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Recall degree sequence conditions for trees
Basic exercise in a first graph theory course

o Degrees are positive integers and degree sum is even
(always assume this)

e Trees (on n vertices) have n — 1 edges
= Degree sum is 2n — 2

Positive integers di, db, . .., d, are degrees of a tree <
Z d,' =2n—2

(5,4,3,1,1,1,1,1,1,1,1)



(One) proof (Leaf Removal) of

Positive integers di, d, . .., d, are degrees of a tree <=
Z d,' =2n—2

e dy >--->dy,_1>d, with Zd,-:2n—2
=d,=1land d; >2

e By induction, tree with dy — 1,d>,...,dp_1
e Add edge vyv,

i

(3,2,1,1,1) = (2,2,1,1, ) = (1,2,1, , ) =

= =

*r—0

(17 17 Y ) )



Recall degree sequence conditions for (loopless) multigraphs
Another basic exercise in a first graph theory course

o Degrees are positive integers and degree sum is even

e No loops
= edges from max degree vertex go to other vertices
= max degree < sum of other degrees

Positive integers di > do > --- > d, with even degree sum,
are degrees of a loopless multigraph < di <> I ,d;




(one) proof of

Positive integers di > dy > --- > d, with even degree sum,
are degrees of a loopless multigraph < dy <> 7 ,d;

di<d+--+dy=>di—dy < do+---+dy1
d2 Sdl and dnSdn_l :>d2§(d1—dn)+d3+...+dn_l
By induction multigraph with di — d,, do, ..., dp—1

Add edges vy v,

<>L'@‘<:<>®O<:<>@.<:®

(7,5,2,2,2) = (5552 ) = (3,52 ,) = (33 ,.)



Both proofs added a ‘leaf’ = no cycles created
Have we just proved?
Non-Theorem: Positive integers di > dp > --- > d, with even

degree sum, are degrees of a loopless multitree < di < Y 7, d;
i.e. Multigraph = Multitree with same degrees

(5,4,4,3,2) (5,4,4,3,2)



Both proofs added a ‘leaf’ = no cycles created
Have we just proved?
Non-Theorem: Positive integers di > dp > --- > d, with even

degree sum, are degrees of a loopless multitree < di < Y 7, d;
i.e. Multigraph = Multitree with same degrees

(2,2,2,2) (2,2,2,2)



Both proofs added a ‘leaf’ = no cycles created
Have we just proved?
Non-Theorem: Positive integers di > dp > --- > d, with even

degree sum, are degrees of a loopless multitree < di < Y 7, d;
i.e. Multigraph = Multitree with same degrees

(5,4,3)



Both proofs added a ‘leaf’ = no cycles created
Have we just proved?
Non-Theorem: Positive integers di > dp > --- > d, with even

degree sum, are degrees of a loopless multitree < di < Y 7, d;
i.e. Multigraph = Multitree with same degrees

e (2,2,2,2) and (5,4, 3) fail
[ )



Both proofs added a ‘leaf’ = no cycles created
Have we just proved?
Non-Theorem: Positive integers di > dp > --- > d, with even

degree sum, are degrees of a loopless multitree < di < Y7, d;
i.e. Multigraph = Multitree with same degrees

e (2,2,2,2) and (5,4, 3) fail
e Forests are bipartite so dy < dr +---dp =
can partition d; into two parts with equal sum

e Test if given integer list partitions into 2 equal sum parts?
NP-hard problem so something is really wrong



What went wrong with multgraph proof?

Positive integers di > dy > --- > d, with even degree sum,
are degrees of a loopless multigraph < di <> ,d;

e di <+ +dy=>d—d, <do+-+dy 1
e b <drandd, <dp1 = dp < (dy —dp)+dz+ - +dpa

e By induction multigraph with d; — d,,, d>, ..., dp_1
e Add edges viv,

= - >

(6,5,3,2) = (4,53, )



What went wrong with multgraph proof?

Positive integers di > dy > --- > d, with even degree sum,
are degrees of a loopless multigraph < di <> ,d;

e di<dr+ - +dy=>di—dy <o+ +dpa

e b <drandd, <dp1 = dp < (dy —dp)+dz+ - +dpa
IFn>4

e By induction multigraph with di — d,, do, ..., dp—1

e Add edges v1v,

= - >

(6,5,3,2) = (4,5,3, )



With correct basis for n = 3 we get

Degrees of a multigraph di < d» + --- + dp,
have a realization with underlying graph a forest or a graph with
exactly one cycle (which is a triangle)

Note that partitioning integer lists into equal sum parts is
NP-hard. So might not detect forest realization if there is one.

Good example why need basis for induction



With correct basis for n = 3 we get

Degrees of a multigraph di < d» + --- + dp,
have a realization with underlying graph a forest or a graph with
exactly one cycle (which is a triangle)

Note that partitioning integer lists into equal sum parts is
NP-hard. So might not detect forest realization if there is one.

Good example why need basis for induction

e What are conditions for a multiforest?

e What if we want connected? i.e., multitree?



Loopless multitree

Degree conditions for multitrees?

Positive integers dy, do, . .., d, are degrees of a multiforest
&> degrees partition into two parts with equal sum

l.e., Bipartite multigraph degree sequences have multiforest
realizations

e easy exercise(s), induction; switching, ...
e Get d; < Z,'.’:l d; and even degree sum for free
o Need a little more for (connected) multitrees



In a multiforest:
If all d; are even then edge multiplicities are all even

e 'Proof’: simple parity argument
e In general edge multiplicities are multiples of ged(di, ..., dp)

e For multiforest realizations may as well divide by
ged(di, ..., dy)



Positive integers di, d>, . .., d, that partition into two parts with

d.
equal sum realize a multitree if L>2n-2
gcd

Proof: Get multiforest and use switching to get multitree

e D




Positive integers di, d>, . .., d, that partition into two parts with

d.
equal sum realize a multitree if L>2n-2
gcd

Proof: Get multiforest and use switching to get multitree

e D




Degrees of a multigraph di < dp + -+ + d,
have a realization with underlying graph a forest or a graph with
exactly one cycle (which is a triangle)

Alternate Proofs:
e Induction

e Switching (Will and Hulett 2004)

e Split one degree to get degree partition
= forest = merge to get one cycle

Positive integers di, da, ..., d, that partition into two parts with
> di
>2n—2
cd —

equal sum realize a multitree if

Alternate Proofs:

e Switching
e |nduction with careful choice of values to reduce



Multigraph degrees result
= Realization with at most n underlying edges



Multigraph degrees result
= Realization with at most n underlying edges

Question

What is range of number of underlying edges
for multigraph sequences?




Multigraph degrees result
= Realization with at most n underlying edges

Question

What is range of number of underlying edges
for multigraph sequences?

e Realization to minimize number of underlying edges is
NP-hard (Hulett, Will, Woeginger 2008)

¢ Realization to maximize number of underlying edges:

Minimize number of 2's to add to degree sequence to get
(simple) graph (Owens and Trent 1967)



Question
What are Degree Sequences of 2-multitrees ?
Each edge multiplicity 1 or 2

2-multitree



2-multiforest conditions, di > ..., > d, with even degree sum

4 b o are

If all d; even = edge multiplicities all 2 = 2, 2,..., 3

degrees of a forest
i.e., sum is a multiple of 4 and at most 2(2n —2) = 4n —4

At most 2 edges to each vertex = d; < 2(n—1)

At least 2 ‘leaves’ = at least two d; are 1 or 2

At most 2(n — 1) edges = degree sum at most 4n — 4

These 3 will be implied by further conditions



More 2-multiforest conditions
e Each odd degree vertex adjacent to edge with multiplicity 1
= degree sum < 4n — 4 — #odd degrees

e Remove degree 1 vertices
=- what is left can't have too large a degree sum
= degree sum < 4n — 4 — 2 - (#degree 1 vertices)

Conditions are also sufficient

Positive integers dy, da, ..., d, with even degree sum
are degrees of a 2-multiforest <
o When all d; even: > d; < 4n — 4 and a multiple of 4

e Some d; odd: Y di < 4n—4 — max{nodd,2n1}




Proof Version 1 ldea: Leaf Removal

Some d; odd: > di < 4n — 4 — max{nogq,2m } = 2-Multitree J

e Remove 1 or 2 from list and reduce another term

e Multiple cases to consider



Proof Version 2 Idea: Caterpillar Construction

Some d; odd: > d; < 4n — 4 — max{noqq,2nm } = 2-Multitree

For Trees: Dominated Subtree on degree > 2 vertices
= add leaves

3 (3,3,3,2,1,1,1,1,1)



Proof Version 2 Idea: Caterpillar Construction

Some d; odd: > d; < 4n — 4 — max{noqq,2nm } = 2-Multitree J

For Trees: Dominated Subtree on degree > 2 vertices
= add leaves

3 (3,3,3,2,1,1,1,1,1)

3¢/ 34 9 3 3 3 2



Proof Version 2 Idea: Lobster Construction

Some d; odd: > di < 4n — 4 — max{noqq,2m} = 2-Multitree J

For 2 MultiTrees:

Shell Attachments

oA



Proof Version 2 Idea: Lobster Construction

Some d; odd: > di < 4n — 4 — max{noqq,2m} = 2-Multitree J

For 2 MultiTrees:

Shell Attachments

oA



Proof Version 3 Idea: Branch Repair

Some d; odd: > d; < 4n — 4 — max{noqq,2nm } = 2-Multitree J

(5,4,4,3,3,2,2,2,1,1,1,1,1,1,1,1,1,1,1)
4,4,3,3,2,2 5,2



Proof Version 3 Idea: Branch Repair

Some d; odd: > d; < 4n — 4 — max{noqq,2nm } = 2-Multitree

(5,4,4,3,3,2,2,2,1,1,1,1,1,1,1,1,1,1,1)

4,4,3,3,2,2 5,2
3,4,3,3,2,2,1,1,1,1,1,1 4,2,1,1,1,1



Proof Version 3 Idea: Branch Repair

Some d; odd: > d; < 4n — 4 — max{noqq,2nm } = 2-Multitree

(5,4,4,3,3,2,2,2,1,1,1,1,1,1,1,1,1,1,1)

4,4,3,3,2,2 5,2
3,4,3,3,2,2,1,1,1,1,1,1  4,2,1,1,1,1

With 2-multitrees split degree > 4 and distribute 3,2,1's



For 2-multitrees the degree partition matters

e Degree partition does not matter for trees and multitrees
o Degree partition matters for 2-multitrees and bipartite

e Similar conditions for parititon lists and 2-multitrees

(4,4):(3,3,1,1)
% with degree bipartition
2-multibipartite graph
bipartition (4,4);(3,3,1,1)
3-multitree with degree

bipartition (4,3,1);(4,3,1)

C C : 2-multitree with degree



Question
What are Degree Sequences of 2-trees

‘Build’ by repeatedly attaching a ‘pendent’ vertex to an edge

AN



Question
What are Degree Sequences of 2-trees

‘Build’ by repeatedly attaching a ‘pendent’ vertex to an edge

/N



Question
What are Degree Sequences of 2-trees

‘Build’ by repeatedly attaching a ‘pendent’ vertex to an edge

v



Question
What are Degree Sequences of 2-trees

‘Build’ by repeatedly attaching a ‘pendent’ vertex to an edge

/Ny



Question
What are Degree Sequences of 2-trees

‘Build’ by repeatedly attaching a ‘pendent’ vertex to an edge

N\



Question
What are Degree Sequences of 2-trees

‘Build’ by repeatedly attaching a ‘pendent’ vertex to an edge

N\

Necessary Conditions for degrees of a 2-tree

e degree sum is 4n — 6
en—1>d>...>d,>2

e There are at least two d; = 2



Question
What are Degree Sequences of 2-trees

‘Build’ by repeatedly attaching a ‘pendent’ vertex to an edge

N\

Necessary Conditions for degrees of a 2-tree

e degree sum is 4n—6
en—1>d>...>d,>2

e There are at least two d; = 2

e sequence is not <”J2r1, ”erl, ”erl, ”J2rl,2, 2,..., 2>

o All dj even = (# d; = 2) > §3




Necessary Conditions for degrees of a 2-tree
e degree sum is 4n—6
en—1>di>...>d, >2

There are at least two d; = 2
n+1l n+l1 n+l n+1

All d; even = (# d; = 2) > 22

sequence is not (23E ofL AL ol 99



Necessary Conditions for degrees of a 2-tree

e degree sum is 4n—6
en—1>d>...>2d,>2

e There are at least two d; = 2

e sequence is not (ZFL oL ntl ndl oo 2)

o All d; even = (# d; =2) > 243

Theorem (Bose, Dujmovic, Kriznac, Langerman, Morin,
Wood, Wuher 2008)

Necessary and sufficient for degree sequences of 2-trees




Necessary Conditions for degrees of a 2-tree

e degree sum is 4n—6
en—1>d>...>2d,>2

e There are at least two d; = 2

e sequence is not (ZFL oL ntl ndl oo 2)

o All d; even = (# d; =2) > 243

Theorem (Bose, Dujmovic, Kriznac, Langerman, Morin,
Wood, Wuher 2008)

Necessary and sufficient for degree sequences of 2-trees

e If some d; is odd ‘almost always' works if degree sum is 4n—6
e If all d; even need ‘about’ 1/3 of the d; to be 2



Partial 2-tree: subgraph of a 2-tree

Ny



Partial 2-tree: subgraph of a 2-tree

[



Partial 2-tree: subgraph of a 2-tree

[

e K4 minor free graphs

e series-parallel graphs construction :
add pendent edge; replace edge with a path, add parallel edges



Necessary conditions for degrees of a partial 2-tree
g is the number of ‘missing’ edges = > dj =4n—6 —2g

e When g = 0 sequence is not <”H7 ”;17 ’7;17 n+l 2.2,
° dn <n-1

e There are at least two d; € {1,2}



Necessary conditions for degrees of a partial 2-tree

g is the number of ‘missing’ edges = > dj =4n—6 —2g
e When g = 0 sequence is not <”+1, ”;1, ”;1, ntl 22 . 2>
e d,<n-1
e There are at least two d; € {1,2}

All d; even = (# d; =2) > ™32

(#di=1)<g



Necessary conditions for degrees of a partial 2-tree

g is the number of ‘missing’ edges = > dj =4n—6 —2g
e When g = 0 sequence is not <”+1, ”;1, ”;1, ntl 22 . 2>
e d,<n-1
e There are at least two d; € {1,2}

All d; even = (# d; =2) > 3%

(#d=1)<g

Theorem (Ryan 2013)

Necessary and sufficient for degree sequences of partial 2-trees




Necessary conditions for degrees of a partial 2-tree

g is the number of ‘missing’ edges = > dj =4n—6 —2g

When g = 0 sequence is not <”+1, ”;1, ”;1, ntl 22 . 2>
d,<n-1

There are at least two d; € {1,2}

All d; even = (# d; =2) > ™32

e (#di=1)<g

Theorem (Ryan 2013)

Necessary and sufficient for degree sequences of partial 2-trees

e When some d; is odd condition is essentially (# di =1) < g

o If all dj even (# di =2) > # holds whenever
Sdi<B(n-1)



Question
What are degee sequences of edge colored trees?

(1,0,3) (7,2,1)

(0,1,0)

/N



Question
What are degee sequences of edge colored trees?

(1,0,3) (7,2,1)

(0,1,0)
Necessary Condition:
‘Collapse’ each subset of colors = forest realizable




Degree sequence of edge colored tree
& each subset of colors realizable as a forest

(1,0,3) (7,2,1)

(0,1,0)

Carroll and Isaak 2008 - inductive proof

Alpert, Becker, Iglesius, Hilbert 2010 - extremal and switching
proof

Hillebrand and McDiarmid 2015 - extend to unicyclic with
extra condition



Degree sequences of 2-edge colored graphs
(degree sequence packing): a hint of some results

Assume both sequences and their sum realizable

e Realize if one color sequence has all degrees € {k, k + 1}
(Kundu's Theorem, 1973)

¢ Realize if both sequences and their sum can be realized by
forests (Kleitman, Koren and Li, 1977)

e Realize if Ay > Ay, 01 > 1and (A1 +1)(Ax+1)<n+1
(Diemunsch, Ferrara, Jahanbekam, Shook 2015)

o Realize if sequences are identical (switch to get ‘nice’
Eulerian cycle in these colors then alternate)
(Alpert, Becker, Iglesius, Hilbert 2010)

e Checking is NP-hard (Durr, Guinez, Matamala 2009)



Degree sequences of k-edge colored graphs k > 3
(degree sequence packing): a hint of some results

Assume all sums of subsets of colors realizable

e Polynomial for fixed k and fixed maximum degree (Alpert,
Beck, Hilbert, Iglesius 2010)

e n even, total degree sum is < g + 1 and all but one color
constant (Busch, Ferrara, Hartke, Jacobson, Kaul, West
2012)

e.g., Realization of the sum with all but one color a
1-factor

e Realize if complete bipartite and each color constant on
one part: next ...

e k-edge colored general graphs = k + 1 coloring of
complete graph



Is there a complete bipartite graph with given color vectors?

( ) . (2,1,1,0,0)

« (0,1,1,0,2)
( ) e (2,0,1,1,0)
(1,1,1,1,1) . - (0,2,0,0,2)
( ) e « (0,0,1,3,0)



Is there a complete bipartite graph with given color vectors?

(1,1,1,1,1) (2,1,1,0,0)
(0,1,1,0,2)

(1,1,1,1,1)
(2,0,1,1,0)
(1,1,1,1,1) (0,2,0,0,2)
(1,1,1,1,1) (0,0,1,3,0)

YES for this instance
In general checking is NP-hard
If all (1,1,---,1) in one part then always a solution

i.e. a proper edge coloring in one part



Is there a complete bipartite graph with given color vectors?

(0,1,2) (0,1,2)
(0,3,0) - (1,2,0)
(2,0,1) (1,1,1)
Fill array to get specified margins?
R R (0,1,2)
(0,3,0)
R B B (2,0,1)




Fill array to get specified margins?

R G R [(0,1,2)
G G G 1(0,3,0)
R B B |(2,0,1)

(0,1,2) (1,2,0) (1,1,1)

e 2-colors = degree sequences of bipartite graph
e 3-colors: NP-hard (Durr et al 2009) ‘discrete tomography’
e test for degree sequence of oriented bipartite graph is NP-hard



Fill array to get specified margins?

R R 1(0,1,2)
(0,3,0)
R B B |(2,0,1)

(0,1,2) (1,2,0) (1,1,1)

Use variable x; ;

1 if entry /,j is color k
0 if not



Contingency table - fill with 0, 1’s to meet specified marginals
Assume ‘obvious’ sum conditions

Arbitrary marginals encodes all integer linear programming
problems (DeLoera and Onn 2006)

One face all 1's: Discrete Tomography, edge colored complete
bipartite graphs ... NP-hard

Two faces all 1's (or constant rows) then easy ....



a b c e d (1,1,1,1,1)
a e d b c (1,1,1,1,1)
b c a e d (1,1,1,1,1)
c e a b d (1,1,1,1,1)

(2,1,1,0,0) (0,1,1,0,2) (2,0,1,1,0) (0,2,0,0,2) (0,0,1,3,0)

Question

Discrete Tomography - Can we fill array with specified margins
when rows are permutations?




Question

Does a complete bipartite graph have an edge coloring with one

side proper?

(2,1,1,0,0)
(0,1,1,0,2)
(2,0,1,1,0)
(0,2,0,0,2)
(0,0,1,3,0)




Array specifies edge multiplicities

OONON
ONOH—H
RO
wWwWorOoOg
oNONO

Question
Does a regular bipartite multigraph have a proper coloring?




5 candidates, 4 votes rank all candidates

Voter 1: B, C, K, T, R
Voter 2: B, T, R, C, K,
Voter 3: C, K, B, T, R
Voter 4: K, T, B, C, R

Candidate Profile

B C KR T
st [271T 1T 0 0
2nd |0 1 1 0 2
3d |2 0 1 1 0
4th |0 2 0 0 2
5th |0 0 1 3 0

Question
Are there votes to realize any possible Candidate profile?
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olof[1]3]0L

Birkhoff - Von Neumann Theorem

o—ooco
co—oo
cococo—
coo—o
—HoOoOoO
IT
OCOO—O0 o000
COoOOCO—"oocoo—
OO—HOO|HoooOo
OC—HOOO Boco—O
—OOOO ILOo—HOO
Il +
oNOoONOjoOo—HO
co—HomMmcooo—
H—I—O—H|lO—0O0O
H—HONO|HOOOO
NoANoolpo—HOO
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(2,1,1,0,0)
(0,1,1,0,2)
(2,0,1,1,0)

(0,2,0,0,2)
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5 candidates, 4 votes rank all candidates

. R
C K
C

Voter 1: B, C, K,

Voter 2: B,

. R
B
B

Voter 3: C, K,

R
. R

Candidate Profile

Voter 4: K,

B C KR T

o—ococo
co—oO
oo
coo—o
HOoOOOO
l_l
OO0 OO O
COO0O—Aooco—
PCO—HOO HOOOO
PC—HOOO oo —HO
—HOOOO o—HOO
Il +
oaNoONOloco—HO
Co—omMmpooo—
HH—OH[O—HOOO
H—ONO|HOOOO
NoNoOoOopo—HOO




11 1 /1 /1 _ 1 ! Same Problem

Different Notation

Can we decompose an integer matrix with constant
row/colum sums into permutation matrices?

Can we fill in a 3-dimensional contingency table with 0/1’s
when marginals in 2 dimensions are 1's?

Discrete Tomography - Can we fill array with specified
margins when rows are permutations?

Does a complete bipartite graph have an edge coloring with
one side proper?
Does a regular bipartite multigraph have a proper coloring?

Are there votes to realize any possible Candidate profile?



