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Abstract

We study three connective versions of the spectrum for topological modular forms of
level 3. All three were described briefly by Mahowald and Rezk in [10], but we add
much detail to their discussion. Letting tmf(3) denote our connective model which is a
ring spectrum, we compute tmf(3)∗(RP∞).
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1 Introduction

In [10], the second author and Rezk discuss the periodic spectrum TMF(Γ0(3)), ab-
breviated here as TMF(3), associated to topological modular forms of level 3. In Section
7 of [10], they discuss briefly three connective models of TMF(3). The main purpose of
this paper is to clarify and fill in details for these connective models.

The first model is X ∧ tmf , where X is a certain 10-cell complex, and tmf is the
connective 2-primary spectrum discussed in [1]. The spectrum X∧tmf was first introduced
by the second author and Gorbounov in their study of MO[8] in [7]. It is probably the best
of our three models because it is a ring spectrum. In Section 2, we define it and compute its
homotopy groups. Our description and method of computation differ somewhat from that
of [7].

In [10], another connective model for TMF(3) is discussed, which is Z ∧ tmf , where
Z is a certain 8-cell complex. Although Z ∧ tmf is not a ring spectrum, its importance is
primarily that the dimensions of the cells of Z allow one to easily construct a map Z →
TMF(3) thanks to certain homotopy groups of TMF(3) being 0. The other models are
then related to TMF(3) via the Z-model. In Section 3, we provide some additional details
to the sketch given in [10].

In Section 4, we consider a third model which was also introduced in [10]. This one is
closely related to consideration of a splitting of tmf ∧ tmf . There is a Brown-Gitler-type
splitting of the A-module H∗(tmf ∧ tmf), and we show that it is not realized by a spectrum
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splitting. Again we add some clarity and detail to the description in [10] of this model and
its homotopy groups.

All three of our models are equivalent after inversion of v2, but as connective models
they are different. The homotopy groups of the second and third models are subsets of those
of the first, obtained by omitting certain initial portions. One nice feature of our approach
is to relate the Ext calculations for the second and third models directly to that of the first,
even though the constructions of the spectra are very different.

In Section 5 we compute π∗(P1∧X∧tmf), where P1 = RP∞. If we think of X∧tmf
as our best model of tmf(3), then this is tmf(3)∗(P1). Our original goal in undertaking
this study was to use TMF(3) in obstruction theory, and this computation would be a first
step toward doing that.

2 The Model of Gorbounov and Mahowald

In their study of π∗(MO[8]) in [7], the second author and Gorbounov introduced a new
spectrum, which turns out to be the best model for a connective version of TMF(3). Certain
aspects of the construction in [7] were unclear to the first author, and so we have prepared
this alternative account. In Theorem 2.1 we define the spectrum, and in Theorems 2.3 and
2.4 we determine its homotopy groups. In Section 3, we will establish its relationship with
TMF(3).

Theorem 2.1. (a) There is a 9-cell CW complex Y with one cell of each dimension 0,
2, 3, 4, 6, 7, 8, 9, and 10, in which the following Steenrod operations are nonzero on
the bottom class g:

Sq2, Sq3, Sq4, Sq4 Sq2, Sq5 Sq2, Sq6 Sq2 = Sq8, Sq6 Sq3, Sq7 Sq3 . (2.1)

This together with Sq6 g = 0 completely describes H∗(Y ) as an A-module.
(b) There is a map Σ3Y

α−→ S0 extending 2ν.
(c) Let X denote the mapping cone of α. There is a map X

f−→ bo which is the identity
on the bottom cell.

(d) Let f̃ denote the composite

X ∧ tmf
f∧1−→ bo ∧ tmf

µ−→ bo,

where µ gives the tmf-module structure of bo described in Remark 2.2. Let C denote
the mapping cone of f̃ . There is an isomorphism of A-modules

H∗(C) ≈ Σ4A/A(Sq4, Sq5 Sq1).

(e) X ∧ tmf is a ring spectrum.
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Remark 2.1. This X∧tmf will be our preferred model for the connective tmf(3), because
it is a ring spectrum. The spectrum Σ16X ∧ tmf is apparently a subspace of MO[8]/ tmf ,
but this will not enter into our argument. This was the motivation for the initial discussion
of X ∧ tmf in [7].

Remark 2.2. Mark Behrens explained to the authors in an e-mail the following argument
that bo is a tmf-module, which fact was used in the preceding theorem. In [8, §4.3], there
is an argument involving derived stacks, which, upon taking global sections, gives an E∞-
map t̂mf → KO[[q]], where KO[[q]] = KO∧N+ (i.e. smash KO with the suspension spec-
trum of the monoid given by the natural numbers.) Here, t̂mf is a certain non-connective
version of tmf whose connective cover is tmf . It is similar to, but slightly different than,
the E(2)-localization of the connective spectrum tmf . Taking connective covers of the
composite t̂mf → KO[[q]] → KO gives an E∞-map tmf → bo, leading to the desired
module structure.

Throughout the paper, An denotes the subalgebra of the mod 2 Steenrod algebra A

generated by Sqi for i ≤ 2n. Also η and ν denote the (class of the) Hopf maps in the 1- and
3-stems. All cohomology groups have coefficients in Z2 = Z/2. Our spectra are localized
at 2. We make frequent use of the isomorphisms H∗(tmf) ≈ A//A2 and H∗(bo) ≈ A//A1,
and the fact that if M is an A-module, then A//An ⊗M ≈ A⊗An M .

Proof. (a.) Let X3 = S0 ∪η e2 ∪2 e3 and X7 = S0 ∪ν e4 ∪η e6 ∪2 e7. Let Q denote the
quotient of X3 ∧X7 by its 4-skeleton. The Steenrod algebra structure, or equivalently the
cell structure, of Q is depicted in Diagram 2.1. Here a symbol (i, j) is the product class or
cell of an i-cell of X3 and a j-cell of X7. We indicate both Sq1 and Sq2 by straight lines,
and Sq4 by a curved line.

Diagram 2.1. Cell structure of quotient of X3 ∧X7
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There is a map g from this Q to S6 ∪2 e7 ∪η e9 which sends the cells (2, 4), (3, 4), and
(3, 6) by degree 1, and the cells (0, 6), (0, 7), and (2, 7) by degree −1. This map extends
over the (2, 6) and then (3, 7) cells because the image of the attaching map of each is 0.
The fiber of the composite

X3 ∧X7
coll−→ Q

g−→ S6 ∪2 e7 ∪η e9
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is the desired complex Y . The Steenrod operations in Y can be determined from the Cartan
formula together with the fact that Sq2 and Sq3 are nonzero in X3, and Sq4, Sq6, and
Sq7 are nonzero in X7. For example, Sq4 Sq2 on the bottom class is (2, 4), while Sq6 is
(2, 4) + (0, 6), which is g∗(x6) and hence is 0 in the fiber.

(b.) Let DY denote the S-dual of Y , with cells of dimensions the negative of those
of Y . Thus the top cell of DY has dimension 0. Note that Sq8 = 0 in H∗(DY ), since
it is dual to χSq8, which is 0 in H∗(Y ). Let (DY )(−1) denote the (−1)-skeleton of
DY . We will now use the Adams spectral sequence (ASS) to show that 2ν is in the image
of π3(DY ) c∗−→ π3(S0), where c collapses (DY )(−1). We use Bruner’s software ( [3]) to
compute Exts,t

A (H∗(DY )) for 2 ≤ t−s ≤ 4 to be as in Diagram 2.2. Here and throughout,
we omit writing Z2 as the second argument of our Ext groups.

Diagram 2.2. Ext groups for 2 ≤ t− s ≤ 4

ExtA(H∗((DY )(−1))) −→ −→ δ−→ExtA(H∗DY ) ExtA(H∗S0)
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The desired class 2ν is denoted by A in the diagram, and is the image of the circled class.
The class ν, indicated by B, maps to B′ in the exact sequence.

(c.) Let DX denote the S-dual of X , with 10 cells, in dimensions −14 up to 0.
Then [ΣiX, bo] ≈ πi(DX ∧ bo), and this can be computed by the ASS with E2 =
ExtA1(H

∗DX). The A1-structure of H∗(DX) is easily seen, and the ExtA1-calculation
easily made, giving the result in Diagram 2.3 in dimension < 4. There are clearly no
possible differentials, and our desired map is detected in filtration 0 by the circled element.
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Diagram 2.3. ExtA1(H
∗DX) in t− s < 4
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(d.) There is a commutative diagram in which horizontal and vertical sequences are
fiber sequences.

S0 ∧ tmf =−−−−→ tmf
y

y

X ∧ tmf
f̃−−−−→ bo −−−−→ C

y
y =

y

(X/S0) ∧ tmf
f̂−−−−→ bo/ tmf −−−−→ C −−−−→ Σ(X/S0) ∧ tmf

The restriction of f̃ to the 4-skeleton is S0 ∪2ν e4 → S0 ∪ν e4 of degree 1 on the
bottom cell. Thus f̂ has degree 2 on its bottom 4-cell. Let A2//A1 denote the kernel of the
augmentation of A2//A1. The A-module H∗(bo/ tmf) is isomorphic to A ⊗A2 A2//A1,
and the A2-module A2//A1 has basis

{g4, Sq2 g4, Sq3 g4, Sq4 Sq2 g4, Sq4 Sq3 g4, Sq6 Sq3 g4, Sq4 Sq6 Sq3 g4}. (2.2)

Thus (f̂)∗ = 0, and, since X/S0 = Σ4Y , there is a short exact sequence of A-modules

0 → H∗(Σ5Y ∧ tmf) → H∗(C) → A⊗A2 A2//A1 → 0,

and Sq1 g4 6= 0 in H∗C. We conclude that H∗(C) is an extended cyclic A2-module on
a 4-dimensional generator, with nonzero operations being those in (2.2) and Sq1 and the
operations listed in (2.1) applied to Sq1. One easily checks that this A2-module equals
A2/(Sq4, Sq5 Sq1), and so the A-module H∗(C) is as claimed.

(e.) We will prove there is a map m′ : X ∧ X → bo extending the inclusion of the
bottom cell and that when followed by the map bo → C of part (d), the composite is
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trivial. Thus by the definition of C, m′ factors through a map m : X ∧ X → X ∧ tmf
extending the inclusion of the bottom cell. Smashing this twice with tmf and following by
two multiplications of tmf yield the desired product on X ∧ tmf .

We construct the dual of m′, an element of π0(DX ∧DX ∧ bo). The E2-term of the
ASS converging to π∗(DX ∧DX ∧ bo) is ExtA1(H

∗(DX ∧DX)). The A1-structure of
H∗(DX) is easily seen and ExtA1 of tensor products of the summands is easily computed,
as, for example, in [4]. We obtain that in the vicinity of t− s = 0, the chart has a copy of
bo∗ beginning in position (0,0) and 15 additional copies of bo∗ beginning in positions (0, s)
for 3 ≤ s ≤ 12. The groups in t− s = −1, i.e. corresponding to π−1, are all 0. Thus there
are no possible differentials from t− s = 0 in the ASS, and we deduce the existence of our
map S0 → DX ∧DX ∧ bo, whose dual is m′.

Next we compute the ASS for π∗(DX ∧ DX ∧ C). Let Y be as in part (a). Then
DX = Σ−4DY ∪2ν e0, and so H∗(DX) ≈ H∗(Σ−4DY )⊕H∗(S0) as A-modules. Thus
the ASS converging to π∗(DX ∧DX ∧ C) has

E2 ≈ ExtA(H∗(Σ−4DY ∧DY )⊗A/(Sq4,Sq5,1))

⊕ExtA(H∗(DY )⊗A/(Sq4, Sq5,1))

⊕ExtA(H∗(DY )⊗A/(Sq4, Sq5,1))⊕ ExtA(Σ4A/(Sq4, Sq5,1)).

Note that the bottom class of DY is in grading −10. We can use Bruner’s software to see
that each of these Ext groups is 0 in t− s = 0. For example,

ExtA(H∗(Σ−4DY ∧DY )⊗A/(Sq4, Sq5,1))

has 15 Z-towers in the (−3)-stem, beginning in filtrations 2 through 8. It is 0 in stems −2,
−1, and 0, and then in the 1-stem has 21 Z-towers, on each of which η and η2 are nonzero.

Thus π0(DX ∧ DX ∧ C) = 0 and hence [X ∧ X, C] = 0. Therefore the map X ∧
X

m′
−→ bo → C is trivial, implying the result by the argument of the first paragraph of the

proof.
We must also show that the unital property of a ring spectrum is satisfied; i.e., that the

composite
S0 ∧X ∧ tmf ι∧1−→ X ∧ tmf ∧X ∧ tmf

µ−→ X ∧ tmf

is homotopic to the identity. This follows because H∗(X ∧ tmf) ≈ A ⊗A2 (H∗(S0) ⊕
H∗(Σ4Y )), and a map sending the bottom cell of X ∧ tmf by degree 1 does the same for
the bottom cell of Y , since it is attached by 2ν. Here we also use that H∗Y is a cyclic
A2-module.

The main step toward describing π∗(X ∧ tmf) is, because of 2.1(d), the Ext calculation
in Theorem 2.2. This calculation was first made in [7], but our approach will be somewhat
different. Our approach will be useful in performing other related Ext calculations. The
description is in terms of bo∗ and bsp∗, which are depicted in Diagram 2.4.
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Diagram 2.4. bo∗ and bsp∗
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We will denote by ax,y an element of Exty,x+y . This corresponds to the usual (x, y)
components in an ASS. There are standard elements h1, h2, and v4

2 of (x, y)-grading (1, 1),
(3, 1), and (24, 4), respectively. Here and throughout, R[a]〈b1, . . . , br〉 denotes a free mod-
ule over a polynomial algebra R[a] with basis {b1, . . . , br}.

Theorem 2.2. As a bigraded abelian group, Ext∗,∗A (A/A(Sq4, Sq5 Sq1),Z2) is isomorphic
to

Z2[v8
2 ]〈a0,0, h2a0,0, a14,2, h1a14,2, h2a14,2, a31,5, h2a31,5, a39,7〉

⊕ ker(bo∗[v4
2 ]〈a5,1, a21,3〉 → Z2[v8

2 ]〈a21,3〉)
⊕ bsp∗[v4

2 ]〈a9,2, a17,4〉.

Proof. By the Change-of-Rings Theorem, it is equivalent to compute

ExtA2(A2/A2(Sq4, Sq5 Sq1),Z2).

One can verify that there is an exact sequence of A2-modules:

0 ← A2/(Sq4,Sq5,1) d0←− A2
d1←− Σ4A2 ⊕ Σ6A2//A1

d2←− Σ11A2/(Sq1,Sq5)⊕ Σ16A2

d3←− Σ18A2/(Sq3)⊕ Σ20A2
d4←− (Σ25A2 ⊕ Σ26A2)/(Sq1 I25,Sq3 I25 + Sq2 I26)

d5←− Σ34A2//A1 ⊕ Σ36A2/(Sq3) d6←− Σ40A2

d7←− Σ46A2/(Sq3)⊕ Σ52A2//A1
d8←− Σ56A2/(Sq4,Sq5,1) ← 0 (2.3)

with d1(I4) = Sq4

d1(I6) = Sq5 Sq1

d2(I11) = Sq7 I4

d2(I16) = (Sq6,6 + Sq7,5)I4 + Sq4,6 I6

d3(I18) = Sq2 I16 + Sq7 I11

d3(I20) = Sq4 I16 + Sq6,3 I11



230 D. M. Davis and M. Mahowald

d4(I25) = Sq7 I18 + Sq5 I20

d4(I26) = Sq7,1 I18 + Sq6 I20

d5(I34) = Sq2,7 I25

d5(I36) = (Sq5,6 + Sq6,5)I25 + Sq4,6 I26

d6(I40) = Sq4 I36 + Sq6 I34

d7(I46) = Sq6 I40

d7(I52) = Sq7,5 I40

d8(I56) = Sq4 I52 + (Sq4,6 +Sq6,3,1)I46.

Diagram 2.5. ExtA(A/(Sq4,Sq5,1)) through degree 48
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For 0 ≤ i ≤ 7, let Ci denote the A2-module which is the domain of di. Because
the domain of d8 is Σ56 of the beginning module, the exact sequence could be continued
periodically with the Σ56A2/(Sq4, Sq5,1) removed, and Ci+8 ≈ Σ56Ci. There is a spec-
tral sequence building Ext(A2/(Sq4, Sq5,1)) from

⊕
i≥0

φi Ext(Σ−iCi), where φi increases

filtration by i. In this proof, Ext means ExtA2 .
Of the modules that appear in Ci, Ext(A2) is just Z2 in (0, 0), Ext(A2//A1) is

bo∗, Ext(A2/(Sq1, Sq5)) is bsp∗, Ext(A2/(Sq3)) is Ext(A2) ⊕ φ Ext(Σ2bsp∗), and
Ext((A2 ⊕ Σ1A2)/(Sq1 I0,Sq3 I0 + Sq2 I1)) is φ−1(ker(bo∗ → Z2)). When these are
put together, one obtains exactly the claim of the theorem. There can be no differentials
because differentials are hi-natural. The differentials would go from position (x, y) of
φi Ext(Σ−iCi) to position (x − 1, y + 1) of φi+r Ext(Σ−(i+r)Ci+r). In Diagram 2.5,
we depict this chart for x ≤ 48, to show the impossibility of differentials in both this SS
converging to Ext, and in an ASS to be considered later. Note that the Z2 in the 48-stem is
v8
2 times the initial Z2.

The following result is an easy consequence of Theorems 2.1 and 2.2.

Theorem 2.3. There is an isomorphism of graded abelian groups

π∗(X ∧ tmf) ≈ bo∗[v4
2 ]〈v1v2〉 ⊕ ker(bo∗[v4

2 ] → Z2[v8
2 ]〈v4

2〉)
⊕bsp∗[v4

2 ]〈2v2
2 , 2v1v

3
2〉

⊕Z2[v8
2 ]〈ν, ν2, x, ηx, νx, x2, ηx2, y〉,

where the (homotopy group, Adams filtration) of elements is (2, 1) for v1, (6, 1) for v2,
(17, 3) for x, and (42, 8) for y.

Proof. We use the exact sequence

→ π∗(Σ−1C) → π∗(X ∧ tmf) → π∗(bo) → (2.4)

from Theorem 2.1(d). The morphism H∗(C) → H∗(bo) sends the bottom class of H∗(C)
to Sq4 ι0, and hence Sq4 ι0 = 0 in H∗(X ∧ tmf). Thus the class in (0, 0) in Diagram 2.5
should be placed in position (3, 1) in a chart for a π∗(X ∧ tmf), and a chart for a spectral
sequence converging to π∗(X ∧ tmf) can be formed from bo∗ of Diagram 2.4 together
with Diagram 2.5 shifted by (3, 1) units. We emphasize this because π∗(X ∧ tmf) is our
main item of interest, but we don’t want to draw the chart again. By hi-naturality there
are no differentials or extensions, and so the chart depicts π∗(X ∧ tmf). Equivalently, the
sequence (2.4) is short exact.

The classes x and y of the theorem correspond to the lowest classes in the 14- and 39-
stems in Diagram 2.5. The names v1v2, 2v2

2 , and 2v1v
3
2 which we give to certain generators

are, at least at this point, meant to only describe stem and filtration.



232 D. M. Davis and M. Mahowald

Our next result simplifies the bo∗-bsp∗-part of this description and also incorporates as
much as we can say about the ring structure from our approach. Our limitation is that our
approach can only give the ring structure of π∗(X∧tmf) up to elements of higher filtration
in the Adams-type spectral sequence we have been using. Note that we say “Adams-type”
because we have elevated the filtrations of the part from C by 1 compared to an actual
ASS. The reason that we can’t say any better than “up to higher filtration” is, first of all
the usual limitation of an ASS, and secondly that our multiplication of X ∧ tmf is only
defined up to maps of higher filtration. It seems that such deviations would change the
product structure in π∗(X ∧ tmf). For example, the product of classes that we call 2v2

2 and
2v4

1v2
2 (so-called because of their image in BP∗; note that these classes are generators—the

elements without the factor 2 are not present in π∗(X ∧ tmf)) would naturally be 4v4
1v4

2 ,
an element which would be divisible by 4 in π∗(X ∧ tmf). However, we cannot assert that
this product of generators is divisible by 4; it might equal, for example, 4v4

1v4
2 + v16

1 .

Theorem 2.4. There is an isomorphism of graded abelian groups

π∗(X ∧ tmf) ≈ K ⊕ Z2[v8
2 ]〈ν, ν2, x, ηx, νx, x2, νx2, v1v2x

2〉,

where
K = ker(R → Z2[v8

2 ]〈v4
2〉)

with R the subring of Z[v1, v2, η]/(2η, η3) generated by 2v2
1 , v4

1 , v1v2, 2v2
2 , and v4

2 . The
isomorphism is, up to elements of higher filtration, an isomorphism of rings, with the addi-
tional relations v4

1x = ηv3
1v3

2 , v1v2x = ηv4
2 , x3 = νv8

2 , and x7 = 0.

Stems of elements are as in Theorem 2.3. Note that x7 = 0, not just up to elements of
higher filtration, as it lies in a zero group.

Proof. It is not difficult to check that this description is consistent as an Adams-filtered
graded abelian group with the description in Theorem 2.3. We must establish various prod-
uct formulas.

First we show that x2 is nonzero, corresponding to a31,5 in Theorem 2.2. Note that

im(π∗(Σ−1C) → π∗(X ∧ tmf)) = h2 · ExtA2(A2/(Sq4,Sq5,1)).

Thus the product in π∗(X ∧ tmf) on elements in the image from π∗(Σ−1C) can be con-
sidered as

Exts,t
A2

(A2/(Sq4, Sq5,1))⊗ Exts′,t′

A2
(A2/(Sq4, Sq5,1)) (2.5)

→ Exts+s′+1,t+t′+4
A2

(A2/(Sq4, Sq5,1))

with α ⊗ β 7→ h2αβ. With x ∈ Ext2,16
A2

(A2/(Sq4, Sq5,1)), the image of x ⊗ x is in
Ext5,36

A2
(A2/(Sq4, Sq5,1)). We wish to show it is nonzero. Thus we want the Yoneda

product of h2x with x.



Connective Versions of TMF (3) 233

Using the minimal “resolution” (2.3), we consider the following diagram:

C3 ←−−−− C4 ←−−−− C5

h2x

y f4

y f5

y
Σ20C0 ←−−−− Σ20C1 ←−−−− Σ20C2

x

y
Σ36Z2.

Although the modules in (2.3) are not projective, we can still find enough preimages to
compute many Yoneda products. Since h2x ∈ Ext3,20

A2
(A2/(Sq4,Sq5,1)), the relevant

parts are

Σ20A2
Sq5,Sq6

←−−−−− (Σ25A2 ⊕ Σ26A2)/R
Sq5,6 + Sq6,5,Sq4,6

←−−−−−−−−−−−− Σ36A2

1

y f4

y f5

y

Σ20A2
Sq4,Sq5,1

←−−−−−− Σ24A2 ⊕ Σ26A2//A1
Sq6,6 + Sq7,5,Sq4,6

←−−−−−−−−−−−− Σ36A2y
Σ36Z2.

We find that f4(ι25) = Sq1 ι24 and f4(ι26) = Sq2 ι24 + ι26, and then that f5 is the identity.
A similar argument works to show x3 = νv8

2 . Relations for x4, x5, and x6 can be
deduced from the stated relations.

The elements ηx, x2, and y generate the three occurrences of A2/(Sq3) in the resolution
in the proof of Theorem 2.2. The bsp∗’s on a17,4, v4

2a9,2, and v4
2a17,4 in Theorem 2.3 are

obtained from ExtA2 of these three A2/(Sq3)’s by omitting the initial Z2. This implies
that v4

1ηx = η2v3
1v3

2 , v4
1x2 = η2v2

1v6
2 , and v4

1y = η2v3
1v7

2 . One of our relations is obtained
by dividing the first of these by η, while the latter two imply that y = v1v2x

2. This is valid
because η and v4

1 act injectively in the relevant stems.
The elements which we call v4i

1 v8j
2 · (2v2

2)e with 1 ≤ e ≤ 3 in E∗,∗
2 (H∗X) are in

the image of the ring map from ExtA2(Z2), and so products among them are as we claim
because of the ring structure of ExtA2(Z2). That the products of (v1v2)i with 2v2

2 are as
claimed can be proved by a Yoneda product argument with the element 2v2

2 of Ext3,15
A2

(Z2).
To verify this using a minimal resolution of A/(Sq4, Sq5,1), one should expand the efficient
resolution used in the proof of Theorem 2.2 to use only A2 and A2/(Sq1) (and not the
more efficient A2//A1 and A/(Sq3)). This produces some additional Sq4 Sq6 terms in
the resolution. The following not-quite-commutative diagram of not-quite-exact sequences
shows the most relevant terms in the morphism from a portion of the resolution built on
(v1v2)i to the most relevant terms of the resolution of Z2, and can be used to establish that
the Yoneda product of the element that we call (v1v2)i followed by the element that we call
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2v2
2 equals the element that we call 2vi

1v
i+2
2 .

A2/(Sq1)
Sq4,6

←−−−− Σ10A2
Sq2

←−−−− Σ12A2
Sq3

←−−−− Σ15A2

1

y Sq4,2

y Sq4

y 1

y

A2/(Sq1)
Sq4

←−−−− Σ4A2
Sq4

←−−−− Σ8A2
Sq7

←−−−− Σ15A2.

For example, when i = 2, the top row of this diagram corresponds to elements in (13, 3),
(22, 4), (23, 5), and (25, 6) in Diagram 2.5.

To see that the elements that we call vi
1v

i
2 multiply by one another as the notation

suggests, we consider the morphism of minimal resolutions inducing (2.5). Let

C : C0 ← C1 ← · · · (resp. D : D0 ← D1 ← · · · )

be a minimal A2-resolution of Σ3A2/(Sq4,Sq5,1) (resp. Σ2 ker(A2 → A2/(Sq4,Sq5,1))).
Then (2.5) is induced by a morphism D

ψ−→ C⊗C. The class which we call vi
1v

i
2 is dual

to a generator αi ∈ (C2i−1)10i−1 and to a generator βi ∈ (D2i−2)10i−2.
First we show that the square of our v1v2 class equals our class called v2

1v2
2 . The

relevant parts are that C1
d1−→C0 has C0 = Σ3A2, C1 = Σ7A2⊕Σ9A2//A0, with d1(ι7) =

Sq4 ι3 and d1(ι9) = Sq5,1 ι3, while the relevant part of D is

Σ18A2
d2−→ Σ13A2//A0

d1−→ Σ6A2

with d2(ι18) = Sq5 ι13 and d1(ι13) = Sq7 ι6. In the commutative diagram of exact se-
quences

D2
d2−−−−→ D1

d1−−−−→ D0

f2

y f1

y f0

y
C1 ⊗ C1 −−−−→ C0 ⊗ C1 ⊕ C1 ⊗ C0 −−−−→ C0 ⊗ C0

we must have

f0(ι6) = ι3 ⊗ ι3

f1(ι13) = (1 + T )(ι3 ⊗ Sq3 ι7 + Sq1 ι3 ⊗ (Sq2 ι7 + ι9)

+Sq2 ι3 ⊗ Sq1 ι7 + Sq3 ι3 ⊗ ι7)

f2(ι18) = ι9 ⊗ ι9,

implying the result. Here T (x⊗ y) = y ⊗ x. Note that the important term here was the ι9,
which occurred because of the difference between Sq6 and Sq2 Sq4.

Now we show that the class which we call v2
1v2

2 times the class which we call vi
1v

i
2

equals the class that we call vi+2
1 vi+2

2 . This, with the result of the preceding paragraph,
implies that all powers of v1v2 are as claimed.
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The class which we call 2vi
1v

i+2
2 is dual to a generator γi+1 ∈ (C2i+2)10i+14 and to

a generator δi+1 ∈ (D2i+1)10i+13. In the resolutions, d(αi+1) ≡ Sq5 γi and d(βi+1) ≡
Sq5 δi mod other terms, where αi+1 and βi+1 are dual to vi+1

1 vi+1
2 as above. Because the

product of our 2v2
2 class and our vi

1v
i
2 class equals our 2vi

1v
i+2
2 class, as was shown earlier,

we conclude that in D
ψ−→ C ⊗ C, ψ(δi+1) = γ1 ⊗ αi plus other terms. Thus, modulo

other terms, we have

d(ψ(βi+2)) = ψ(d(βi+2)) ≡ Sq5 γ1 ⊗ αi

and
d(α2 ⊗ αi) ≡ Sq5 γ1 ⊗ αi,

from which we conclude ψ(βi+2) = α2 ⊗ αi, which is equivalent to our claim.
Now that we know that the classes which we have named by monomials in v1 and v2

multiply consistently with these names, we can deduce the final relation v1v2x = ηv4
2 from

v4
1x = ηv3

1v3
2 by multiplying the latter by v1v2 and then dividing by v4

1 .

3 An 8-Cell Model Related to TMF(3)

In [10, §7], another connective model for TMF(3) is discussed, which is Z ∧ tmf ,
where Z is a certain 8-cell complex. Although Z ∧ tmf is not a ring spectrum, it is still
true that v−1

2 Z ∧ tmf ' TMF(3). The importance of this model is primarily that the
dimensions of the cells of Z allow one to construct a map Z → TMF(3) thanks to certain
homotopy groups of TMF(3) being 0. The other models are then related to TMF(3) via
the Z-model. In this section, we provide some additional details to the sketch given in [10].

Let X7 = S0 ∪ν e4 ∪η e6 ∪2 e7 be as in the proof of Theorem 2.1.a, and let X421 =
Σ7DX7 = S0 ∪2 e1 ∪η e3 ∪ν e7. The following lemma was proved in [10], using the ASS
of X421 through dimension 13.

Lemma 3.1. The map S6 ν2

−→ S0 ↪→ X421 extends to a map Σ6X7 → X421.

Definition 3.1. Let Z denote the mapping cone of the map Σ23X7 → Σ17X421 obtained
from Lemma 3.1.

Proposition 3.1. There is an element x ∈ π17(TMF(3)) of order 2 which is not divisible
by η, and a map Z → TMF(3) which extends this map x.

Proof. This is where we need input from the theory of topological modular forms. In [10], a
48-periodic ring spectrum TMF(3) (called there TMF(Γ0(3))) is defined and its homotopy
groups calculated, using a spectral sequence defined using results about elliptic curves.
Their result ( [10, 4.1]), localized at 2, is a v8

2-inverted version of our Theorem 2.4, but with
their ring structure being precise, not just up to elements of higher filtration. We emphasize
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that our Theorem 2.4 and [10, 4.1] are totally independent calculations. Our 2.4 uses only
homotopy theory (and the existence of a ring spectrum tmf with H∗(tmf) ≈ A//A2),
while [10, 4.1] uses the Weierstrass curve. We will realize this isomorphism of homotopy
groups by a map of spectra later in Corollary 3.1 and Theorem 3.2, but for now we mean
just to refer to the result of [10, 4.1] without actually stating it.

A schematic of π∗(TMF(3)) from the ASS viewpoint is given in Diagram 3.1. Each
collection of four closely-spaced towers represents infinitely many such towers in the same
stem. If the lowest of these begins in filtration s, then there are such towers in filtration
s + 2i for all i ≥ 0, with a slight exception in dimension 24. The names of the bottom
generators are 1, 2v2

1 , v1v2, 2v2
2 , v2

1v2
2 , 2v1v

3
2 , 2v4

2 , 2v2
1v4

2 , v1v
5
2 , 2v6

2 , v2
1v6

2 , and 2v1v
7
2 .

The name of the generator in filtration s + 2i is v3i
1 v−i

2 times that of the bottom generator,
except that in dimension 24, we have 2v4

2 and v3i
1 v4−i

2 for all i > 0. The eight Z2’s along
the bottom, indicated by a solid dot, occur only once, in the indicated filtration. Because of
period 48, Diagram 3.1 is a complete depiction of π∗(TMF(3)).

Diagram 3.1. Schematic of π∗(TMF(3))
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The extension of x over Z occurs because 2x = 0 and πi(TMF(3)) = 0 for i = 19,
23, 27, 29, and 30, showing that the obstructions to extending over the remaining cells are
all 0.

We illustrate the relationship between Diagrams 2.5 and 3.1 by considering the towers
in the 0-stem in 3.1. Because of the fact that π∗(TMF (3)) ≈ v−1

2 π∗(X ∧ tmf), alluded to
above, this corresponds to the direct limit of

π0(X ∧ tmf)
v8
2−→ π48(X ∧ tmf)

v8
2−→ π96(X ∧ tmf)

v8
2−→ · · · .

We have π0(X ∧ tmf) ≈ π0(bo) ≈ Z(2). Next, π48(X ∧ tmf) is the sum of nine Z(2)’s,
corresponding to the eight in the 45-stem in Diagram 2.5 plus one from bo, which will be
in filtration 2 higher than the top one pictured. The lowest of the nine towers is v8

2 times the
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one in π0(X ∧ tmf) and so they are identified in the direct limit. These will correspond to
the first nine towers in π0(TMF (3)) in Diagram 3.1. Similarly, the first seventeen towers
in π0(TMF (3)) can be seen in π96(X ∧ tmf), of which the lowest nine are divisible by v8

2

and hence identified with those from π48(X ∧ tmf) just described.

The spectrum Z∧tmf will be one of our connective models of TMF(3). The following
result gives its homotopy groups, which are closely related to those of X ∧ tmf .

Theorem 3.1. There is an isomorphism of graded abelian groups

π∗(Z ∧ tmf) ≈ K̃ ⊕ Z2[v8
2 ]〈x, ηx, νx, x2, νx2, v1v2x

2, v8
2ν, v8

2ν2〉,

where

K̃ = ker(R̃ → Z2[v8
2 ]〈v4

2〉)

with R̃ the subgroup of the ring R of Theorem 2.4 spanned by all elements divisible by v3
2 .

In dimension≤ 51, π∗(Z ∧ tmf) may be seen in Diagram 2.5 by removing the first two
Z2’s, and the bo∗ starting in the 5-stem, and the bsp∗ starting in the 9-stem, and increasing
stems of all elements by 3. Thus the first element would be the Z2 class x, which appears
in 2.5 in position (14, 2), and is in the 17-stem for Z ∧ tmf . For the ASS-type chart that
we will describe in our proof, filtrations should be decreased by 2, so that x appears in
filtration 0.

Proof. Let M7 = H∗(X7) be the A-module (or A2-module) whose only nonzero groups
are Z2 in dimensions 0, 4, 6, and 7 with Sq7 6= 0, and let M421 be the A-module or A2-
module whose only nonzero groups are Z2 in dimensions 0, 1, 3, and 7 with Sq4 Sq2 Sq1 6=
0. There is an exact sequence

→ Exts−2,t−1
A2

(Σ24M7) → Exts,t
A2

(Σ17M421) → Es,t
2 (Z ∧ tmf)

→ Exts−1,t−1
A2

(Σ24M7)
d−→ Exts+1,t

A2
(Σ17M421) →, (3.1)

with d(ι24) = h2
2ι17. Here E2(Z ∧ tmf) is the E2-term of a spectral sequence converging

to π∗(Z ∧ tmf). We could compute E2(Z ∧ tmf) by first computing ExtA2(M7) and
ExtA2(M421) (and these have been computed in [5] and [7]), but we prefer the following
method which relates it directly to E2(X ∧ tmf).

Let P = ker(d1) in the resolution in the proof of Theorem 2.2. One easily verifies that
there is an exact sequence of A2-modules

0 → Σ24M7
i−→ Σ11A2/(Sq1, Sq5) d2−→ P

q−→ Σ16M421 → 0

with d2(ι11) = Sq7 I4, q(Sq6,6+7,5 I4 + Sq4,6 I6) = gen16, and i(ι24) = Sq6,7+4,6,3 ι11.
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Note that ExtA2(P ) consists of a shifted version of Diagram 2.5 minus the first two
Z2’s and the first bo∗. It is shifted so that the (now) initial tower, which did begin in (9, 2),
now begins in (11, 0). Note also that

ExtA2(P )
d∗2−→ ExtA2(Σ

11A2/(Sq1, Sq5)) (3.2)

is surjective, because of the bsp∗ in 2.5 beginning in (9, 2).
Let K = im(d2) = ker(q). There is a commutative diagram of exact horizontal and

vertical sequences, with Ext = ExtA2 and all Ext groups having the same second super-
script t,

0

²²

0

²²
Exts−2(Σ24M7)

²²

δ

))SSSSSSSSSSSSSS Exts−1(Σ24M7)

²²
Exts−1(K)

²²

// Exts(Σ16M421) // Exts(P )
j //

ds
2 ((QQQQQQQQQQQQQ Exts(K)

²²
Exts−1(Σ11A2/(Sq1,Sq5))

²²

Exts(Σ11A2/(Sq1,Sq5))

²²
0 0

in which d∗2 is surjective. By a diagram chase, this implies exactness of

→ Exts−2(Σ24M7)
δ−→ Exts(Σ16M421) → ker(ds

2) → Exts−1(Σ24M7) → . (3.3)

This δ must send ι24 to h2
2ι16 since Ext2,24(P ) = 0. Thus it must agree totally with

d of (3.1), and so the exact sequences (3.1) and (3.3) are identical. Therefore, E2(Z ∧
tmf) ≈ ker(d∗2), and this is the chart obtained from Diagram 2.5, extended indefinitely, by
removing the first two dots, the initial bo∗, and the bsp∗ starting in (9, 2), and regrading so
that the Z2 in (14, 2) in Diagram 2.5 is now in (17, 0).

Corollary 3.1. There is a map Z ∧ tmf → X ∧ tmf such that the induced map v−1
2 Z ∧

tmf → v−1
2 X ∧ tmf is an equivalence.

Proof. There is a map Z → X ∧ tmf extending x for the same reason as in the proof of
Proposition 3.1, namely 0 obstructions. Smashing with tmf and following by the multipli-
cation of tmf yields the desired map. The proof of Theorem 3.1 identified π∗(Z ∧ tmf)
with the kernel of (3.2), which is contained in π∗(X ∧ tmf). Thus π∗(Z ∧ tmf) injects into
all of π∗(X ∧ tmf) except ν, ν2, and the integer multiples of vi

2v
j
1 for i ≤ 2. These latter

classes are, for i = 0 the bo∗ which is coker(π∗(Σ−1C) → π∗(X ∧ tmf)), for i = 1 the
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initial bo∗ in 2.5, and for i = 2 the bsp∗ which appears in 2.5 to begin in (9, 2). Since v8
2

times these classes are in the image from π∗(Z ∧ tmf), we deduce the claim that it is an
equivalence after v8

2 is inverted.

Theorem 3.2. The map Z → TMF(3) of Proposition 3.1 induces an equivalence

v−1
2 Z ∧ tmf → TMF(3).

Proof. We need a fact from topological modular forms that there is a map

tmf ∧TMF(3) → TMF(3)

making TMF(3) a tmf-module. Using this, the map Z → TMF(3), and the product in
TMF (3), we obtain a map Z ∧ tmf → TMF(3). We will show it sends π∗(Z ∧ tmf) to
elements of π∗(TMF(3)) with the same names (as those of Theorem 3.1). In the proof of
Proposition 3.1, we discussed how [10, 4.1] can be interpreted to give π∗(TMF(3)) as a
v2-inverted version of our Theorem 2.4. Then the same argument as was used in the proof
of Corollary 3.1 gives the asserted equivalence.

The class x maps across by construction. We must deduce from this, by various types
of naturality, that all other classes map across. Our map is one of tmf∗-modules. The
relation v4

1x = ηv3
1v3

2 is present in both π∗(Z ∧ tmf) and π∗(TMF(3)) (by Theorem 2.4
and [10, 4.1], resp.), and hence ηv3

1v3
2 maps across, and then so also does v3

1v3
2 . Since 16v2

2

is in tmf∗, we deduce that all vi
1v

j
2 with i ≡ 3 mod 4 and j odd map across. By the Toda

bracket formula 2v5
1v3

2 = 〈η2v3
1v3

2 , η, 2〉, which is valid in both Z ∧ tmf and TMF(3), we
now have that all vi

1v
j
2 with i and j odd map across.

In [10, 4.1], it is noted that π20(S0) → π20(TMF(3)) sends κ to νx. One can show,
for example using Yoneda products, that κ acting on x ∈ π17(Z ∧ tmf) yields the class
that we call νx2. Thus νx2 maps across, and hence so does x2. There is a bracket formula
2v6

2 = 〈x2, η, 2〉 in both spectra, and so v6
2 maps across. Arguing as before, we deduce that

all vi
1v

j
2 with i and j even map across. Knowing that v8

2 maps across implies the same for
νv8

2 and ν2v8
2 . We have now accounted for all of π∗(Z ∧ tmf).

The following corollary is immediate from Corollary 3.1 and Theorem 3.2.

Corollary 3.2. There is an equivalence v−1
2 X ∧ tmf → TMF(3).

Thus both X∧tmf and Z∧tmf can serve as connective models of TMF(3). We prefer
X ∧ tmf because it is a ring spectrum and gives a better approximation to π∗(TMF(3))
prior to inverting v2, but Z ∧ tmf was useful because it was so easy to get a map from it
into TMF(3).
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4 A Model Related to tmf ∧ tmf

In this section we study a third model of tmf(3) introduced in [10]. This one is closely
related to tmf ∧ tmf , and we provide a proof that a plausible splitting of tmf ∧ tmf does
not occur. We clarify some aspects of the construction in [10] and compute the homotopy
groups.

Let A∗ = Z2[ζ1, ζ2, . . .] denote the dual of the mod 2 Steenrod algebra. Here ζi =
χ(ξi), the conjugates of the usual generators. Assign a weight wt on A∗ by wt(ζi) = 2i−1

and wt(ab) = wt(a) + wt(b). It is well-known and easily verified that

(A//A2)∗ = Z2[ζ8
1 , ζ4

2 , ζ2
3 , ζ4, ζ5, . . .]

and there is a splitting as A2-modules

(A//A2)∗ ≈
⊕

n≥0

Mn,

where Mn is spanned by all monomials in (A//A2)∗ of weight 8n. The A-action is given
by ζi(χSq) = ζi + ζ2

i−1. Note that H∗(tmf) ≈ (A//A2)∗.
Similarly H∗(bo) = (A//A1)∗ is isomorphic to a polynomial algebra on ζ4

1 , ζ2
2 , and

ζi for i ≥ 3. There are bo-Brown-Gitler spectra bon satisfying that H∗(bon) is the span
of all monomials in H∗(bo) with weight ≤ 4n.( [6]) One easily verifies that there is an
isomorphism of A2-modules

⊕
φn :

⊕

n≥0

H∗(Σ8nbon) → H∗(tmf)

defined by φn(σ8nζi1
1 ζi2

2 · · · ) = ζ
8n−∑

2jij

1 ζi1
2 ζi2

3 · · · . The image of φn is Mn, the span of
monomials of weight 8n. One might ask if this isomorphism is induced by an equivalence
of the spectra tmf ∧ tmf and

∨
Σ8nbon ∧ tmf . An analogous equivalence bo ∧ bo '∨

Σ4nBn ∧ bo was proved in [9]. In that case Bn was an integral Brown-Gitler spectrum.
We answer this question and prepare for a new TMF(3) model by proving the following

result.

Theorem 4.1. The spectra tmf ∧ tmf and
∨

n≥0

Σ8nbon∧tmf are not homotopy equivalent.

Indeed, in the ASS converging to π∗(tmf ∧ tmf), which has

E2 ≈
⊕

n≥0

ExtA2(H
∗(Σ8nbon)),

there is a class g ∈ Ext0,24
A2

(H∗(Σ16bo2)) and an element w ∈ Ext3,26
A2

(H∗(Σ8bo1)) such
that d3(g) = w.
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Proof. Let tmf denote the cofiber of S0 → tmf . Since tmf is a ring spectrum, there is a
splitting

tmf ∧ tmf ' (S0 ∧ tmf) ∨ (tmf ∧ tmf).

We will use the cofibration

tmf ∧ S0 → tmf ∧ tmf → tmf ∧ tmf (4.1)

and a differential in the ASS of tmf to deduce the claimed differential in the ASS of tmf ∧
tmf .

In Diagram 4.1, we depict Exts,t
A2

(H∗(Σ8bo1 ∨ Σ16bo2)) for s < 8, t − s < 40.
Elements suggested by solid dots come from the first summand, and those with open circles
(or connected to open circles by lines) come from the second summand.

Diagram 4.1. Exts,t
A2

(H∗(Σ8bo1 ∨ Σ16bo2)) in a range
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The cofibration which defines tmf induces an exact sequence

→ Exts,t
A (H∗(tmf)) → Exts,t

A (H∗(tmf))

→ Exts+1,t
A (H∗(S0)) → Exts+1,t

A (H∗(tmf)) → .

There is a lower vanishing line in ExtA(H∗(tmf)) ≈ ExtA2(Z2) (e.g. [5, 2.6]) which
implies that Exts,t

A (H∗(tmf)) ≈ Exts+1,t
A (H∗(S0)) if s ≤ 6 and t− s ≥ 31. In [2], it was

shown that in the ASS of S0 there are nonzero elements e1 ∈ Ext4,42
A (H∗(S0)) and h1t ∈

Ext7,44
A (H∗(S0)) satisfying d3(e1) = h1t. These elements are in the range of our asserted

isomorphism, and so there must be corresponding elements e1 ∈ Ext3,42
A (H∗(tmf)) and

h1t ∈ Ext6,44
A (H∗(tmf)) related by a d3-differential.

Now we consider the exact sequences in ExtA(−) and π∗(−) induced by (4.1). Using
Bruner’s software, we see that Exts,t

A (H∗(tmf ∧ tmf)) = 0 if t− s = 39 and s > 3. Thus
neither of the elements e1 or h1t can be in the image from ExtA(H∗(tmf ∧ tmf)), the
second since there is nothing to hit it, and the first since a class which hits it would have to
support a differential, but there is nothing for it to hit. Thus the elements e1 and h1t related
by the d3 in the ASS of tmf map nontrivially to ExtA(H∗(tmf ∧ tmf)). One easily checks
that ExtA2(H

∗(Σ24bo3)⊕H∗(Σ32bo4)) is 0 in these bigradings. Thus the elements e1 and
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h1t must map nontrivially to classes in ExtA2(H
∗(Σ8bo1) ⊕ H∗(Σ16bo2)) involved in a

d3-differential. These must be the two classes at the extreme right end of Diagram 4.1, one
in filtration 6 from Σ8bo1 and the other in filtration 3 from Σ16bo2.

This already implies the first conclusion of the theorem, that tmf ∧ tmf does not split
as

∨
n≥0

Σ8nbon ∧ tmf . We would like to infer from this differential the claimed nontrivial

d3 on the class g in position (24, 0). Clearly the h2-action and the nonzero d3 from (39, 3)
imply that d3 is nonzero on the class in (33, 1). Let X7 = S0∪ν e4∪η e6∪2 e7 as before. If
d3(g) = 0, then the homotopy class g would extend to a map Σ24X7 → tmf ∧ tmf , since
Diagram 4.1 shows that there are no obstructions to the extension. Smashing with tmf and
following by the multiplication of tmf would yield a map Σ24X7 ∧ tmf → tmf ∧ tmf
extending g. Since X7 = bo1, the ASS of Σ8X7 ∧ tmf is just the black elements in
Diagram 4.1. The 16-suspension of the element in (17, 1) in that diagram does not support
a differential in Σ24X7 ∧ tmf but would map to the class in (33, 1) in tmf ∧ tmf which we
showed does support a differential. This contradicts the assumption that d3(g) = 0.

Now we begin working toward the construction of our third connective model of
TMF(3).

Proposition 4.1. There is a subcomplex W1 of tmf such that there is a cofibration

Σ8bo1 → W1 → Σ16bo2

which has a short exact sequence in mod-2 cohomology.

Proof. We use the description of H∗(tmf) given in the second paragraph of this sec-
tion. All elements of weight ≤ 16 are in dimension ≤ 31, and the first few elements
of weight greater than 16 are ζ24

1 , ζ16
1 ζ4

2 , ζ16
1 ζ2

3 , and ζ16
1 ζ4. The A-module structure of

H∗(tmf
(31)

/tmf
(23)

) is

〈Sq0, Sq2, Sq3, Sq4, Sq5, Sq6, Sq7〉ζ̂8
2 ⊕ 〈Sq0, Sq4, Sq6, Sq7〉ζ̂24

1 , (4.2)

with the first (resp. second) summand dual to monomials of weight 16 (resp. 24). Here the
(̂ ) represents duality. Bruner’s software shows that there is a map

tmf
(31)

/tmf
(23) → Σ24X7

which induces the identity homomorphism from the second summand of (4.2) and 0 from
the first. This is done by computing ExtA of the tensor product of the dual of the module in
(4.2) with M7, and seeing that there are no possible differentials from the obvious filtration-
0 class. The desired complex W1 is the fiber of the composite

tmf
(31) → tmf

(31)
/tmf

(23) → Σ24X7,

where the second map is the one just noted.
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The E2-term of the ASS for W1 ∧ tmf in dimension less than 40 is given in Diagram
4.1, and, as established in Theorem 4.1, there are d3-differentials on the classes in positions
(24, 0), (33, 1), (36, 2), and (39, 3). Let f : S32 → W1∧tmf be a nontrivial map of Adams
filtration 1, which exists by Diagram 4.1. Smash with tmf and follow by the multiplication
of tmf , obtaining a map S32 ∧ tmf → W1 ∧ tmf .

Definition 4.1. Define W to be the cofiber of this map S32 ∧ tmf → W1 ∧ tmf .

This W will be our third connective model of TMF(3). Note that, unlike the first two,
it is not obtained as the smash product of a finite complex with tmf , since the above map
f does not factor through W1 itself.

Similarly, let S16 → bo2 ∧ tmf correspond to essentially the same class as f , as the
open circles in Diagram 4.1 depict the ASS of Σ16bo2. Extend this to a map S16 ∧ tmf →
bo2 ∧ tmf , and let b̃o2 denote the cofiber of this. There is a cofiber sequence

Σ8bo1 ∧ tmf → W → Σ16b̃o2. (4.3)

The short exact sequence of A-modules

0 → Σ17A//A2 → H∗(b̃o2) → A⊗A2 H∗(bo2) → 0

induces an exact sequence in ExtA which implies that ExtA(H∗(b̃o2)) begins as the 16-
desuspension of the open circles in Diagram 4.1 with the portion connected to the element
in (32, 1) removed. It contains no unpictured elements in filtration 0 or 1. Therefore,
H∗(b̃o2) = A⊗A2 B, where B sits in a short exact sequence of A2-modules

0 → Σ17Z2 → B → H∗(bo2) → 0, (4.4)

with the new class in B equal to Sq4 Sq6 Sq7 ι0, or equivalently Sq4 Sq2 Sq3 ι8. It also
equals Sq2 of the top class of H∗(bo2). The A2-module B cannot be given the structure of
A-module, as the Adem relation Sq2 Sq15 = Sq1 Sq16 + Sq16 Sq1 would be violated.

Our next result gives a direct relationship among ExtA2(A2/(Sq4, Sq5,1)), which was
depicted through degree 48 in Diagram 2.5 and is very closely related to the homotopy
groups described in Theorem 2.4, and ExtA2(B) and ExtA2(H

∗(X7)), which two together
are related to the ASS of W . After stating and proving this result, we will use it to determine
π∗(W ) and see that v−1

2 W is another model for TMF(3).
We begin by noting that Exts,t

A2
(A2(Sq4, Sq5,1)) ≈ Exts+1,t

A2
(A2/(Sq4, Sq5,1)).

Theorem 4.2. Let ẼxtA2(A2(Sq4,Sq5,1)) denote ExtA2(A2(Sq4, Sq5,1)) without the Z2

in Ext0,4 or the tower beginning in Ext1,11. There is an exact sequence

→ Exts+2,t
A2

(Σ6M7) → Ẽxt
s+2,t

A2
(A2(Sq4, Sq5,1)) → Exts,t

A2
(Σ16B) → Exts+3,t

A2
(Σ6M7).
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Proof. One can verify that there is an exact sequence of A2-modules

0 → K
i−→ Σ4A2 → A2(Sq4, Sq5,1)

φ−→ Σ6M7 → 0,

where Σ6M7 is generated by φ(Sq5,1), and i(K) is the submodule of Σ4A2 generated by
Sq7 ι4, and that there is a short exact sequence of A2-modules

0 → Σ16B → Σ11A2//A0 → K → 0

with B as above, and the A2-generators of Σ16B mapping to Sq5 ι11 and Sq4,6,3 ι11.
Let R = coker(i) = ker(φ). Except for the classes omitted in forming Ẽxt, we have

isomorphisms
Exts

A2
(Σ16B) ≈−→ Exts+1

A2
(K) ≈−→ Exts+2

A2
(R)

and an exact sequence

→ Exts+2
A2

(Σ6M7) → Exts+2
A2

(A2(Sq4, Sq5,1)) → Exts+2
A2

(R) → Exts+3
A2

(Σ6M7),

from which the result follows.

Similarly to Theorem 3.1, we can now deduce the following result without using com-
plete information about ExtA2(B).

Theorem 4.3. There is an isomorphism of graded abelian groups

π∗(W ) ≈ K ′ ⊕ Z2[v8
2 ]〈x, ηx, νx, x2, νx2, v1v2x

2, v8
2ν, v8

2ν2〉,

where
K ′ = ker(R′ → Z2[v8

2 ]〈v4
2〉)

with R′ the subgroup of the ring R of 2.4 spanned by all elements divisible by v2 but not
including the cyclic group generated by 2v2

2 .

Proof. The map Σ15b̃o2 → Σ8bo1 ∧ tmf whose cofiber is W has Adams filtration 3 since
Hi(Σ15b̃o2) = 0 for i < 15 and for i = 17, 18, and 20, the values of i for which πi(Σ8bo1∧
tmf) has nonzero classes in filtration less than 3. We obtain a homomorphism

Exts,t
A2

(Σ15B) → Exts+3,t+3
A2

(Σ8M7).

We show in the next paragraph that this is the same homomorphism as the one at the end
of the exact sequence in Theorem 4.2.

Both homomorphisms are nontrivial on the class in Ext0,24
A2

(Σ16B)), the first by The-
orem 4.1 and the second since Diagram 2.5 is 0 in position (21, 3). Let C (resp. D) be a
minimal A2-resolution of Σ8M7 (resp. Σ15B). There is a morphism C3

φ−→ Σ15B which
lifts to a morphism C3 → D0 and then to Cs+3 → Ds for all s. Since B5 = 0, φ must be
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0 on the generators in 8, 12, and 20, and it must send the generator in 23 nontrivially to get
the correct Ext morphism. This completely determines the entire Ext morphism. The same
is true of the Ext morphism at the end of the sequence of Theorem 4.2. Thus the two Ext
morphisms are equal.

We obtain that Es,t
2 (W ) ≈ Ẽxt

s,t−2

A2
(A2(Sq4, Sq5,1)). We have already seen that there

are no possible differentials in an ASS with E2 ≈ ẼxtA2(A2(Sq4, Sq5,1)). Thus π∗(W )
is like the groups described in Theorem 2.4 without the initial bo∗, ν, ν2, or the 2v2

2-
tower.

Similarly to Corollary 3.2, we obtain the following result, giving a third connective
model for TMF(3). The significance of this one is its close relationship to tmf ∧ tmf .

Corollary 4.1. There is an equivalence v−1
2 W → TMF(3).

Proof. Similarly to Corollary 3.1, we construct a map Z → W , then use the tmf-module
structure of W to extend to a map Z ∧ tmf → W . This becomes an equivalence after
inverting v2. Then we use Theorem 3.2.

5 tmf(3)-Homology of Real Projective Space

In this section, we compute π∗(X ∧ tmf ∧P1), where X is as in Theorem 2.1 and
P1 = RP∞. Because X ∧ tmf is probably the best connective model for TMF(3), this
could be considered as tmf(3)∗(P1). More work will be required to deduce results for
Pn or Pm

1 from this, but this should provide a model. One possible application of this
calculation would be to obstruction theory, which was an initial motivation for this project.

It is convenient to state and prove the result for ΣP1. Some of the tmf∗-module struc-
ture is included in the result. We now state the main theorem of this section. Although it
is not exactly an ASS, we describe the groups in an ASS-like way, with bigrading (i, s) for
an element of πi(X ∧ tmf ∧ΣP1) of filtration s. Many elements are expressed as ae1ve2

2

of bigrading (2e1 + 6e2, e2). Thus a (resp. v2) is thought of as having bigrading (2, 0)
(resp. (6, 1)), although a and v2 themselves are not actually elements of π∗(X∧tmf ∧ΣP1).
Certain powers of v2 can be thought of as being part of the tmf∗-module structure. Note
that the elements ae1ve2

2 are not really products, since X∧tmf ∧ΣP1 is not a ring spectrum.
The element a roughly corresponds to v1/2.

Theorem 5.1. For each pair (e1, e2) such that e1 > 0, e2 ≥ 0, and e1 ≡ e2 (2), π∗(X ∧
tmf ∧ΣP1) has a summand Z/2e1 generated by





ae1ve2
2 if e1 ≡ e2 (4)

2ae1ve2
2 if e1 ≡ e2 + 2 (4),

(5.1)

with the following two variations:
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• if e1 = 2 and e2 ≡ 0 (8), it is Z/8 generated by a2ve2
2 ;

• if e1 = 1 and e2 ≡ 1 or 3 (8), it is Z/4 generated by ave2
2 .

If e1 ≥ 5 and e1 ≡ e2 (4), or if (e1, (e2 mod 8)) = (4, 0) or (3, 3), then η2ae1ve2
2 6= 0. If

(e1, (e2 mod 8)) = (1, 1), (4, 4), (2, 6), or (3, 7), then ηae1ve2
2 6= 0.

If e1 ≥ 3 and e1 ≡ e2 + 2 (4), or e1 = 2 and e2 ≡ 0 (8), then there exists be1,e2

of bigrading (e1 + e2 − 2, 2e1 + 6e2 − 2) and order 2 satisfying η2be1,e2 = 2e1ae1ve2
2 .

If (e1, (e2 mod 8)) = (1, 3) or (2, 4), there exists b′e1,e2
of bigrading (e1 + e2 − 1, 2e1 +

6e2 − 1) and order 2 satisfying ηb′e1,e2
= 2e1ae1ve2

2 .

In addition, there are the following Z2 classes xi,s of bigrading (i, s).1

• x8i+2,1 for i ≥ 1.

All the rest are acted on freely by v8
2 .

• x5,1 = νb2,0, x7,1 = νa2;
• x6,1 satisfying νx6,1 = ηav2;
• x21,3 and νx21,3;
• x22,4 = νb′1,3, x23,4 = νav3

2;
• x36,6 and νx36,6, x37,6 and νx37,6;
• x38,6 satisfying νx38,6 = ηa2v6

2 .

In Diagrams 5.1 and 5.2 we depict the groups of Theorem 5.1. All elements except
those in position (8i + 2, 1) for i ≥ 1 in Diagram 5.1 are acted on freely by v8

2 .

Diagram 5.1. π∗(X ∧ tmf ∧ΣP1) in ∗ < 32
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1Note that the subscripts of x refer to bigrading, while the subscripts of b and b′ do not.
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Diagram 5.2. π∗(X ∧ tmf ∧ΣP1), 32 ≤ ∗ < 48
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The remainder of this section is devoted to the proof of Theorem 5.1. By Theorem 2.1,

there is an exact sequence

bo∗(P1)
g∗−→ π∗(C ∧ P1)

δ∗−→ π∗(X ∧ tmf ∧ΣP1)
f̃∗−→ bo∗(ΣP1). (5.2)

As is well-known, bo∗(P1) can be computed from ExtA1(H
∗(P1)), and from Theorem

2.1(d), π∗(C ∧ P1) can be computed from

ExtA2(Σ
4A2/(Sq4, Sq5,1)⊗H∗(P1)). (5.3)

We can use Bruner’s software to compute (5.3) through a large range of dimensions, enough
to see patterns. In order to prove that these patterns continue, v8

2-periodicity, which follows



248 D. M. Davis and M. Mahowald

from the resolution in the proof of 2.2, is very helpful, but we still need to prove what
happens in filtration less than 8 beyond dimension 48. Most of our analysis will go into
computing (5.3), but we begin by analyzing (5.2).

It is convenient to use (5.2) to form a chart for π∗(X ∧ tmf ∧ΣP1) from

φ ExtA2(Σ
4A2/(Sq4, Sq5,1)⊗H∗(P1))⊕ ExtA1(H

∗(ΣP1)).

Recall that φ increases filtration by 1. The behavior for 10 ≤ i ≤ 18 is typical, and is
depicted in Diagram 5.3, in which black dots are from ExtA1(H

∗(ΣP1)) and ◦’s are from
φExtA2(Σ

4A2/(Sq4, Sq5,1)⊗H∗(P1)).

Diagram 5.3. Forming π∗(X ∧ tmf ∧ΣP1), 10 ≤ ∗ < 18
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The content in this chart is the d1-differential from (12, 0) and the η-extension from

(16, 0). These are generalized and proved in Theorem 5.2.

Theorem 5.2. In (5.2),

• bo8i+3(P1)
g∗−→ π8i+3(C ∧ P1) is nontrivial.

• There is an element γ8i ∈ π8i(X∧tmf ∧ΣP1) such that f̃∗(γ8i) has Adams filtration
0, and ηγ8i = δ∗(y8i) 6= 0 with y8i of Adams filtration 0 in π8i+1(C ∧ P1).

Proof. We will see in Theorem 5.3 that Ext0,8i+3
A (H∗(C ∧ P1)) ≈ Z2 with nonzero class

ι4 ⊗ x8i−1. The morphism g∗ is induced by

Σ4A/(Sq4, Sq5,1)⊗H∗P1 → A//A1 ⊗H∗P1 ≈ A⊗A1 H∗P1

ι4 ⊗ x8i−1 7→ Sq4⊗x8i−1 ↔ Sq4(1⊗ x8i−1) + 1⊗ x8i+3,

which proves the first statement. The η-extension follows similarly from

ι4 ⊗ x8i−3 7→ Sq4⊗x8i−3 ↔ Sq4(1⊗ x8i−3) + Sq2(1⊗ x8i−1).

To know that the class γ8i is nonzero in π8i(−), we use Theorem 5.3 to see that, unless
i ≡ 5 mod 8, the only possible target of a differential from γ8i is ruled out by h2-naturality.
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If i ≡ 5 mod 8, the differential, if nonzero in the ASS of ΣP1, would have to also be
nonzero in the ASS of the cofiber R of the Kahn-Priddy map λ : P1 → S0, but it is ruled
out there by h2-naturality.

Let L = A2/(Sq4,Sq5,1). A good way to obtain ExtA2(L ⊗ H∗(P1)) begins by
computing ExtA2(L⊗Q), where Q is the A2-module which has as its only nonzero classes
xi for i ≥ 1 and i ∈ {−9,−5,−3,−2,−1}with Sqj xi =

(
i
j

)
xi+j . Then Q is an extension

of copies of Σ8i−1A2//A1 for i ≥ −1. See [5, p.299]. Thus there is a spectral sequence
converging to ExtA2(L⊗Q) with

E∗,∗
2 =

⊕

i≥−1

Ext∗,∗A1
(Σ8i−1L).

One easily computes ExtA1(L) to be as in Diagram 5.4, from which it is immediate that
the spectral sequence collapses and

ExtA2(L⊗Q) ≈
⊕

i≥−1

ExtA1(Σ
8i−1L). (5.4)

We obtain that, in grading 8i − 4, ExtA2(L ⊗ Q) has a tower beginning in filtration s for
all nonnegative s ≤ 4i + 1 except s = 4i. This will explain the low-filtration form of
Diagrams 5.1 and 5.2.

Diagram 5.4. ExtA1(L)
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There is a short exact sequence of A2-modules

0 → H∗P1 → Q → Σ−9M7 ⊕ Σ−1Z2 → 0,
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and also after tensoring with L. Thus there is an exact sequence

Exts
A2

(L⊗ Σ−9M7)⊕ Exts
A2

(Σ−1L) → Exts
A2

(L⊗Q) (5.5)

→ Exts
A2

(L⊗H∗P1) → Exts+1
A2

(L⊗ Σ−9M7)⊕ Exts+1
A2

(Σ−1L).

In Theorem 2.2 and Diagram 2.5, we computed and displayed ExtA2(L). A nice
computation of ExtA2(L ⊗ M7) can be obtained by tensoring the exact sequence at the
beginning of the proof of Theorem 2.2 with M7. This yields a spectral sequence com-
puting ExtA2(L ⊗ M7) from things such as ExtA2(M7 ⊗ A2), which is just four Z2’s,
and ExtA2(M7 ⊗ A2//A1) ≈ ExtA1(M7), which is bo∗ ⊕ Σ4bsp∗. The resulting spec-
tral sequence has only a very few possible differentials, which are most easily settled
using Bruner’s software, although they can be settled without it. Both ExtA2(L) and
ExtA2(L⊗M7) have lower vanishing lines. From these and the exact sequence, we obtain
that

Exts,t
A2

(L⊗Q) → Exts,t
A2

(L⊗H∗P1)

is an isomorphism if s ≤ 8 and t− s ≥ 53.
Thus a Bruner calculation of Exts,t

A2
(L⊗H∗P1) for t−s ≤ 53, which is easily done and

is consistent with Theorem 5.3, together with the complete description of ExtA2(L ⊗ Q)
in (5.4) and Diagram 5.4 and v8

2-periodicity, gives a complete determination of the groups
Exts,t

A2
(L ⊗ H∗P1). Note that the Bruner software is not absolutely necessary for the

calculation in t − s ≤ 53. First of all, it is just a finite calculation, and secondly there are
rather simple patterns for the boundary homomorphism in (5.5), which could be determined
directly.

There is one more thing required in order to determine the chart for Exts,t
A2

(L⊗H∗P1),
and the resulting π∗(C ∧P1). In dimensions greater than 53 and congruent to 0 mod 4, we
know from the determination of ExtA2(L⊗Q) that in filtration≤ 8 Exts,t

A2
(L⊗H∗P1) has

h0-towers beginning in each filtration (> 0 in dimension 0 mod 8), and we know from the
Bruner calculation and periodicity that in high filtration it has towers which end in every
second filtration coming down from a certain maximum filtration. But how do we know the
way these match up? We must show that, as suggested in Diagrams 5.1 and 5.2, the lowest
bottoms match up with the highest tops.

One way to do this is to use the spectral sequence which builds ExtA2(L⊗H∗P1) from

⊕

s≥0

φs Ext∗,∗A2
(Σ−sCs ⊗H∗P1), (5.6)

where Cs are the A2-modules in the resolution of L at the beginning of the proof of Theo-
rem 2.2. The s-summand provides a bunch of Z2’s at height s in the resulting chart (coming
from φs Ext0(−)) together with the portion of Diagram 5.5 consisting of towers beginning
at height s. Note that there are no such towers when s = 0.
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Diagram 5.5. Portion of spectral sequence building ExtA2(L⊗H∗P1)
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The desired form for the bottoms of the towers, as obtained from the complete de-
scription of ExtA2(L ⊗ Q) in (5.4) and Diagram 5.4, differs slightly from this, in that in
dimensions congruent to 4 mod 8 most of the towers should begin one filtration lower. This
can only be accounted for by an extension from a Z2 from the next smaller s-value.

For example, in dimension 28, Diagram 5.5 shows towers beginning at height 1, 2, 3,
and 4, coming from summands s = 1, 2, 3, and 4 in (5.6) with tops at height 12, 10,
8, and 6, respectively. These correspond to π32(C ∧ P1), which, according to Theorem
5.3, corresponds to π32(X ∧ tmf ∧ΣP1) in Diagram 5.2 with its largest tower removed
and filtrations decreased by 1; hence, towers beginning at height 0, 1, 2, and 3 ending at
height 12, 10, 8, and 6. Then, for example, the tower in π32(C ∧ P1) (corresponding to
Ext∗,∗+28

A2
(L⊗H∗P1)) going from filtration 0 to 12 can only come, in the spectral sequence

of (5.6), from the s = 1 tower with an extension from a Z2 from s = 0.
The main thing that was obtained from using Q which was not easily obtained from

(5.6) is the η2-hooks on the bottom of towers. In (5.6) these come about from the filtration-
0 Z2’s in the various s-summands in a complicated way, but they are clear in Diagram 5.4.
The above remarks imply the following result, the computation of (5.3), since there are no
possible differentials in the ASS.

Theorem 5.3. The ASS converging to π∗(C ∧P1) has Es,t
2 = Exts,t

A2
(Σ4L⊗H∗(P1)) and

collapses. The description of π∗(C ∧P1) can be obtained from that of π∗(X ∧ tmf ∧ΣP1)
in Theorem 5.1 by making the following changes:

• Remove summands in (5.1) for which e2 = 0, (but do not remove ηae1 and η2ae1

when e1 ≡ 0 mod 4);
• Remove be1,0 and ηbe1,0 with e1 ≡ 2 mod 4;
• Add elements c8i+3,0 of order 2 for i ≥ 1;
• Decrease filtrations by 1.



252 D. M. Davis and M. Mahowald

The proof of Theorem 5.1 is now immediate from the exact sequence (5.2), Theorem
5.3, and Theorem 5.2, which describes the only possible differentials and extensions in
(5.2).

Remark 5.1. The way that we have chosen to describe these things is reversed from the
way they are derived. We first compute the groups in 5.3 and then use them to determine
the groups in 5.1. However, we are mostly interested in 5.1, and so we felt that it should be
stated up front. It seemed like overkill to state the whole thing again for π∗(C ∧ P1), since
it is so similar.
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