3 Idea: Branch Repair

Some di odd:
∑

di ≤ 4n − 4−max{nodd , 2n1} ⇒ 2-Multitree

(5, 4, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

4, 4, 3, 3, 2, 2 5, 2

3, 4, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1 4, 2, 1, 1, 1, 1



Proof Version 3 Idea: Branch Repair

Some di odd:
∑

di ≤ 4n − 4−max{nodd , 2n1} ⇒ 2-Multitree

(5, 4, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

4, 4, 3, 3, 2, 2 5, 2

3, 4, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1 4, 2, 1, 1, 1, 1

With 2-multitrees split degree ≥ 4 and distribute 3,2,1’s



For 2-multitrees the degree partition matters

• Degree partition does not matter for trees and multitrees

• Degree partition matters for 2-multitrees and bipartite

• Similar conditions for parititon lists and 2-multitrees

2-multitree with degree

bipartition (4, 3, 1); (4, 3, 1)

3-multitree with degree

bipartition (4, 4); (3, 3, 1, 1)

2-multibipartite graph

with degree bipartition

(4, 4); (3, 3, 1, 1)



Question

What are Degree Sequences of 2-trees

‘Build’ by repeatedly attaching a ‘pendent’ vertex to an edge



Question

What are Degree Sequences of 2-trees

‘Build’ by repeatedly attaching a ‘pendent’ vertex to an edge
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Question

What are Degree Sequences of 2-trees

‘Build’ by repeatedly attaching a ‘pendent’ vertex to an edge



Question

What are Degree Sequences of 2-trees

‘Build’ by repeatedly attaching a ‘pendent’ vertex to an edge



Question

What are Degree Sequences of 2-trees

‘Build’ by repeatedly attaching a ‘pendent’ vertex to an edge

Necessary Conditions for degrees of a 2-tree

• degree sum is 4n − 6

• n − 1 ≥ d1 ≥ . . . ≥ dn ≥ 2

• There are at least two di = 2



Question

What are Degree Sequences of 2-trees

‘Build’ by repeatedly attaching a ‘pendent’ vertex to an edge

Necessary Conditions for degrees of a 2-tree

• degree sum is 4n − 6

• n − 1 ≥ d1 ≥ . . . ≥ dn ≥ 2

• There are at least two di = 2

• sequence is not
〈
n+1
2 , n+1

2 , n+1
2 , n+1

2 , 2, 2, . . . , 2
〉

• All di even ⇒ (# di = 2) ≥ n+3
3



Necessary Conditions for degrees of a 2-tree

• degree sum is 4n − 6

• n − 1 ≥ d1 ≥ . . . ≥ dn ≥ 2

• There are at least two di = 2

• sequence is not
〈
n+1
2 , n+1

2 , n+1
2 , n+1

2 , 2, 2, . . . , 2
〉

• All di even ⇒ (# di = 2) ≥ n+3
3



Necessary Conditions for degrees of a 2-tree

• degree sum is 4n − 6

• n − 1 ≥ d1 ≥ . . . ≥ dn ≥ 2

• There are at least two di = 2

• sequence is not
〈
n+1
2 , n+1

2 , n+1
2 , n+1

2 , 2, 2, . . . , 2
〉

• All di even ⇒ (# di = 2) ≥ n+3
3

Theorem (Bose, Dujmovic, Kriznac, Langerman, Morin,
Wood, Wuher 2008)

Necessary and sufficient for degree sequences of 2-trees



Necessary Conditions for degrees of a 2-tree

• degree sum is 4n − 6

• n − 1 ≥ d1 ≥ . . . ≥ dn ≥ 2

• There are at least two di = 2

• sequence is not
〈
n+1
2 , n+1

2 , n+1
2 , n+1

2 , 2, 2, . . . , 2
〉

• All di even ⇒ (# di = 2) ≥ n+3
3

Theorem (Bose, Dujmovic, Kriznac, Langerman, Morin,
Wood, Wuher 2008)

Necessary and sufficient for degree sequences of 2-trees

• If some di is odd ‘almost always’ works if degree sum is 4n− 6

• If all di even need ‘about’ 1/3 of the di to be 2



Partial 2-tree: subgraph of a 2-tree



Partial 2-tree: subgraph of a 2-tree



Partial 2-tree: subgraph of a 2-tree

• K4 minor free graphs

• series-parallel graphs construction :
add pendent edge; replace edge with a path, add parallel edges



Necessary conditions for degrees of a partial 2-tree
g is the number of ‘missing’ edges ⇒

∑
dI = 4n − 6− 2g

• When g = 0 sequence is not
〈
n+1
2 , n+1

2 , n+1
2 , n+1

2 , 2, 2, . . . , 2
〉

• dn ≤ n − 1

• There are at least two di ∈ {1, 2}



Necessary conditions for degrees of a partial 2-tree
g is the number of ‘missing’ edges ⇒

∑
dI = 4n − 6− 2g

• When g = 0 sequence is not
〈
n+1
2 , n+1

2 , n+1
2 , n+1

2 , 2, 2, . . . , 2
〉

• dn ≤ n − 1

• There are at least two di ∈ {1, 2}
• All di even ⇒ (# di = 2) ≥ n+3−2g

3

• (# di = 1) ≤ g



Necessary conditions for degrees of a partial 2-tree
g is the number of ‘missing’ edges ⇒

∑
dI = 4n − 6− 2g

• When g = 0 sequence is not
〈
n+1
2 , n+1

2 , n+1
2 , n+1

2 , 2, 2, . . . , 2
〉

• dn ≤ n − 1

• There are at least two di ∈ {1, 2}
• All di even ⇒ (# di = 2) ≥ n+3−2g

3

• (# di = 1) ≤ g

Theorem (Ryan 2013)

Necessary and sufficient for degree sequences of partial 2-trees



Necessary conditions for degrees of a partial 2-tree
g is the number of ‘missing’ edges ⇒

∑
dI = 4n − 6− 2g

• When g = 0 sequence is not
〈
n+1
2 , n+1

2 , n+1
2 , n+1

2 , 2, 2, . . . , 2
〉

• dn ≤ n − 1

• There are at least two di ∈ {1, 2}
• All di even ⇒ (# di = 2) ≥ n+3−2g

3

• (# di = 1) ≤ g

Theorem (Ryan 2013)

Necessary and sufficient for degree sequences of partial 2-trees

• When some di is odd condition is essentially (# di = 1) ≤ g

• If all di even (# di = 2) ≥ n+3−2g
3 holds whenever∑

di ≤ 18
5 (n − 1)



Question

What are degee sequences of edge colored trees?

(0, 1, 0)

(1, 0, 3) (2, 2, 1)



Question

What are degee sequences of edge colored trees?

(0, 1, 0)

(1, 0, 3) (2, 2, 1)

Necessary Condition:
‘Collapse’ each subset of colors ⇒ forest realizable



Degree sequence of edge colored tree
⇔ each subset of colors realizable as a forest

(0, 1, 0)

(1, 0, 3) (2, 2, 1)

• Carroll and Isaak 2008 - inductive proof

• Alpert, Becker, Iglesius, Hilbert 2010 - extremal and switching
proof

• Hillebrand and McDiarmid 2015 - extend to unicyclic with
extra condition



Degree sequences of 2-edge colored graphs
(degree sequence packing): a hint of some results

Assume both sequences and their sum realizable

• Realize if one color sequence has all degrees ∈ {k , k + 1}
(Kundu’s Theorem, 1973)

• Realize if both sequences and their sum can be realized by
forests (Kleitman, Koren and Li, 1977)

• Realize if ∆2 ≥ ∆1, δ1 ≥ 1 and (∆1 + 1)(∆2 + 1) ≤ n + 1
(Diemunsch, Ferrara, Jahanbekam, Shook 2015)

• Realize if sequences are identical (switch to get ‘nice’
Eulerian cycle in these colors then alternate)
(Alpert, Becker, Iglesius, Hilbert 2010)

• Checking is NP-hard (Durr, Guinez, Matamala 2009)

• .......



Degree sequences of k-edge colored graphs k ≥ 3
(degree sequence packing): a hint of some results

Assume all sums of subsets of colors realizable

• Polynomial for fixed k and fixed maximum degree (Alpert,
Beck, Hilbert, Iglesius 2010)

• n even, total degree sum is ≤ n
2

+ 1 and all but one color
constant (Busch, Ferrara, Hartke, Jacobson, Kaul, West
2012)
e.g., Realization of the sum with all but one color a
1-factor

• Realize if complete bipartite and each color constant on
one part: next ...

• k-edge colored general graphs = k + 1 coloring of
complete graph



Is there a complete bipartite graph with given color vectors?

(2, 1, 1, 0, 0)

(0, 1, 1, 0, 2)

(2, 0, 1, 1, 0)

(0, 2, 0, 0, 2)

(0, 0, 1, 3, 0)(1, 1, 1, 1, 1)

(1, 1, 1, 1, 1)

(1, 1, 1, 1, 1)

(1, 1, 1, 1, 1)



Is there a complete bipartite graph with given color vectors?

(2, 1, 1, 0, 0)

(0, 1, 1, 0, 2)

(2, 0, 1, 1, 0)

(0, 2, 0, 0, 2)

(0, 0, 1, 3, 0)(1, 1, 1, 1, 1)

(1, 1, 1, 1, 1)

(1, 1, 1, 1, 1)

(1, 1, 1, 1, 1)

YES for this instance

In general checking is NP-hard

If all (1, 1, · · · , 1) in one part then always a solution
i.e. a proper edge coloring in one part



Is there a complete bipartite graph with given color vectors?

(1, 1, 1)

(1, 2, 0)

(0, 1, 2)

(2, 0, 1)

(0, 3, 0)

(0, 1, 2)

Fill array to get specified margins?

R G R (0, 1, 2)

G G G (0, 3, 0)

R B B (2, 0, 1)

(0, 1, 2) (1, 2, 0) (1, 1, 1)



Fill array to get specified margins?

R G R (0, 1, 2)

G G G (0, 3, 0)

R B B (2, 0, 1)

(0, 1, 2) (1, 2, 0) (1, 1, 1)

• 2-colors = degree sequences of bipartite graph

• 3-colors: NP-hard (Durr et al 2009) ‘discrete tomography’

• test for degree sequence of oriented bipartite graph is NP-hard



Fill array to get specified margins?

R G R (0, 1, 2)

G G G (0, 3, 0)

R B B (2, 0, 1)

(0, 1, 2) (1, 2, 0) (1, 1, 1)

Use variable xi ,j ,k
1 if entry i , j is color k

0 if not



0 0 1 3 0

0 2 0 0 2

2 0 1 1 0

0 1 1 0 2

2 1 1 0 0
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1

1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

• Contingency table - fill with 0, 1’s to meet specified marginals
Assume ‘obvious’ sum conditions

• Arbitrary marginals encodes all integer linear programming
problems (DeLoera and Onn 2006)

• One face all 1’s: Discrete Tomography, edge colored complete
bipartite graphs ... NP-hard

• Two faces all 1’s (or constant rows) then easy ....



a b c e d (1,1,1,1,1)

a e d b c (1,1,1,1,1)

b c a e d (1,1,1,1,1)

c e a b d (1,1,1,1,1)

(2,1,1,0,0) (0,1,1,0,2) (2,0,1,1,0) (0,2,0,0,2) (0,0,1,3,0)

Question

Discrete Tomography - Can we fill array with specified margins
when rows are permutations?



(2, 1, 1, 0, 0)

(0, 1, 1, 0, 2)

(2, 0, 1, 1, 0)

(0, 2, 0, 0, 2)

(0, 0, 1, 3, 0)(1, 1, 1, 1, 1)

(1, 1, 1, 1, 1)

(1, 1, 1, 1, 1)

(1, 1, 1, 1, 1)

Question

Does a complete bipartite graph have an edge coloring with one
side proper?



Array specifies edge multiplicities

2 1 1 0 0
0 1 1 0 2
2 0 1 1 0
0 2 0 0 2
0 0 1 3 0

Question

Does a regular bipartite multigraph have a proper coloring?



5 candidates, 4 votes rank all candidates

Voter 1: B, C, K, T, R
Voter 2: B, T, R, C, K,
Voter 3: C, K, B, T, R
Voter 4: K, T, B, C, R

Candidate Profile

B C K R T

1st 2 1 1 0 0
2nd 0 1 1 0 2
3rd 2 0 1 1 0
4th 0 2 0 0 2
5th 0 0 1 3 0

Question

Are there votes to realize any possible Candidate profile?



0 0 1 3 0

0 2 0 0 2

2 0 1 1 0

0 1 1 0 2

2 1 1 0 0
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1

1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1



0 0 1 3 0

0 2 0 0 2

2 0 1 1 0

0 1 1 0 2

2 1 1 0 0
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1

1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Birkhoff - Von Neumann Theorem

2 1 1 0 0
0 1 1 0 2
2 0 1 1 0
0 2 0 0 2
0 0 1 3 0

=

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

+

1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0

+

0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0

+

0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0



(2, 1, 1, 0, 0)

(0, 1, 1, 0, 2)

(2, 0, 1, 1, 0)

(0, 2, 0, 0, 2)

(0, 0, 1, 3, 0)(1, 1, 1, 1, 1)

(1, 1, 1, 1, 1)

(1, 1, 1, 1, 1)

(1, 1, 1, 1, 1)



(2, 1, 1, 0, 0)

(0, 1, 1, 0, 2)

(2, 0, 1, 1, 0)

(0, 2, 0, 0, 2)

(0, 0, 1, 3, 0)(1, 1, 1, 1, 1)

(1, 1, 1, 1, 1)

(1, 1, 1, 1, 1)

(1, 1, 1, 1, 1)

2 1 1 0 0
0 1 1 0 2
2 0 1 1 0
0 2 0 0 2
0 0 1 3 0

=

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

+

1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0

+

0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0

+

0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0



(2, 1, 1, 0, 0)

(0, 1, 1, 0, 2)

(2, 0, 1, 1, 0)

(0, 2, 0, 0, 2)

(0, 0, 1, 3, 0)(1, 1, 1, 1, 1)

(1, 1, 1, 1, 1)

(1, 1, 1, 1, 1)

(1, 1, 1, 1, 1)

2 1 1 0 0
0 1 1 0 2
2 0 1 1 0
0 2 0 0 2
0 0 1 3 0

=

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

+

1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0

+

0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0

+

0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0





2 1 1 0 0
0 1 1 0 2
2 0 1 1 0
0 2 0 0 2
0 0 1 3 0

=

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

+

1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0

+

0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0

+

0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0



2 1 1 0 0
0 1 1 0 2
2 0 1 1 0
0 2 0 0 2
0 0 1 3 0

=

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

+

1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0

+

0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0

+

0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0



5 candidates, 4 votes rank all candidates

Voter 1: B, C, K, T, R
Voter 2: B, T, R, C, K,
Voter 3: C, K, B, T, R
Voter 4: K, T, B, C, R

Candidate Profile
B C K R T

1st 2 1 1 0 0
2nd 0 1 1 0 2
3rd 2 0 1 1 0
4th 0 2 0 0 2
5th 0 0 1 3 0

2 1 1 0 0
0 1 1 0 2
2 0 1 1 0
0 2 0 0 2
0 0 1 3 0

=

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

+

1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0

+

0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0

+

0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0



0 0 1 3 0

0 2 0 0 2

2 0 1 1 0

0 1 1 0 2

2 1 1 0 0
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1

1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 Same Problem

Different Notation

• Can we decompose an integer matrix with constant
row/colum sums into permutation matrices?

• Can we fill in a 3-dimensional contingency table with 0/1’s
when marginals in 2 dimensions are 1’s?

• Discrete Tomography - Can we fill array with specified
margins when rows are permutations?

• Does a complete bipartite graph have an edge coloring with
one side proper?

• Does a regular bipartite multigraph have a proper coloring?

• Are there votes to realize any possible Candidate profile?


