Degrees and Trees

Garth Isaak
Lehigh University

47th SEICCGTC at FAU, March 2016

Acknowledgements to: Kathleen Ryan,
REU Students (Hannah Alpert, Amy Becker, Jenny Iglesius, James Hilbert)
T.S. Michael

Recall degree sequence conditions for trees
Basic exercise in a first graph theory course

- Degrees are positive integers and degree sum is even (always assume this)
- Trees (on n vertices) have $n-1$ edges
\Rightarrow Degree sum is $2 n-2$

Positive integers $d_{1}, d_{2}, \ldots, d_{n}$ are degrees of a tree \Leftrightarrow
$\sum d_{i}=2 n-2$

$$
(5,4,3,1,1,1,1,1,1,1,1)
$$

(One) proof (Leaf Removal) of
Positive integers $d_{1}, d_{2}, \ldots, d_{n}$ are degrees of a tree \Leftarrow $\sum d_{i}=2 n-2$

- $d_{1} \geq \cdots \geq d_{n-1} \geq d_{n}$ with $\sum d_{i}=2 n-2$
$\Rightarrow d_{n}=1$ and $d_{1} \geq 2$
- By induction, tree with $d_{1}-1, d_{2}, \ldots, d_{n-1}$
- Add edge $v_{1} v_{n}$

$(3,2,1,1,1) \Rightarrow$
$(2,2,1,1, \quad) \quad \Rightarrow$
$(1,2,1,,) \Rightarrow$
$(1,1, \quad, \quad)$
- Added edge has degree $1 \Rightarrow$ no cycle created

Recall degree sequence conditions for (loopless) multigraphs Another basic exercise in a first graph theory course

- Degrees are positive integers and degree sum is even
- No loops
\Rightarrow edges from max degree vertex go to other vertices
\Rightarrow max degree \leq sum of other degrees

Positive integers $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ with even degree sum, are degrees of a loopless multigraph $\Leftrightarrow d_{1} \leq \sum_{i=2}^{n} d_{i}$
(one) proof of
Positive integers $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ with even degree sum, are degrees of a loopless multigraph $\Leftrightarrow d_{1} \leq \sum_{i=2}^{n} d_{i}$

- $d_{1} \leq d_{2}+\cdots+d_{n} \Rightarrow d_{1}-d_{n} \leq d_{2}+\cdots+d_{n-1}$
- $d_{2} \leq d_{1}$ and $d_{n} \leq d_{n-1} \Rightarrow d_{2} \leq\left(d_{1}-d_{n}\right)+d_{3}+\cdots+d_{n-1}$
- By induction multigraph with $d_{1}-d_{n}, d_{2}, \ldots, d_{n-1}$
- Add edges $v_{1} v_{n}$

$(7,5,2,2,2) \Rightarrow(5,5,5,2,) \Rightarrow(3,5,2,,) \Rightarrow(3,3,$,
- Underlying added edge has degree $1 \Rightarrow$ no cycle created

Both proofs added a 'leaf' \Rightarrow no cycles created

Have we just proved?

Non-Theorem: Positive integers $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ with even degree sum, are degrees of a loopless multitree $\Leftrightarrow d_{1} \leq \sum_{i=2}^{n} d_{i}$ i.e. Multigraph \Rightarrow Multitree with same degrees

$(5,4,4,3,2)$

(5, 4, 4, 3, 2)

Both proofs added a 'leaf' \Rightarrow no cycles created

Have we just proved?

Non-Theorem: Positive integers $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ with even degree sum, are degrees of a loopless multitree $\Leftrightarrow d_{1} \leq \sum_{i=2}^{n} d_{i}$ i.e. Multigraph \Rightarrow Multitree with same degrees

$(2,2,2,2)$

(2, 2, 2, 2)

Both proofs added a 'leaf' \Rightarrow no cycles created

Have we just proved?

Non-Theorem: Positive integers $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ with even degree sum, are degrees of a loopless multitree $\Leftrightarrow d_{1} \leq \sum_{i=2}^{n} d_{i}$ i.e. Multigraph \Rightarrow Multitree with same degrees

$(5,4,3)$

Both proofs added a 'leaf' \Rightarrow no cycles created

Have we just proved?

Non-Theorem: Positive integers $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ with even degree sum, are degrees of a loopless multitree $\Leftrightarrow d_{1} \leq \sum_{i=2}^{n} d_{i}$ i.e. Multigraph \Rightarrow Multitree with same degrees

- $(2,2,2,2)$ and $(5,4,3)$ fail

Both proofs added a 'leaf' \Rightarrow no cycles created

Have we just proved?

Non-Theorem: Positive integers $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ with even degree sum, are degrees of a loopless multitree $\Leftrightarrow d_{1} \leq \sum_{i=2}^{n} d_{i}$ i.e. Multigraph \Rightarrow Multitree with same degrees

- $(2,2,2,2)$ and $(5,4,3)$ fail
- Forests are bipartite so $d_{1} \leq d_{2}+\cdots d_{n} \Rightarrow$ can partition d_{i} into two parts with equal sum
- Test if given integer list partitions into 2 equal sum parts? NP-hard problem so something is really wrong

What went wrong with multgraph proof?
Positive integers $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ with even degree sum, are degrees of a loopless multigraph $\Leftrightarrow d_{1} \leq \sum_{i=2}^{n} d_{i}$

- $d_{1} \leq d_{2}+\cdots+d_{n} \Rightarrow d_{1}-d_{n} \leq d_{2}+\cdots+d_{n-1}$
- $d_{2} \leq d_{1}$ and $d_{n} \leq d_{n-1} \Rightarrow d_{2} \leq\left(d_{1}-d_{n}\right)+d_{3}+\cdots+d_{n-1}$
- By induction multigraph with $d_{1}-d_{n}, d_{2}, \ldots, d_{n-1}$
- Add edges $v_{1} v_{n}$

$(6,5,3,2)$
$\Rightarrow \quad(4,5,3$,

What went wrong with multgraph proof?
Positive integers $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ with even degree sum, are degrees of a loopless multigraph $\Leftrightarrow d_{1} \leq \sum_{i=2}^{n} d_{i}$

- $d_{1} \leq d_{2}+\cdots+d_{n} \Rightarrow d_{1}-d_{n} \leq d_{2}+\cdots+d_{n-1}$
- $d_{2} \leq d_{1}$ and $d_{n} \leq d_{n-1} \Rightarrow d_{2} \leq\left(d_{1}-d_{n}\right)+d_{3}+\cdots+d_{n-1}$

IF $n \geq 4$

- By induction multigraph with $d_{1}-d_{n}, d_{2}, \ldots, d_{n-1}$
- Add edges $v_{1} v_{n}$

$(6,5,3,2) \quad \Rightarrow \quad(4,5,3$,

With correct basis for $n=3$ we get

> Degrees of a multigraph $d_{1} \leq d_{2}+\cdots+d_{n}$ have a realization with underlying graph a forest or a graph with exactly one cycle (which is a triangle)

Note that partitioning integer lists into equal sum parts is NP-hard. So might not detect forest realization if there is one.

Good example why need basis for induction

With correct basis for $n=3$ we get

> Degrees of a multigraph $d_{1} \leq d_{2}+\cdots+d_{n}$ have a realization with underlying graph a forest or a graph with exactly one cycle (which is a triangle)

Note that partitioning integer lists into equal sum parts is NP-hard. So might not detect forest realization if there is one.

Good example why need basis for induction

- What are conditions for a multiforest?
- What if we want connected? i.e., multitree?

Loopless multitree

Degree conditions for multitrees?
Positive integers $d_{1}, d_{2}, \ldots, d_{n}$ are degrees of a multiforest \Leftrightarrow degrees partition into two parts with equal sum I.e., Bipartite multigraph degree sequences have multiforest realizations

- easy exercise(s), induction; switching, ...
- Get $d_{1} \leq \sum_{i=1}^{n} d_{i}$ and even degree sum for free
- Need a little more for (connected) multitrees

In a multiforest:
If all d_{i} are even then edge multiplicities are all even

- 'Proof': simple parity argument
- In general edge multiplicities are multiples of $\operatorname{gcd}\left(d_{1}, \ldots, d_{n}\right)$
- For multiforest realizations may as well divide by $\operatorname{gcd}\left(d_{1}, \ldots, d_{n}\right)$

Positive integers $d_{1}, d_{2}, \ldots, d_{n}$ that partition into two parts with equal sum realize a multitree if $\frac{\sum d_{i}}{g c d} \geq 2 n-2$

Proof: Get multiforest and use switching to get multitree

Positive integers $d_{1}, d_{2}, \ldots, d_{n}$ that partition into two parts with equal sum realize a multitree if $\frac{\sum d_{i}}{g c d} \geq 2 n-2$

Proof: Get multiforest and use switching to get multitree

\Downarrow

Degrees of a multigraph $d_{1} \leq d_{2}+\cdots+d_{n}$ have a realization with underlying graph a forest or a graph with exactly one cycle (which is a triangle)

Alternate Proofs:

- Induction
- Switching (Will and Hulett 2004)
- Split one degree to get degree partition \Rightarrow forest \Rightarrow merge to get one cycle

Positive integers $d_{1}, d_{2}, \ldots, d_{n}$ that partition into two parts with equal sum realize a multitree if $\frac{\sum d_{i}}{g c d} \geq 2 n-2$

Alternate Proofs:

- Switching
- Induction with careful choice of values to reduce

Multigraph degrees result \Rightarrow Realization with at most n underlying edges

Multigraph degrees result \Rightarrow Realization with at most n underlying edges

Question

What is range of number of underlying edges for multigraph sequences?

Multigraph degrees result

 \Rightarrow Realization with at most n underlying edges
Question
 What is range of number of underlying edges for multigraph sequences?

- Realization to minimize number of underlying edges is NP-hard (Hulett, Will, Woeginger 2008)
- Realization to maximize number of underlying edges: Minimize number of 2's to add to degree sequence to get (simple) graph (Owens and Trent 1967)

Question

What are Degree Sequences of 2-multitrees ?
Each edge multiplicity 1 or 2
2-multitree

2-multiforest conditions, $d_{1} \geq \ldots, \geq d_{n}$ with even degree sum

- If all d_{i} even \Rightarrow edge multiplicities all $2 \Rightarrow \frac{d_{1}}{2}, \frac{d_{2}}{2}, \ldots, \frac{d_{n}}{2}$ are degrees of a forest
i.e., sum is a multiple of 4 and at most $2(2 n-2)=4 n-4$
- At most 2 edges to each vertex $\Rightarrow d_{1} \leq 2(n-1)$
- At least 2 'leaves' \Rightarrow at least two d_{i} are 1 or 2
- At most $2(n-1)$ edges \Rightarrow degree sum at most $4 n-4$

These 3 will be implied by further conditions

More 2-multiforest conditions

- Each odd degree vertex adjacent to edge with multiplicity 1 \Rightarrow degree sum $\leq 4 n-4$ - \#odd degrees
- Remove degree 1 vertices \Rightarrow what is left can't have too large a degree sum \Rightarrow degree sum $\leq 4 n-4-2 \cdot$ (\#degree 1 vertices)
Conditions are also sufficient
Positive integers $d_{1}, d_{2}, \ldots, d_{n}$ with even degree sum are degrees of a 2-multiforest \Leftrightarrow
- When all d_{i} even: $\sum d_{i} \leq 4 n-4$ and a multiple of 4
- Some d_{i} odd: $\sum d_{i} \leq 4 n-4-\max \left\{n_{\text {odd }}, 2 n_{1}\right\}$

Proof Version 1 Idea: Leaf Removal

Some d_{i} odd: $\sum d_{i} \leq 4 n-4-\max \left\{n_{\text {odd }}, 2 n_{1}\right\} \Rightarrow 2$-Multitree

- Remove 1 or 2 from list and reduce another term
- Multiple cases to consider

Proof Version 2 Idea: Caterpillar Construction

Some d_{i} odd: $\sum d_{i} \leq 4 n-4-\max \left\{n_{\text {odd }}, 2 n_{1}\right\} \Rightarrow 2$-Multitree

For Trees: Dominated Subtree on degree ≥ 2 vertices

Proof Version 2 Idea: Caterpillar Construction

Some d_{i} odd: $\sum d_{i} \leq 4 n-4-\max \left\{n_{\text {odd }}, 2 n_{1}\right\} \Rightarrow 2$-Multitree

For Trees: Dominated Subtree on degree ≥ 2 vertices

Proof Version 2 Idea: Lobster Construction

Some d_{i} odd: $\sum d_{i} \leq 4 n-4-\max \left\{n_{\text {odd }}, 2 n_{1}\right\} \Rightarrow 2$-Multitree

For 2 MultiTrees:

Attachments

Proof Version 2 Idea: Lobster Construction

Some d_{i} odd: $\sum d_{i} \leq 4 n-4-\max \left\{n_{\text {odd }}, 2 n_{1}\right\} \Rightarrow 2$-Multitree

For 2 MultiTrees:

Attachments

Proof Version 3 Idea: Branch Repair

Some d_{i} odd: $\sum d_{i} \leq 4 n-4-\max \left\{n_{\text {odd }}, 2 n_{1}\right\} \Rightarrow 2$-Multitree

$$
\begin{aligned}
& (5,4,4,3,3,2,2,2,1,1,1,1,1,1,1,1,1,1,1) \\
& 4,4,3,3,2,2
\end{aligned}
$$

Proof Version 3 Idea: Branch Repair

Some d_{i} odd: $\sum d_{i} \leq 4 n-4-\max \left\{n_{\text {odd }}, 2 n_{1}\right\} \Rightarrow 2$-Multitree

$$
(5,4,4,3,3,2,2,2,1,1,1,1,1,1,1,1,1,1,1)
$$

$$
4,4,3,3,2,2
$$

$$
5,2
$$

$$
3,4,3,3,2,2,1,1,1,1,1,1
$$

$$
4,2,1,1,1,1
$$

Proof Version 3 Idea: Branch Repair

Some d_{i} odd: $\sum d_{i} \leq 4 n-4-\max \left\{n_{\text {odd }}, 2 n_{1}\right\} \Rightarrow 2$-Multitree

$$
(5,4,4,3,3,2,2,2,1,1,1,1,1,1,1,1,1,1,1)
$$

$$
4,4,3,3,2,2
$$

$$
5,2
$$

$$
3,4,3,3,2,2,1,1,1,1,1,1
$$

$$
4,2,1,1,1,1
$$

With 2-multitrees split degree ≥ 4 and distribute 3,2,1's

For 2-multitrees the degree partition matters

- Degree partition does not matter for trees and multitrees
- Degree partition matters for 2-multitrees and bipartite
- Similar conditions for parititon lists and 2-multitrees

$(4,4) ;(3,3,1,1)$
with degree bipartition
2-multibipartite graph

bipartition (4, 4); (3, 3, 1, 1)
3-multitree with degree
bipartition (4, 3, 1); (4, 3, 1)
2-multitree with degree

Question

What are Degree Sequences of 2-trees
'Build' by repeatedly attaching a 'pendent' vertex to an edge

Question

What are Degree Sequences of 2-trees
'Build' by repeatedly attaching a 'pendent' vertex to an edge

Question

What are Degree Sequences of 2-trees
'Build' by repeatedly attaching a 'pendent' vertex to an edge

Question

What are Degree Sequences of 2-trees
'Build' by repeatedly attaching a 'pendent' vertex to an edge

Question

What are Degree Sequences of 2-trees
'Build' by repeatedly attaching a 'pendent' vertex to an edge

Question

What are Degree Sequences of 2-trees

‘Build’ by repeatedly attaching a 'pendent' vertex to an edge

Necessary Conditions for degrees of a 2-tree

- degree sum is $4 n-6$
- $n-1 \geq d_{1} \geq \ldots \geq d_{n} \geq 2$
- There are at least two $d_{i}=2$

Question

What are Degree Sequences of 2-trees

‘Build’ by repeatedly attaching a 'pendent' vertex to an edge

Necessary Conditions for degrees of a 2-tree

- degree sum is $4 n-6$
- $n-1 \geq d_{1} \geq \ldots \geq d_{n} \geq 2$
- There are at least two $d_{i}=2$
- sequence is not $\left\langle\frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, 2,2, \ldots, 2\right\rangle$
- All d_{i} even $\Rightarrow\left(\# d_{i}=2\right) \geq \frac{n+3}{3}$

Necessary Conditions for degrees of a 2-tree

- degree sum is $4 n-6$
- $n-1 \geq d_{1} \geq \ldots \geq d_{n} \geq 2$
- There are at least two $d_{i}=2$
- sequence is not $\left\langle\frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, 2,2, \ldots, 2\right\rangle$
- All d_{i} even $\Rightarrow\left(\# d_{i}=2\right) \geq \frac{n+3}{3}$

Necessary Conditions for degrees of a 2-tree

- degree sum is $4 n-6$
- $n-1 \geq d_{1} \geq \ldots \geq d_{n} \geq 2$
- There are at least two $d_{i}=2$
- sequence is not $\left\langle\frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, 2,2, \ldots, 2\right\rangle$
- All d_{i} even $\Rightarrow\left(\# d_{i}=2\right) \geq \frac{n+3}{3}$

Theorem (Bose, Dujmovic, Kriznac, Langerman, Morin, Wood, Wuher 2008)
Necessary and sufficient for degree sequences of 2-trees

Necessary Conditions for degrees of a 2-tree

- degree sum is $4 n-6$
- $n-1 \geq d_{1} \geq \ldots \geq d_{n} \geq 2$
- There are at least two $d_{i}=2$
- sequence is not $\left\langle\frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, 2,2, \ldots, 2\right\rangle$
- All d_{i} even $\Rightarrow\left(\# d_{i}=2\right) \geq \frac{n+3}{3}$

Theorem (Bose, Dujmovic, Kriznac, Langerman, Morin, Wood, Wuher 2008)

Necessary and sufficient for degree sequences of 2-trees

- If some d_{i} is odd 'almost always' works if degree sum is $4 n-6$
- If all d_{i} even need 'about' $1 / 3$ of the d_{i} to be 2

Partial 2-tree: subgraph of a 2-tree

Partial 2-tree: subgraph of a 2-tree

Partial 2-tree: subgraph of a 2-tree

- K_{4} minor free graphs
- series-parallel graphs construction : add pendent edge; replace edge with a path, add parallel edges

Necessary conditions for degrees of a partial 2-tree g is the number of 'missing' edges $\Rightarrow \sum d_{l}=4 n-6-2 g$

- When $g=0$ sequence is not $\left\langle\frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, 2,2, \ldots, 2\right\rangle$
- $d_{n} \leq n-1$
- There are at least two $d_{i} \in\{1,2\}$

Necessary conditions for degrees of a partial 2-tree g is the number of 'missing' edges $\Rightarrow \sum d_{l}=4 n-6-2 g$

- When $g=0$ sequence is not $\left\langle\frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, 2,2, \ldots, 2\right\rangle$
- $d_{n} \leq n-1$
- There are at least two $d_{i} \in\{1,2\}$
- All d_{i} even $\Rightarrow\left(\# d_{i}=2\right) \geq \frac{n+3-2 g}{3}$
- $\left(\# d_{i}=1\right) \leq g$

Necessary conditions for degrees of a partial 2-tree g is the number of 'missing' edges $\Rightarrow \sum d_{l}=4 n-6-2 g$

- When $g=0$ sequence is not $\left\langle\frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, 2,2, \ldots, 2\right\rangle$
- $d_{n} \leq n-1$
- There are at least two $d_{i} \in\{1,2\}$
- All d_{i} even $\Rightarrow\left(\# d_{i}=2\right) \geq \frac{n+3-2 g}{3}$
- $\left(\# d_{i}=1\right) \leq g$

Theorem (Ryan 2013)

Necessary and sufficient for degree sequences of partial 2-trees

Necessary conditions for degrees of a partial 2-tree g is the number of 'missing' edges $\Rightarrow \sum d_{l}=4 n-6-2 g$

- When $g=0$ sequence is not $\left\langle\frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, 2,2, \ldots, 2\right\rangle$
- $d_{n} \leq n-1$
- There are at least two $d_{i} \in\{1,2\}$
- All d_{i} even $\Rightarrow\left(\# d_{i}=2\right) \geq \frac{n+3-2 g}{3}$
- $\left(\# d_{i}=1\right) \leq g$

Theorem (Ryan 2013)

Necessary and sufficient for degree sequences of partial 2-trees

- When some d_{i} is odd condition is essentially $\left(\# d_{i}=1\right) \leq g$
- If all d_{i} even $\left(\# d_{i}=2\right) \geq \frac{n+3-2 g}{3}$ holds whenever $\sum d_{i} \leq \frac{18}{5}(n-1)$

Question

What are degee sequences of edge colored trees?

Question

What are degee sequences of edge colored trees?

Necessary Condition:
'Collapse' each subset of colors \Rightarrow forest realizable

Degree sequence of edge colored tree \Leftrightarrow each subset of colors realizable as a forest

- Carroll and Isaak 2008 - inductive proof
- Alpert, Becker, Iglesius, Hilbert 2010 - extremal and switching proof
- Hillebrand and McDiarmid 2015 - extend to unicyclic with extra condition

Degree sequences of 2-edge colored graphs (degree sequence packing): a hint of some results

Assume both sequences and their sum realizable

- Realize if one color sequence has all degrees $\in\{k, k+1\}$ (Kundu's Theorem, 1973)
- Realize if both sequences and their sum can be realized by forests (Kleitman, Koren and Li, 1977)
- Realize if $\Delta_{2} \geq \Delta_{1}, \delta_{1} \geq 1$ and $\left(\Delta_{1}+1\right)\left(\Delta_{2}+1\right) \leq n+1$ (Diemunsch, Ferrara, Jahanbekam, Shook 2015)
- Realize if sequences are identical (switch to get 'nice' Eulerian cycle in these colors then alternate)
(Alpert, Becker, Iglesius, Hilbert 2010)
- Checking is NP-hard (Durr, Guinez, Matamala 2009)

Degree sequences of k-edge colored graphs $k \geq 3$ (degree sequence packing): a hint of some results

Assume all sums of subsets of colors realizable

- Polynomial for fixed k and fixed maximum degree (Alpert, Beck, Hilbert, Iglesius 2010)
- n even, total degree sum is $\leq \frac{n}{2}+1$ and all but one color constant (Busch, Ferrara, Hartke, Jacobson, Kaul, West 2012)
e.g., Realization of the sum with all but one color a 1-factor
- Realize if complete bipartite and each color constant on one part: next ...
- k-edge colored general graphs $=k+1$ coloring of complete graph

Is there a complete bipartite graph with given color vectors?
$(1,1,1,1,1)$

- $(2,1,1,0,0)$
- $(0,1,1,0,2)$
(1, 1, 1, 1, 1)
- $(2,0,1,1,0)$
$(1,1,1,1,1)$
-

$(1,1,1,1,1)$
-

- $(0,2,0,0,2)$
- $(0,0,1,3,0)$

Is there a complete bipartite graph with given color vectors?

YES for this instance

In general checking is NP-hard

If all $(1,1, \cdots, 1)$ in one part then always a solution i.e. a proper edge coloring in one part

Is there a complete bipartite graph with given color vectors?

Fill array to get specified margins?

R	G	R
$(0,1,2)$		
G	G	G
$(0,3,0)$		
R	B	B
$(2,0,1)$		

$(0,1,2)(1,2,0)(1,1,1)$

Fill array to get specified margins?

$(0,1,2)$
$(0,3,0)$
$(2,0,1)$

$$
(0,1,2) \quad(1,2,0) \quad(1,1,1)
$$

- 2 -colors $=$ degree sequences of bipartite graph
- 3-colors: NP-hard (Durr et al 2009) 'discrete tomography'
- test for degree sequence of oriented bipartite graph is NP-hard

Fill array to get specified margins?

R	G	R
G	G	G
$(0,1,2)$		
$(0,3,0)$		
R	B	B
$(2,0,1)$		

$(0,1,2) \quad(1,2,0) \quad(1,1,1)$
Use variable $x_{i, j, k}$
1 if entry i, j is color k 0 if not

- Contingency table - fill with 0,1 's to meet specified marginals Assume 'obvious' sum conditions
- Arbitrary marginals encodes all integer linear programming problems (DeLoera and Onn 2006)
- One face all 1's: Discrete Tomography, edge colored complete bipartite graphs ... NP-hard
- Two faces all 1's (or constant rows) then easy

Question

Discrete Tomography - Can we fill array with specified margins when rows are permutations?

Question

Does a complete bipartite graph have an edge coloring with one side proper?

Array specifies edge multiplicities | 2 | 1 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 0 | 2 |
| 2 | 0 | 1 | 1 | 0 |
| 0 | 2 | 0 | 0 | 2 |
| 0 | 0 | 1 | 3 | 0 |

Question

Does a regular bipartite multigraph have a proper coloring?

5 candidates, 4 votes rank all candidates

$$
\begin{aligned}
& \text { Voter 1: B, C, K, T, R } \\
& \text { Voter 2: B, T, R, C, K, } \\
& \text { Voter 3: C, K, B, T, R } \\
& \text { Voter 4: K, T, B, C, R }
\end{aligned}
$$

Candidate Profile

$B \quad C \quad K \quad R \quad T$					
1st	2	1	1	0	0
2nd	0	1	1	0	2
3rd	2	0	1	1	0
4th	0	2	0	0	2
5th	0	0	1	3	0

Question

Are there votes to realize any possible Candidate profile?

Birkhoff - Von Neumann Theorem

$(1,1,1,1,1)$
(1, 1, 1, 1, 1)
(1, 1, 1, 1, 1)
(1, $1,1,1,1$)

$(2,1,1,0,0)$
$(0,1,1,0,2)$
(2, $, 1,1,1,0)$
$(0,2,0,0,2)$
(0, $0,1,3,0)$

$$
\begin{aligned}
& (1,1,1,1,1) \\
& (2,1,1,0,0) \\
& \text { (} 0,1,1,0,2 \text {) } \\
& \text { (1, 1, 1, 1, 1) } \\
& (1,1,1,1,1) \\
& \text { (2, 0, 1, 1, 0) } \\
& \text { (0, 2, 0, 0, 2) } \\
& \text { (1, 1, 1, 1, 1) } \\
& \text { (0, 0, 1, 3, 0) } \\
& \left.\begin{array}{l}
{\left[\begin{array}{lllll}
2 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 2 \\
2 & 0 & 1 & 1 & 0 \\
0 & 2 & 0 & 0 & 2 \\
0 & 0 & 1 & 3 & 0
\end{array}\right]} \\
\left.\left.\left.\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]+\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]+\begin{array}{|llllll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
\end{array}+\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right]+
\end{aligned}
$$

[^0]\[

\frac{\left.$$
\begin{array}{lllll}
2 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 2 \\
2 & 0 & 1 & 1 & 0 \\
0 & 2 & 0 & 0 & 2 \\
0 & 0 & 1 & 3 & 0
\end{array}
$$\right]=\left[$$
\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}
$$\right]+$$
\begin{array}{|lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}
$$}{\left[$$
\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}
$$\right.}+
\]

5 candidates, 4 votes rank all candidates

$$
\begin{aligned}
& \text { Voter 1: B, C, K, T, R } \\
& \text { Voter 2: B, T, R, C, K, } \\
& \text { Voter 3: C, K, B, T, R } \\
& \text { Voter 4: K, T, B, C, R }
\end{aligned}
$$

Candidate Profile

Same Problem

Different Notation

- Can we decompose an integer matrix with constant row/colum sums into permutation matrices?
- Can we fill in a 3-dimensional contingency table with $0 / 1$'s when marginals in 2 dimensions are 1's?
- Discrete Tomography - Can we fill array with specified margins when rows are permutations?
- Does a complete bipartite graph have an edge coloring with one side proper?
- Does a regular bipartite multigraph have a proper coloring?
- Are there votes to realize any possible Candidate profile?

[^0]:

