Degree Lists for
2 Two

tree like graph classes

Garth Isaak, Kathleen Ryan
Lehigh University



Recall degree list conditions for trees
A basic exercise in a first graph theory course

o Degrees are positive integers and degree sum is even
(always assume this)

e Trees are bipartite
= degrees partition into two parts with equal sum

e Trees (on n vertices) have n — 1 edges
= Degree sum is 2n — 2

(5,4,3,1,1,1,1,1,1,1,1)



Recall degree list conditions for trees
A basic exercise in a first graph theory course

o Degrees are positive integers and degree sum is even
(always assume this)

e Trees are bipartite
= degrees partition into two parts with equal sum

e Trees (on n vertices) have n — 1 edges
= Degree sum is 2n — 2

Positive integers di, db, ..., d, are degrees of a tree &
Z d,' =2n—2

(5,4,3,1,1,1,1,1,1,1,1)



Recall degree list conditions for loopless multigraphs
another basic exercise in a first graph theory course

o Degrees are positive integers and degree sum is even

e No loops
= edges from max degree vertex go to other vertices
= max degree < sum of other degrees




Recall degree list conditions for loopless multigraphs
another basic exercise in a first graph theory course

o Degrees are positive integers and degree sum is even

e No loops
= edges from max degree vertex go to other vertices
= max degree < sum of other degrees

Positive integers d; > d» > --- > d,, with even degree sum, are
degrees of a loopless multigraph < di <> 7 , dj

J




Loopless multitree

Exercise - What are conditions for degree lists of
multitrees?




Degree conditions for multitrees?

Positive integers dy, do, ..., d, are degrees of a multiforest
& degrees partition into two parts with equal sum

e easy exercise(s), induction; switching, ...
o Get d; < 27:1 d; and even degree sum for free

e Note that partitioning integer lists into equal sum parts is
NP-hard

e Need a little more for multitrees



In a multiforest:
If all d; are even then edge multiplicities are all even

e 'Proof’: parity argument

e In general edge multiplicities are multiplies of gcd(d,, ..., d,)



Positive integers di, d, . .., d, that partition into two parts with

. . ) d;
equal sum realize a multitree if =—- > 2n—2
gcd

Get multiforest and the use switching to get multitree

s




Positive integers di, d, . .., d, that partition into two parts with

equal sum realize a multitree if == >2n—2
gcd

Get multiforest and the use switching to get multitree

s




It would have been nice to have the multigraph condition instead
of the NP-hard partition condition

Non-Theorem: Positive integers di > d» > --- > d,, with even
degree sum, are degrees of a loopless multitree < d; <Y 7 , d;
Moreover can be realized with a maximum degree vertex adjacent
to a minimum degree vertex

False Proof by example:
Casel: dy =dr: 7,7,...,5,3
By induction construct multitree 4,7,...,5,3

add 3 edges between first vertex and a new degree 3 vertex



It would have been nice to have the multigraph condition instead
of the NP-hard partition condition

Non-Theorem: Positive integers di > d» > --- > d,, with even
degree sum, are degrees of a loopless multitree < d; <Y 7 , d;
Moreover can be realized with a maximum degree vertex adjacent
to a minimum degree vertex

False Proof by example:

Case 2: di > dr: 9,7,...,5,3

By induction construct multitree 8,7,...,5,2 with edges between
degree 8 and degree 2 add a(nother) edge between 8 and 2



It would have been nice to have the multigraph condition instead
of the NP-hard partition condition

Non-Theorem: Positive integers di > db > --- > d,, with even
degree sum, are degrees of a loopless multitree < d; <Y 7 , d;
Moreover can be realized with a maximum degree vertex adjacent
to a minimum degree vertex

False Proof by example:

Basis?
Case 1 collapses at n = 3



e multitree degree conditions equivalent to NP-hard problem
e So look at 2-multitrees (each edge multiplicity 1 or 2)

e Should not expect anything nice for k-multitrees as
partition is NP-hard



2-multiforest conditions, d; > ..., > d, with even degree sum

d do

e If all d; even = edge multiplicities all 2 = 3, 7,...,% are

degrees of a forest
i.e., sum is a multiple of 4 and at most 2(2n —2) = 4n —4

o At most 2 edges to each vertex = d; <2(n—1)
e At least 2 ‘leaves’ = at least two d; are 1 or 2

o At most 2(n — 1) edges = degree sum at most 4n — 4



2-multiforest conditions, d; > ..., > d, with even degree sum

4 b 9 are

e If all d; even = edge multiplicities all 2 = 3, 3,..., 3

degrees of a forest
i.e., sum is a multiple of 4 and at most 2(2n —2) = 4n —4

e At most 2 edges to each vertex = di <2(n—1)
e At least 2 ‘leaves’ = at least two d; are 1 or 2
o At most 2(n — 1) edges = degree sum at most 4n — 4

e Each odd degree vertex adjacent to edge with multiplicity 1
= degree sum < 4n — 4 — #odd degrees
e Remove degree 1 vertices

= what is left can't have too large a degree sum
= degree sum < 4n—4 — 2. (#degree 1 vertices)



2-multiforest conditions, d; > ..., > d, with even degree sum

4 b 9 are

e If all d; even = edge multiplicities all 2 = 3, 3,..., 3

degrees of a forest
i.e., sum is a multiple of 4 and at most 2(2n —2) = 4n —4

e At most 2 edges to each vertex = di <2(n—1)
e At least 2 ‘leaves’ = at least two d; are 1 or 2
o At most 2(n — 1) edges = degree sum at most 4n — 4

e Each odd degree vertex adjacent to edge with multiplicity 1
= degree sum < 4n — 4 — #odd degrees

e Remove degree 1 vertices
= what is left can't have too large a degree sum
= degree sum < 4n—4 — 2. (#degree 1 vertices)

Conditions are also sufficient




2-multiforest conditions, d; > ..., > d, with even degree sum

9 9 are

e If all d; even = edge multiplicities all 2 = 3, 3,..., 3

degrees of a forest
i.e., sum is a multiple of 4 and at most 2(2n —2) =4n—4

e At most 2 edges to each vertex = di <2(n—1)

o At least 2 ‘leaves’ = at least two d; are 1 or 2

e At most 2(n — 1) edges = degree sum at most 4n — 4

e Each odd degree vertex adjacent to edge with multiplicity 1
= degree sum < 4n — 4 — #odd degrees

e Remove degree 1 vertices
= what is left can't have too large a degree sum
= degree sum < 4n— 4 — 2. (#degree 1 vertices)

Conditions are also sufficient

o Connected unless all d; even and > d; < 4n—4 or
some d; odd and ) d; < 2n—2
e Get partition into parts with equal sum for ‘free’



2-trees
‘Build’ by repeatedly attaching a ‘pendent’ vertex to an edge

AN



2-trees
‘Build’ by repeatedly attaching a ‘pendent’ vertex to an edge

/N



2-trees
‘Build’ by repeatedly attaching a ‘pendent’ vertex to an edge

v



2-trees
‘Build’ by repeatedly attaching a ‘pendent’ vertex to an edge

N



2-trees
‘Build’ by repeatedly attaching a ‘pendent’ vertex to an edge

Ny



2-trees
‘Build’ by repeatedly attaching a ‘pendent’ vertex to an edge

Ny

Necessary Conditions for degrees of a 2-tree

e degree sum is 4n—6
en—1>dy>...>d,>2

e There are at least two d; = 2

o listis not (2EL nfd ntl ndl 95 .2)
All d; even = (# d; =2) > 53




Necessary Conditions for degrees of a 2-tree

e degree sum is 4n—6
en—-1>d>...>2d, >2

There are at least two d; = 2

list is not (2L, oft bl ndl 55 2)
All d; even = (# d; =2) > 23




Necessary Conditions for degrees of a 2-tree

e degree sum is 4n—6
en—-1>d>...>2d, >2
e There are at least two d; = 2
o listis not (EL mfl ntl ndl oo . 2)

o All dj even = (# d; =2) > "3

Theorem (Bose, Dujmovic, Kriznac, Langerman, Morin, Wood,
Wuher 2008)

Necessary and sufficient for degree lists of 2-trees




Necessary Conditions for degrees of a 2-tree

e degree sum is 4n—6
en—-1>d>...>2d, >2
e There are at least two d; = 2
o listis not (EL mfl ntl ndl oo . 2)

o All dj even = (# d; =2) > "3

Theorem (Bose, Dujmovic, Kriznac, Langerman, Morin, Wood,
Wuher 2008)

Necessary and sufficient for degree lists of 2-trees

e If some d; is odd ‘almost always' works if degree sum is 4n—6
e If all d; even need ‘about’ 1/3 of the d; to be 2



Partial 2-tree: subgraph of a 2-tree

A\



Partial 2-tree: subgraph of a 2-tree

[



Partial 2-tree: subgraph of a 2-tree

[

e K4 minor free graphs

e series-parallel graphs
construct: add pendent edge; replace edge with a path, add

parallel edges



Necessary conditions for degrees of a partial 2-tree

g is the number of ‘missing’ edges = > dj =4n—6—2g
e When g =0 list is not <%1, %1, %1, %1,2,2,...,2>
e d,<n-1

e There are at least two d; € {1,2}



Necessary conditions for degrees of a partial 2-tree

g is the number of ‘missing’ edges = > dj =4n—6—2g
e When g =0 list is not <%1, %1, %1, %1,2,2,...,2>
e d,<n-1
e There are at least two d; € {1,2}

Al d; even = (4 d; =2) > 3%

(#d=1)<g



Necessary conditions for degrees of a partial 2-tree

g is the number of ‘missing’ edges = > dj =4n—6—2g
e When g =0 list is not <%1, %1, %1, %1,2,2,...,2>
e d,<n-1
e There are at least two d; € {1,2}

Al d; even = (4 d; =2) > 3%

(#d=1)<g

Theorem
Necessary and sufficient for degree lists of partial 2-trees




Necessary conditions for degrees of a partial 2-tree

g is the number of ‘missing’ edges = > dj =4n—6—2g
e When g =0 list is not <%1, %1, %1, %1,2,2,...,2>
e d,<n-1
e There are at least two d; € {1,2}

Al d; even = (4 d; =2) > 3%

(#d=1)<g

Theorem
Necessary and sufficient for degree lists of partial 2-trees

e When some d; is odd condition is essentially (# di =1) < g
o If all dj even (# d; =2) > # holds whenever
Sdi<B(n-1)



Degree lists for partial 2-multitrees? (series-parallel
multigraphs)



Degree lists for partial 2-multitrees? (series-parallel
multigraphs)

Degrees of a loopless multigraph i.e., di < Y7, d; can be
realized as a unicylic multiforest where the cycle is a triangle




Degree lists for partial 2-multitrees? (series-parallel
multigraphs)

Degrees of a loopless multigraph i.e., d; < Y7 , d; can be
realized as a unicylic multiforest where the cycle is a triangle

Proof: Earlier false proof with corrected basis



Degree lists for partial 2-multitrees? (series-parallel
multigraphs)

Degrees of a loopless multigraph i.e., di < Y7, d; can be
realized as a unicylic multiforest where the cycle is a triangle

Proof: Earlier false proof with corrected basis

Degrees of a loopless multigraph can be realized as a unicylclic
multitree (unless = Z L is too small) J

Proof: Adjust 2 of the d; to get partition into equal sums
construct a multitree
then add multiedges between 2 adjusted vertices



