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DONALD M. DAVIS

Abstract. The numbers ẽp(k, n) defined as min(νp(S(k, j)j!) :
j ≥ n) appear frequently in algebraic topology. Here S(k, j) is the
Stirling number of the second kind, and νp(−) the exponent of p.
Let sp(n) = n− 1 + νp([n/p]!). The author and Sun proved that if
L is sufficiently large, then ẽp((p− 1)pL + n− 1, n) ≥ sp(n).

In this paper, we determine the set of integers n for which ẽp((p−
1)pL + n − 1, n) = sp(n) when p = 2 and when p = 3. The
condition is roughly that, in the base-p expansion of n, the sum
of two consecutive digits must always be less than p. The result
for divisibility of Stirling numbers is, when p = 2, that for such
integers n, ν2(S(2L + n− 1, n)) = [(n− 1)/2].

We also present evidence for conjectures that, if n = 2t or 2t+1,
then the maximum value over all k ≥ n of ẽ2(k, n) is s2(n) + 1.

1. Introduction

Let S(k, j) denote the Stirling number of the second kind. This satisfies

S(k, j)j! = (−1)j
j∑

i=0

(−1)i
(

j
i

)
ik. (1.1)

Let νp(−) denote the exponent of p. For k ≥ n, the numbers ẽp(k, n) defined by

ẽp(k, n) = min(νp(S(k, j)j!) : j ≥ n) (1.2)

are important in algebraic topology. We will discuss these applications in Section 6.

In [7], it was proved that, if L is sufficiently large, then

ẽp((p− 1)pL + n− 1, n) ≥ n− 1 + νp([n/p]!). (1.3)

Let sp(n) = n − 1 + ν([n/p]!), as this will appear throughout the paper. Our main

theorems, 1.7 and 1.9, give the sets of integers n for which equality occurs in (1.3)
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2 DONALD M. DAVIS

when p = 2 and when p = 3. Before stating these, we make a slight reformulation to

eliminate the annoying (p− 1)pL.

We define the partial Stirling numbers ap(k, j) by

ap(k, j) =
∑

i6≡0 (p)

(−1)i
(

j
i

)
ik

and then

ep(k, n) = min(νp(ap(k, j)) : j ≥ n). (1.4)

Partial Stirling numbers have been studied in [10] and [9].

The following elementary and well-known proposition explains the advantage of

using ap(k, j) as a replacement for S(k, j)j!: it is that νp(ap(k, j)) is periodic in k.

In particular, νp(ap(n − 1, n)) = νp(ap((p − 1)pL + n − 1, n)) for L sufficiently large,

whereas S(n−1, n)n! = 0. Thus when using ap(−), we need not consider the (p−1)pL.

The second part of the proposition says that replacing S(k, j)j! by ap(k, j) merely

extends the numbers ẽp(k, n) for k ≥ n in which we are interested periodically to all

integers k. An example (p = 3, n = 10) is given in [4, p.543].

Proposition 1.5. a. If t ≥ νp(ap(k, j)), then

νp(ap(k + (p− 1)pt, j)) = νp(ap(k, j)).

b. If k ≥ n, then ep(k, n) = ẽp(k, n).

Proof. a. ([3, 3.12]) For all t, we have

ap(k + (p− 1)pt, j)− ap(k, j) =
∑

i 6≡0 (p)

(−1)i
(

j
i

)
ik(i(p−1)pt − 1) ≡ 0 (pt+1),

from which the conclusion about p-exponents is immediate.

b. We have

(−1)jS(k, j)j!− ap(k, j) ≡ 0 (pk) (1.6)

since all its terms are multiples of pk. Since ẽ(k, n) ≤ ν(S(k, k)k!) < k, a multiple of

pk cannot affect this value.

Our first main result determines the set of values of n for which (1.3) is sharp when

p = 2.
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Theorem 1.7. For n ≥ 1, e2(n− 1, n) = s2(n) iff n = 2ε(2s + 1) with 0 ≤ ε ≤ 2 and(
3s
s

)
odd.

Remark 1.8. Since
(

3s
s

)
is odd iff binary(s) has no consecutive 1’s, another charac-

terization of those n for which e2(n − 1, n) = s2(n) is those satisfying n 6≡ 0 mod 8,

and the only consecutive 1’s in binary(n) are, at most, a pair at the end, followed

perhaps by one or two 0’s. Alternatively, except at the end, the sum of consecutive

bits must be less than 2.

When p = 3, the description is similar.

Theorem 1.9. Let T denote the set of positive integers for which the sum of two

consecutive digits in the base-3 expansion is always less than 3. Let T ′ = {n ∈ T :

n 6≡ 2 (3)}. For integers a and b, let aT + b = {an + b : n ∈ T}, and similarly for

T ′. Then e3(n− 1, n) = s3(n) if and only if

n ∈ (3T + 1) ∪ (3T ′ + 2) ∪ (9T + 3).

Remark 1.10. Thus e3(n − 1, n) = s3(n) iff n 6≡ 0, 6 (9) and the only consecutive

digits in the base-3 expansion of n whose sum is ≥ 3 are perhaps · · · 21, · · · 12, or

· · · 210, each at the very end.

The following definition will be used throughout the paper.

Definition 1.11. Let n denote the residue of n mod p.

The value of p will be clear from the context. Similarly x denotes the residue of x,

etc.

Remark 1.12. As our title suggests, we can interpret our results in terms of divisi-

bility of Stirling numbers. Suppose p = 2 or 3 and L is sufficiently large. The main

theorem of [7] can be interpreted to say that

νp(S((p− 1)pL + n− 1, n)) ≥ (p− 1)[n
p
] + n− 1.

(1.13)

Our main result is that equality occurs in (1.13) iff, for p = 3, n is as in Theorem 1.9

with n 6≡ 2 (9) or, for p = 2, n is as in Theorem 1.7. We also show that, if p = 3 and

n = 9x + 2, then equality occurs in

ν3(S(2 · 3L + n− 1, n + 1)) ≥ 6x

iff x ∈ T ′.
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In [12, (1.5)], a function T p
k,α(n, r) was introduced, relevant to the proof of (1.3).

We recall it in Definition 2.8. Useful in our proofs of 1.7 and 1.9 is the explicit value

mod p of T p
k,2(n, r) when p = 2 and 3. (See 2.10, 3.2, and 3.17.) We obtain this by

relating it to T p
k,1([

n
p
], [ r

p
]) and then evaluating the latter. This extends [12, Thm 1.5]

to the case α = 1. Useful in this proof is Theorem 1.15, which is proved in Section 3

and might be of independent interest.

Definition 1.14. If n is a positive integer and r is any integer, let

S1(n, r) = p−[n−1
p−1

]
∑

k≡r (p)

(−1)k
(

n
k

)
, and S2(n, r) = p−[n−1

p−1
]

∑

k≡pr (p2)

(−1)k
(

pn
k

)
.

These are integers by [13]. They were also studied in [10]. The prime p is implicit.

Theorem 1.15. Let p be an odd prime.

a. For all r, S1(n, r) ≡ S2(n, r) mod p.

b. Mod p, S1(n, r) ≡




(−1)s−1 if n = (p− 1)s

(−1)s−1( s+1
2

+ r) if n = (p− 1)s− 1.

c. Mod p, S1(n + p(p− 1), r) ≡ −S1(n, r).

Of special interest in algebraic topology is

ep(n) := max(ep(k, n) : k ∈ Z). (1.16)

In Section 5, we discuss the relationship between e2(n), e2(n − 1, n), and s2(n). We

describe an approach there toward a proof of the following conjecture.

Conjecture 1.17. If n = 2t, then

e2(n) = e2(n− 1, n) = s2(n) + 1,

while if n = 2t + 1, then

e2(n) = e2(n− 1, n) + 1 = s2(n) + 1.

This conjecture suggests that the inequality e2(n − 1, n) ≥ s2(n) fails by 1 to be

sharp if n = 2t, while if n = 2t + 1, it is sharp but the maximum value of e2(k, n)

occurs for a value of k 6= n− 1.
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2. Proof of Theorem 1.7

In this section, we prove Theorem 1.7, utilizing results of [12] and some work with

binomial coefficients. The starting point is the following result of [12]. In this section,

we abbreviate ν2(−) as ν(−).

Theorem 2.1. ([12, 1.2]) For all n ≥ 0 and k ≥ 0,

ν

(
2kk!

∑

i

(
n

4i+2

)(
i
k

))
≥ ν([n/2]!).

The bulk of the work is in proving the following refinement. The inequality is

immediate from 2.1.

Theorem 2.2. Let n be as in Theorem 1.7, and, if n > 4, define n0 by n = 2e + n0

with 0 < n0 < 2e−1. Then

ν

((
n−1

k

)
2kk!

∑

i

(
n

4i+2

)(
i
k

))
≥ ν([n/2]!) (2.3)

for all k, with equality if and only if

k =





0 1 ≤ n ≤ 4

n0 − 1 n 6≡ 0 (mod 4), n > 4

n0 − 2 n ≡ 0 (mod 4), n > 4.

(2.4)

Proof that Theorem 2.2 implies the “if” part of Theorem 1.7. By (1.3), e2(n−1, n) ≥
s2(n) for all n. Thus it will suffice to prove that if n is as in Theorem 2.2, then

ν(a2(n− 1, n)) = s2(n). (2.5)

Note that

0 = (−1)nS(n− 1, n)n! = −a2(n− 1, n) +
∑ (

n
2k

)
(2k)n−1.

Factoring 2n−1 out of the sum shows that (2.5) will follow from showing
∑ (

n
2k

)
kn−1 = ν([n/2]!). (2.6)

The sum in (2.6) may be restricted to odd values of k, since terms with even k are

more 2-divisible than the claimed value. Write k = 2j + 1 and apply the Binomial

Theorem, obtaining
∑

j

(
n

4j+2

) ∑

`

2`j`
(

n−1
`

)
=

∑

j

(
n

4j+2

) ∑

`

2`
(

n−1
`

) ∑

i

S(`, i)i!
(

j
i

)
.
(2.7)
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Here we have used the standard fact that j` =
∑

S(`, i)i!
(

j
i

)
.

Recall that S(`, i) = 0 if ` < i, and S(i, i) = 1. Terms in the right hand side of

(2.7) with ` = i yield
∑

i

(
n−1

i

)
2ii!

∑

j

(
n

4j+2

)(
j
i

)
,

which we shall call An. By Theorem 2.2, if n is as in Theorem 1.7, ν(An) = ν([n/2]!)

since all i-summands have 2-exponent ≥ ν([n/2]!), and exactly one of them has 2-

exponent equal to ν([n/2]!). Terms in (2.7) with ` > i satisfy

ν(term) > ν


2ii!

∑

j

(
n

4j+2

)(
j
i

)

 ,

the RHS of which is ≥ ν([n/2]!) by 2.1. The claim (2.6), and hence Theorem 1.7,

follows.

We recall the following definition from [12, 1.5].

Definition 2.8. Let p be any prime. For n, α, k ≥ 0 and r ∈ Z, let

T p
k,α(n, r) :=

k!pk

[n/pα−1]!

∑

i

(−1)pαi+r

(
n

pαi + r

)(
i

k

)
.

In the remainder of this section, we have p = 2 and omit writing it as a superscript

of T .

By 2.1, Theorem 2.2 is equivalent to the following result, to the proof of which the

rest of this section will be devoted.

Theorem 2.9. If n is as in Theorem 2.2, then
(

n−1
k

)
Tk,2(n, 2) is odd if and only if k

is as in (2.4).

Central to the proof of 2.9 is the following result, which will be proved at the end

of this section. This result applies to all values of n, not just those as in Theorem

2.2. This result is the complete evaluation of Tk,2(n, 2) mod 2.

Theorem 2.10. If 4k + 2 > n, then Tk,2(n, 2) = 0. If 4k + 2 ≤ n, then, mod 2,

Tk,2(n, 2) ≡
(

[n/2]− k − 1

[n/4]

)
.
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Proof of Theorem 2.9. The cases n ≤ 4 are easily verified and not considered further.

First we establish that
(

n−1
k

)
Tk,2(n, 2) is odd for the stated values of k. We have

(
n−1

k

)
=





(
2e+n0−1

n0−1

)
if n0 6≡ 0 (mod 4)(

2e+n0−1
n0−2

)
if n0 ≡ 0 (mod 4),

which is clearly odd in both cases. Here and throughout we use the well-known fact

that, if 0 ≤ εi, δi ≤ p− 1, then
(∑

εip
i

∑
δipi

)
≡ ∏ (

εi

δi

)
(mod p). (2.11)

Now we show that Tk,2(n, 2) is odd when n and k are as 1.7 and (2.4).

Case 1: n0 = 8t + 4 with
(

3t
t

)
odd, and k = 8t + 2. Using 2.10, with all equivalences

mod 2,

Tk,2(n, 2) ≡
(

2e−1 + 4t + 2− (8t + 2)− 1

2e−2 + 2t + 1

)
≡

(−4t− 1

2t + 1

)
≡

(
6t + 1

2t + 1

)
≡

(
3t

t

)
.

Case 2: n0 = 4t + ε, ε ∈ {1, 2},
(

3t
t

)
odd, k = 4t + ε− 1. Then

Tk,2(n, 2) ≡
(

2e−1 + 2t + ε− 1− (4t + ε− 1)− 1

2e−2 + t

)
≡

(−2t− 1

t

)
≡

(
3t

t

)
.

Case 3: n0 = 4t + 3,
(

3(2t+1)
2t+1

)
odd, k = 4t + 2. Then

Tk,2(n, 2) ≡
(

2e−1 + 2t + 1− (4t + 2)− 1

2e−2 + t

)
≡

(−2t− 2

t

)
≡

(
3t + 1

t

)
≡

(
2(3t + 1) + 1

2t + 1

)
.

Now we must show that, if n is as in Theorem 1.7 and k does not have the value

specified in (2.4), then
(

n−1
k

)
Tk,2(n, 2) is even. The notation of Theorem 2.2 is con-

tinued. We divide into cases.

Case 1: k ≥ n0. Here
(

n−1
k

)
odd implies k ≥ 2e, but then 4k + 2 > n and so by

Theorem 2.10, Tk,2(n, 2) = 0. Hence
(

n−1
k

)
Tk,2(n, 2) is even.

Case 2: n0 = 4t + 4, k = n0 − 1. Here Tk,2(n, 2) ≡
(−(2t+2)

t+1

)
≡

(
3t+2
t+1

)
. If t is

even, this is even, and if t = 2s − 1, this is congruent to
(

3s−1
s

)
which is even, since

if ν(s) = w, then 2w 6∈ 3s − 1; i.e., the decomposition of 3s − 1 as a sum of distinct

2-powers does not contain 2w.

Case 3: n0 = 4t + ε, 1 ≤ ε ≤ 3, and k < n0 − 1. Here
(
n− 1

k

)
Tk,2(n, 2) ≡

(
4t + ε− 1

k

)(
2e−1 + 2t + [ε/2]− k − 1

2e−2 + t

)
.
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If k ≤ 2t+[ε/2]−1, then the second factor is even due to the i = e−2 factor in (2.11).

If k > 2t + [ε/2] − 1, the second factor is congruent to
(−(k+1−2t−[ε/2])

t

)
≡

(
k−t−[ε/2]

t

)
.

For
(

4t+ε−1
k

)(
k−t−[ε/2]

t

)
to be odd would require one of the following:

ε = 1, k = 4i, and
(

t
i

)(
4i−t

t

)
odd

ε = 2, k = 4i + 〈0, 1〉, and
(

t
i

)(
4i−t−〈1,0〉

t

)
odd.

ε = 3, k = 4i + 〈0, 2〉,
(

t
i

)(
4i−t+〈−1,1〉

t

)
odd.

But all these products are even if i < t by Lemma 2.14. If i = t, since k < n0− 1, we

obtain a
(

3t−1
t

)
factor, which is even, as in Case 2.

Case 4: n0 = 4t + 4 and k < n0 − 2. Note that t must be even since n 6≡ 0 (8) in

2.2. We have(
n− 1

k

)
Tk,2(n, 2) ≡

(
4t + 3

k

)(
2e−1 + 2t + 1− k

2e−2 + t + 1

)
.

The case k ≤ 2t + 1 is handled as in Case 3. If k > 2t + 1, then, similarly to Case 3,

it reduces to
(

4t+3
k

)(
k−t−1

t+1

)
. If k = 4t or 4t + 1, then we obtain

(
3t−1
t+1

)
or

(
3t

t+1

)
, which

are even since t is even. Now suppose k = 4i+∆ with 0 ≤ ∆ ≤ 3 and i < t. Since t is

even, if ∆ is odd, then
(

k−t−1
t+1

)
is even. For ∆ = 0 or 2, we obtain

(
t
i

)(
4i−t±1

t+1

)
. Since t

is even, we use
(

2A+1
2B+1

)
≡

(
2A
2B

)
to obtain

(
t
i

)(
4i−t−〈0,2〉

t

)
, which is even by Lemma 2.14.

The following result implies the “only if” part of Theorem 1.7.

Theorem 2.12. Assume n ≡ 0 mod 8 or n = 2ε(2s + 1) with 0 ≤ ε ≤ 2 and
(

3s
s

)

even. Then for all N ≥ n, we have ν2(a2(n− 1, N)) > s2(n).

Proof. Combining aspects of 2.2, 2.10, and 4.21, the theorem will follow from showing

that for n as in the theorem and N ≥ n satisfying [N/4] = [n/4], we have

∑

4k+2≤N

(
n− 1

k

)(
[N/2]− k − 1

[N/4]

)
≡ 0 (2). (2.13)

Note that if [N/4] > [n/4], then [N/2]!
[n/2]!

is even in the 2-primary analogue of the proof

of 4.21.

When n = 8`, it is required to show that
∑ (

8`−1
k

)(
4`−k−1

2`

)
and

∑ (
8`−1

k

)(
4`−k
2`

)
are

both even. The first corresponds to N = n or n + 1, and the second to N = n + 2 or
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n + 3. The first is proved by noting easily that the summands for k = 2j and 2j + 1

are equal. The second follows from showing that the summands for k = 2j and 2j−1

are equal. This is easy unless 2j = 8i. For this, we need to know that
(

2`−4i
`

)(
`
i

)
is

always even, and this follows easily from showing that the binary expansions of `−4i,

`− i, and i cannot be disjoint.

For n = 2ε(2s+1) with
(

3s
s

)
even, all summands in (2.13) can be shown to be even

when n = 2e + n0 with 0 < n0 < 2e−1 and N = n using the proof of Theorem 2.9.

For such n and N > n, the main case to consider is n = 8a + 4 and N = n + 2. Then

we need
(

8a+3
k

)(
4a+2−k
2a+1

)
≡ 0 mod 2. For this to be false, k must be odd. But then we

have (
8a+3

k

)(
4a+2−k
2a+1

)
≡

(
8a+3
k−1

)(
4a+1−(k−1)

2a+1

)
≡ 0

by the result for N = n with k replaced by k − 1.

If n = 2e+d + · · ·+ 2e + n0 with d > 0 and 0 < n0 < 2e−1, then (2.13) for n = N is

proved when k does not have the special value of (2.4) just as in the second part of

the proof of 2.9. We illustrate what happens when k does have the special value by

considering what happens to Case 1 just after (2.11). The binomial coefficient there

becomes (
2e+d−1 + · · ·+ 2e−1 − 4t− 1

2e+d−2 + · · ·+ 2e−2 + 2t + 1

)
,

which is 0 mod 2 by consideration of the 2e−1 position in (2.11). For N > n, the

argument is essentially the same as that of the previous paragraph.

The following lemma was used above.

Lemma 2.14. Let i < t, −2 ≤ δ ≤ 1, and if δ = −2, assume that t is even. Then(
t
i

)(
4i−t+δ

t

)
is even.

Proof. Assume that
(

t
i

)(
4i−t+δ

t

)
is odd. Then i, t − i, and 4i − 2t + δ have disjoint

binary expansions. If δ = 0 or 1, then letting ` = t− i and r = 2i− t, we infer that

` + r, `, and 2r are disjoint with ` and r positive, which is impossible by Sublemma

2.15.2. If δ = −1 and t is odd, then two of i, t− i, and 4i−2t−1 are odd, and so they

cannot be disjoint. Thus we may assume t is even and δ = −1 or −2. Let ` = t − i

and r = 2i− t− 1. Then ` + r + 1, `, and 2r are disjoint with ` and r positive and r

odd, which is impossible by Sublemma 2.15.3.
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Sublemma 2.15. Let ` and r be nonnegative integers.

(1) Then `, 2r +1, and `+ r +1 do not have disjoint binary expan-

sions.

(2) If ` and r are positive, then `, 2r, and `+r do not have disjoint

binary expansions.

(3) If ` is positive and r is odd, then `, 2r, and ` + r + 1 do not

have disjoint binary expansions.

Proof. (1) Assume that ` and r constitute a minimal counterexample. We must have

` = 2`′ and r = 2r′ + 1. Then `′ and r′ yield a smaller counterexample.

(2) Assume that ` and r constitute a minimal counterexample. If r is even, then

` must be even, and so dividing each by 2 gives a smaller counterexample. If r = 1,

then `, 2, and ` + 1 are disjoint, which is impossible, since the only way for ` and

` + 1 to be disjoint is if ` = 2e− 1. If r = 2r′ + 1 with r′ > 0, and ` = 2`′, then `′ and

r′ form a smaller counterexample. If r = 2r′ + 1 and ` = 2`′ + 1, then `′, 2r′ + 1, and

`′ + r′ + 1 are disjoint, contradicting (1).

(3) Let r = 2r′ + 1. Then ` must be even (= 2`′). Then `′, 2r′ + 1, and `′ + r′ + 1

are disjoint, contradicting (1).

The following lemma together with Theorem 3.2 implies Theorem 2.10. Its proof

uses the following definition, which will be employed throughout the paper.

Definition 2.16. Let dp(−) denote the number of 1’s in the p-ary expansion.

Lemma 2.17. Mod 2,

Tk,1(n, r) ≡




(
n−k−1

[(n−1+r)/2]

)
n > k

0 n ≤ k
(2.18)

Proof. The proof is by induction on k. Let fk(n, r) denote the RHS of (2.18) mod 2.

It is easy to check that f0(n, r) = δd2(n),1, agreeing with T0,1(n, r) as determined in

(3.4). Here and throughout δi,j is the Kronecker function. From Definition 2.8, mod

2, Tk,1(1, r) ≡ δk,0. This is what causes the dichotomy in (2.18).

By [12, (2.3)], if k > 0, then

Tk,1(n, r) + rTk−1,1(n, r + 2) = −Tk−1,1(n− 1, r + 1).
(2.19)
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Noting that f only depends on the mod 2 value of r, the lemma follows from

fk(n, 0) = fk−1(n− 1, 1)

fk(n, 1) = fk−1(n, 1) + fk−1(n− 1, 0),

which are immediate from the definition of f and Pascal’s formula.

3. Mod p values of T -function

We saw in Theorem 2.9 that knowledge of the mod 2 value of the T -function of

[12] played an essential role in proving Theorem 1.7. A similar situation occurs when

p = 3. The principal goal of this section is the determination of T 3
k,2(n, r), obtained

by combining Theorems 3.2 and 3.17. We also prove Theorem 1.15, which is used in

the proof of 3.2, but may be of intrinsic interest.

We begin by recording a well-known proposition which will be used throughout the

paper.

Proposition 3.1. If n ≥ 0, then νp(n!) = 1
p−1

(n − dp(n)), and hence νp(
(

n
b

)
) =

1
p−1

(dp(b) + dp(n− b)− dp(n)).

The following result extends [12, Thm 1.5] to include the case α = 1.

Theorem 3.2. Let p be any prime. For any α ≥ 1, we have the congruence, mod p,

T p
k,α+1(n, r) ≡ (−1)r

(
n

r

)
T p

k,α([n
p
], [ r

p
]).

Proof. This was proved for α ≥ 2 in [12, Thm 1.5]. The only place that the proof of

that result does not work when α = 1 is in the initial step of Case 3 of [12, p.5548].

Required to complete that proof is

T p
0,2(pn, pr) ≡ T p

0,1(n, r) (mod p).

This just says, mod p,

1
n!

∑

i≡pr (p2)

(−1)i
(

pn
i

)
≡ 1

n!

∑

i≡r (p)

(−1)i
(

n
i

)
. (3.3)

When p is odd, this follows immediately from part a of Theorem 1.15, since νp(n!) ≤
[(n− 1)/(p− 1)].
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We prove (3.3) when p = 2 by showing that both sides equal δ1,d2(n0). The RHS

equals

1

2n−d2(n)u
· 2n−1 ≡ 2d2(n)−1 ≡ δd2(n),1 (mod 2), (3.4)

with u odd, while the LHS is 1
n!

∑

i≡2r (4)

(
2n
i

)
≡ 1

2n−d2(n)
·




22n−2 n odd

2n−1u′ n even,
, and this

also equals δd2(n),1. Here we have used

∑

i≡r (4)

(
n
i

)
= 2n−2+εn,r2

[n/2]−1, with εn,r =





0 n− 2r ≡ 2 (mod 4)

1 n− 2r ≡ −1, 0, 1 (mod 8)

−1 n− 2r ≡ 3, 4, 5 (mod 8),

which is easily proved by induction on n.

Next we discuss Theorem 1.15 and give its proof. First we note that the definitions

of S1 and S2 in it are similar to [12, (3.4)], but differ regarding the role of the second

variable in S2. We remark that part b of 1.15 was given by Lundell in [10], although

he merely said “the proof is a straightforward but somewhat tedious induction.” Part

a is of particular interest to us.

Proof of Theorem 1.15. Throughout this proof, p denotes an odd prime. We will work

with polynomials in the ring R := Fp[x]/(xp − 1). In R, let

Pn(x) =
p−1∑

r=0

S1(n, r)xr and Qn(x) =
p−1∑

r=0

S2(n, r)xr. (3.5)

Also in R, let

ψ(x) =
(1− x)p − (1− xp)

p(1− x)
=

(1− x)p−1 − (1 + · · ·+ xp−1)

p
.

We will prove later the following result, which immediately implies part a.

Theorem 3.6. For 1 ≤ d ≤ p− 1 and m ≥ 0, we have in R

P(p−1)m+d(x) = ψ(x)m(1− x)d = Q(p−1)m+d(x).

Parts b and c follow from Theorem 3.6 and the following result, which we will

also prove later. The numbering of the parts is related to the corresponding part of

Theorem 1.15.

Lemma 3.7. We have, in R,
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b.i. (ψ(x) + 1)(1− x)p−1 = 0,

b.ii. (ψ(x) + x(p−1)/2)(1− x)p−2 = 0, and

c. ψ(x)p = −1.

The deduction of 1.15.bc is straightforward. For the first part of b, we have in R

(−1)s−1(1 + x + · · ·+ xp−1)

= (−1)s−1(1− x)p−1

= ψ(x)s−1(1− x)p−1

= P(p−1)s(x)

=
p−1∑

r=0

S1((p− 1)s, r)xr.

Noting that (1− x)p−2 = 1 + 2x + 3x2 + · · ·+ (p− 1)xp−2, the second part of 3.6.b

follows from the following analysis of coefficients of polynomials in R.

S1((p− 1)(s− 1) + p− 2, r)

= [xr]P(p−1)(s−1)+p−2(x)

= [xr](ψ(x)s−1(1− x)p−2)

= [xr]((−1)s−1x(s−1)(p−1)/2(1− x)p−2)

= (−1)s−1[xr+(s−1)/2](1− x)p−2

= (−1)s−1(r + (s− 1)/2 + 1).

Note that exponents of x may be considered mod p. The deduction of 1.15.c from

3.7.c is much easier, and omitted.

Proof of Theorem 3.6. We first show the theorem is true when m = 0. The argument

for P is similar to, and easier than, the following argument for Q. Let 1 ≤ d ≤ p− 1.

Note that, mod p,

Qd(x
p) =

∑
r

S2(d, r)xpr =
∑
r

(−1)pr
(

pd
pr

)
xpr ≡

d∑

r=0

(−1)r
(

d
r

)
xpr = (1−xp)d.

Thus the same is true when xp is replaced by x. Note that here we are dealing with

polynomials mod p, but not in the ring R used earlier.
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Next we prove that for any n 6≡ 1 mod (p− 1)

Pn+p−1(x) = ψ(x)Pn(x) (3.8)

in R. To see this, first note that if n 6≡ 1 mod (p− 1),

S1(n, r) = S1(n− 1, r)− S1(n− 1, r − 1). (3.9)

Note that the need for n 6≡ 1 is so that [(n−1)/(p−1)] = [(n−2)/(p−1)]. Similarly,

for n 6≡ 1 mod (p− 1)

S1(n + p− 1, r) = 1
p

p∑

i=0

(−1)i
(

p
i

)
S1(n− 1, r − i).

(3.10)

Since S1(n− 1, r) = S1(n− 1, r − p), this becomes

S1(n + p− 1, r) =
p−1∑

i=1

(−1)i 1
p

(
p
i

)
S1(n− 1, r − i)

=
p−2∑

i=1

αiS1(n, r − i), (3.11)

where

ψ(x) =
p−2∑

i=1

αix
i. (3.12)

At the last step, we have used (3.9). The equation (3.11) translates to (3.8).

A similar argument, sketched below, shows that for any n 6≡ 1 mod (p− 1)

Qn+p−1(x) = ψ(x)Qn(x) (3.13)

in R. The S2-analogue of (3.9) is true mod p, obtained from

S2(n, r) = S2(n−1, r)+p−[n−1
p−1

]
p−1∑

i=1

(−1)i
(

p
i

) ∑

k≡pr−i (p2)

(−1)k
(

p(n−1)
k

)
−S2(n−1, r−1)

by noting that the k-sums are divisible by p[(n−1)/(p−1)] by [13], and so since
(

p
i

)
≡ 0

mod p, then each i-summand is 0 mod p. The S2-analogue of (3.10), mod p, is

obtained similarly, using that (1− x)p2 ≡ (1− xp)p mod p. The argument for (3.13)

is completed as in (3.11).

Theorem 3.6 with d 6= 1 is immediate from (3.8) and (3.13) plus the validity when

m = 0 established in the first paragraph of this proof. The proof when d = 1 requires

the following three lemmas.
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Lemma 3.14. If n is odd and n− 2r ≡ 0 mod p, then S1(n, r) = 0 = S2(n, r).

Proof. Since n− r ≡ r mod p, both
(

n
r

)
and

(
n

n−r

)
occur in the sum for S1(n, r), and

with opposite sign since n is odd. Hence all terms in the sum occur in cancelling

pairs. The same is true of all terms in the sum for S2(n, r) since pn − pr ≡ pr mod

p2.

Lemma 3.15. If (1−x)f(x) = 0 in R, then f(x) = c(1 + x + · · ·+ xp−1) for some c.

Proof. Let f(x) = c0 + c1x + · · · + cp−1x
p−1. The given equation implies c0 = c1 =

· · · = cp−1.

Lemma 3.16. For t ∈ Z, let Rt ⊂ R denote the span of xi − xt−i for all i. If

g(x) ∈ Rt, then g(x)ψ(x) ∈ Rt−1.

Proof. Since ψ(x) is a linear combination of various xj + xp−1−j, the lemma follows

from the observation that

(xi − xt−i)(xj + x−1−j) = xi+j − xt−1−i−j + xi−1−j − xt+j−i.

Note that if g(x) ∈ Rt, then [xt/2]g(x) = 0.

Now we prove the case d = 1 of Theorem 3.6. We have

P(p−1)m+1(x) · (1− x) = P(p−1)m+2(x) = (1− x)2ψ(x)m.

By Lemma 3.15, ∆m(x) := P(p−1)m+1(x)− (1−x)ψ(x)m has all coefficients equal. By

Lemma 3.14, if (p − 1)m + 1 − 2r ≡ 0 mod p, then [xr]P(p−1)m+1(x) = 0. Note that

here r = (1 −m)/2, with exponents always considered mod p in R. In the notation

of Lemma 3.16, 1 − x ∈ R1, and hence by that lemma, (1 − x)ψ(x)m ∈ R1−m. Thus

[x(1−m)/2]((1 − x)ψ(x)m) = 0. Thus [x(1−m)/2]∆m(x) = 0, and hence ∆m(x) = 0, as

desired.

Proof of Lemma 3.7. To prove b.i., we prove ψ(x)+1 is divisible by (1−x) by showing

ψ(1) ≡ −1 mod p. Note that
∑p−1

i=0 ((−1)i
(

p−1
i

)
− 1) = −p, and hence

ψ(1) = 1
p

∑p−1
i=0 ((−1)i

(
p−1

i

)
− 1) = −1.
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To prove b.ii., we prove g(x) := ψ(x)+x(p−1)/2 is divisible by (1−x)2. Since g(1) =

0, it remains to show that the derivative satisfies g′(1) = 0; i.e., that ψ′(1) + p−1
2
≡ 0

mod p. Let αi = 1
p
((−1)i

(
p−1

i

)
− 1). Then ψ′(1) =

∑p−1
i=1 iαi. Since

−(p− 1)(1− x)p−2 = d
dx

(1− x)p−1 =
∑p−1

i=1 (−1)i
(

p−1
i

)
ixi−1,

setting x = 1 shows
∑p−1

i=1 (−1)i
(

p−1
i

)
i = 0 and thus

pψ′(1) =
p−1∑

i=1

piαi =
p−1∑

i=1

((−1)i
(

p−1
i

)
− 1)i = −

p−1∑

i=1

i = −p(p−1)
2

,

and hence ψ′(1) + p−1
2

= 0, as desired.

To prove c, we use xp = 1, (A + B)p ≡ Ap + Bp, and ip ≡ i, and obtain, in R,

ψ(x)p =
p−1∑

i=0

(−1)i
(

p−1
i

)
− 1

p
= 0− 1.

Now we give the mod 3 values of T 3
k,1(−,−). The mod 3 values of T 3

k,2(−,−) can

be obtained from this using Theorem 3.2. Throughout the rest of this section and

the next, the superscript 3 on T is implicit.

Theorem 3.17. Let n = 3m + δ with 0 ≤ δ ≤ 2.

• If n− k = 2`, then, mod 3, Tk,1(n, r) is given by

δ
0 1 2

0
(

`−1
m−1

) (
`−1
m

)
−

(
`−1
m

)

r (mod 3)

1, 2 −
(

`−1
m

) (
`−1
m

)
−

(
`−1
m

)

• If n− k = 2` + 1, then, mod 3, Tk,1(n, r) is given by

δ
0 1 2

0 0
(

`
m

)
0

r (mod 3) 1
(

`
m

)
−

(
`
m

)
0

2 −
(

`
m

)
0 0
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Proof. By [12, (2.3)], we have

Tk,1(n, r) + rTk−1,1(n, r + 3) = −Tk−1,1(n− 1, r + 2),
(3.18)

yielding an inductive determination of Tk,1 starting with T0,1. One can verify that the

mod 3 formulas of Theorem 3.17 also satisfy (3.18). For example, if r ≡ 1 mod 3 and

n− k = 2`, then for δ = 0, 1, 2, (3.18) becomes, respectively, −
(

`−1
m

)
+

(
`
m

)
=

(
`−1
m−1

)
,(

`−1
m

)
−

(
`
m

)
= −

(
`−1
m−1

)
, and −

(
`−1
m

)
+ 0 = −

(
`−1
m

)
.

To initiate the induction we show that, mod 3,

T0,1(n, r) ≡





2 n = 2 · 3e

1 n = 3e1 + 3e2 , 0 ≤ e1 < e2

r n = 3e, e > 0

r + 1 n = 1

0 otherwise,

(3.19)

and observe that the tabulated formulas for k = 0 also equal (3.19). The latter can

be proved by considering separately n = 6t + d for 0 ≤ d ≤ 5. For example, if

d = 3, then m = 2t + 1, δ = 0, and n − k = 2(3t + 1) + 1. For r ≡ 0, 1, 2, the

tabulated value is, respectively, 0,
(

3t+1
2t+1

)
, −

(
3t+1
2t+1

)
. Using Proposition 3.1, one shows

ν3

((
3t+1
2t+1

))
= d3(2t+1)−1. Thus the tabulated value in these cases is 0 mod 3 unless

2t + 1, hence 6t + 3, is a 3-power, and in this case
(

3t+1
2t+1

)
≡ 1 mod 3.

To see (3.19), we note that

T0,1(n, r) =
3[(n−1)/2]

n!
S1(n, r)

with S1 as in Theorem 1.15, and that, mod 3,

3[(n−1)/2]

n!
≡





1 n = 32e or 3e + 3e+2k

2 n = 32e+1, 2 · 3e, or 3e + 3e+2k−1

0 otherwise.

Thus, for example, mod 3, if e > 0, then, using Theorem 1.15

T0,1(3
2e, r) ≡ S1(3

2e, r) = (−1)(32e−1)/2
(32e + 3

4
+ r

)
≡ r,

in agreement with (3.19).
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4. Proof of Theorem 1.9

In this section, we prove Theorem 1.9. We begin with a result, 4.3, which reduces

much of the analysis to evaluation of binomial coefficients mod 3.

Definition 4.1. For ε = ±1, let τ(n, k, ε) := Tk,1(n, 1) + εTk,1(n, 2), mod 3.

The following result is immediate from Theorem 3.17.

Proposition 4.2. Let n = 3m + δ with 0 ≤ δ ≤ 2. If n − k = 2`, then, mod 3,

τ(n, k,−1) ≡ 0, while τ(n, k, 1) ≡ (−1)δ
(

`−1
m

)
. If n− k = 2` + 1, then, mod 3,

τ(n, k, ε) ≡




0 if δ = 2 or ε = 1 and δ = 0

−
(

`
m

)
otherwise.

The following result is a special case of Theorem 4.21, which is proved later.

Theorem 4.3. Define

φ(n) :=
∑ (

n−1
k

)
τ([n

3
], k, (−1)n−k−1) ∈ Z/3. (4.4)

Then ν3(a3(n− 1, n)) = s3(n) if and only if φ(n) 6= 0.

The following definition will be used throughout this section.

Definition 4.5. An integer x is sparse if its base-3 expansion has no 2’s or adjacent

1’s. The pair (x, i) is special if x is sparse and i = x−max{3aj : 3aj ∈ x}.
Some special pairs are (9, 0), (10, 1), (30, 3), and (91, 10).

Lemma 4.7 will be used frequently. Its proof uses the following sublemma, which

is easily proved.

Sublemma 4.6. Let F1(x, i) = (3x, 3i) and F2(x, i) = (9x + 1, 9i + 1). The special

pairs are those that can be obtained from (1, 0) by repeated application of F1 and/or

F2.

For example (37 + 33 + 3, 33 + 3) = F1F2F2F1F1(1, 0).

Lemma 4.7. Mod 3,

(1) If x− i is even, then
(

x
i

)(
(3x−9i)/2

x

)
≡ 0;

(2) If x− i is odd, then
(

x
i

)(
(3x−9i−1)/2

x

)
≡





1 if (x, i) special

0 otherwise;
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(3) If x−i is odd, then
(

x
i

)(
(3x−9i−3)/2

x

)
≡





1 if (x, i) special and x ≡ 0 (3)

0 otherwise.

Proof. We make frequent use of (2.11).

(1) If
(

x
i

)
6≡ 0, then ν3(i) ≥ ν3(x), but then the second factor is ≡ 0 for a similar

reason.

(2) Say (x, i) satisfies C if
(

x
i

)(
(3x−9i−1)/2

x

)
6≡ 0. Note that (1, 0) satisfies C. We

will show that (x, i) satisfies C iff either (x, i) = (3x′, 3i′) and (x′, i′) satisfies C or

(x, i) = (9x′′ + 1, 9i′′ + 1) and (x′′, i′′) satisfies C. The result then follows from the

sublemma and the observation that the binomial coefficients maintain a value of 1

mod 3.

If x = 3x′, then
(

x
i

)
6≡ 0 implies i = 3i′. Then

(
(3x−9i−1)/2

x

)
≡

(
(9x′−27i′−1)/2

3x′

)
≡

( 1
2
(9x′−27i′−3)+1

3x′

)
≡

(
(3x′−9i′−1)/2

x′

)
.

If x = 3x′ + 1, then 0 6≡
( 1

2
(9x′−9i)+1

3x′+1

)
implies x′ = 3x′′. The product becomes(

9x′′+1
i

)(
(3x′′−i)/2

x′′

)
. For this to be nonzero, i cannot be 9i′′ by consideration of the sec-

ond factor, similarly to case (1). If i = 9i′′+1, the product becomes
(

x′′
i′′

)(
(3x′′−9i′′−1)/2

x′′

)
,

as claimed. If x = 3x′ + 2, a nonzero second factor would require the impossible con-

dition (9x′ − 9i + 5)/2 ≡ 2.

(3) To get nonzero, we must have x = 3x′ then i = 3i′. The product then becomes(
x′
i′

)(
(3x′−9i′−1)/2

x′

)
, which is analyzed using case (2).

Next we prove a theorem which, with 4.3, implies one part of the “if” part of

Theorem 1.9.

Theorem 4.8. With T as in Theorem 1.9, if n ∈ (3T + 1) then φ(n) 6= 0.

Proof. Define f1(x) = φ(3x + 1). The lengthy proof breaks up into four cases, which

are easily seen to imply the result, that

f1(x) 6= 0 if x ∈ T. (4.9)

(1) If x is sparse, then f1(x) 6= 0.

(2) For all x, f1(3x) = f1(x).

(3) If x is not sparse and x 6≡ 2 mod 3, or if x is sparse and x ≡ 1

mod 3, then f1(3x + 1) = ±f1(x).
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(4) If x ≡ 0 mod 3, then f1(3x + 2) = f1(x).

Moreover, this inductive proof of (4.9) will establish at each step that

if
(

3x
k

)
τ(x, k, (−1)x−k) 6= 0, then 3x− k ≡ 0 (2)

unless (3x, k) is special. (4.10)

Case 1: Let x be sparse and

3x =
t∑

j=1

3aj

with aj − aj−1 ≥ 2 for 2 ≤ j ≤ t. Then

f1(x) =
∑ (

3x
3i

)
τ(x, 3i, (−1)x−i).

We will show that

(
3x
3i

)
τ(x, 3i, (−1)x−i) =





−1 3i = 3x− 3at

(−1)j 3i = 3x− 3at − 3aj , j ≥ 1

0 otherwise. (4.11)

This will imply Case 1.

In the first case of (4.11), (x, i) is special. If x = 3x′, then i = 3i′ with (x′, i′)

special, and we have

τ(x, 3i,−1) = −
(

(3x′−9i′−1)/2
x′

)
≡ −1

by Lemma 4.7.(2). If x = 3x′ + 1, then i = 3i′ + 1 with (x′, i′) special. Also, since x

is sparse, we must have x′ = 3x′′ and then i′ = 3i′′. Thus

τ(x, 3i,−1) = −
(

(x−3i−1)/2
x′

)
= −

(
(3x′′−9i′′−1)/2

x′′

)
≡ −1

by Lemma 4.7.(2).

For the second case of (4.11), let 3i = 3x− 3at − 3aj . This time x− 3i = 2` with

` =
at−2∑

s=at−1

3s+· · ·+
aj+2−2∑
s=aj+1

3s+
aj−2∑

s=aj−1

3s+· · ·+
a2−2∑
s=a1

3s+
aj+1−2∑
s=a1

3s+2·3a1−1.

Then `− 1 is obtained from this by replacing 2 · 3a1−1 with 3a1−1 + 2
a1−2∑

s=0

3s. Hence

τ(x, 3i, (−1)x−i) = (−1)x
(

`−1
[x/3]

)
≡ 2j ≡ (−1)j.

Here we have used that for x = 0, 1, we have [x
3
] =

t∑

j=x+1

3aj .
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We complete the argument for Case 1 by proving the third part of (4.11). The

binomial coefficient
(

3x
3i

)
is 0 unless 3i = 3x− 3aj1 − · · · − 3ajr with j1 < · · · < jr. We

must have jr = t or else x− 3i would be negative. Hence r > 2. If r = 2w + 1 > 1 is

odd, then

τ(x, 3i, (−1)x−i) = −
(

`
[x/3]

)

with

2`+1 = x−3i =
∑

j 6∈{j1,... ,jr}
(3aj+1−1−3aj)+

w∑

h=1

(3aj2h+1
−1+3aj2h

−1)+3aj1
−1,

and hence

` =
∑

j 6∈{j1,... ,jr}

aj+1−2∑

i=aj

3i +
w∑

h=1

(
3aj2h−1 +

aj2h+1
−2∑

i=aj2h
−1

3i

)
+

aj1
−2∑

i=0

3i.

Using (2.11), we see that
(

`
[x/3]

)
≡ 0 by consideration of position aj2 − 2. A similar

argument works when r is even.

Case 2: We are comparing

f1(x) =
∑ (

3x
3i

)
τ(x, 3i, (−1)3x−3i)

with

f1(3x) =
∑ (

9x
9i

)
τ(3x, 9i, (−1)9x−9i),

mod 3. Clearly the binomial coefficients agree. Let x = 3y + δ with 0 ≤ δ ≤ 2.

If x− 3i = 2`, let Q = (x− 3i)/2. We have

τ(x, 3i, 1) = (−1)δ
(

Q−1
y

)
≡

(
3Q−1
3y+δ

)
= τ(3x, 9i, 1).

If x− 3i = 2` + 1, let Q = (x− 3i− 1)/2. If δ 6= 2, we have

τ(x, 3i,−1) = −
(

Q
y

)
≡ −

(
3Q+1
3y+δ

)
= τ(3x, 9i,−1),

while if δ = 2, we have τ(x, 3i,−1) = 0 by 4.2, and
(

3Q+1
3y+δ

)
= 0.

Case 3: Let x = 3y + δ with δ ∈ {0, 1}. Except for the single special term when

x is sparse, we have f1(x) =
∑ (

3x
3i

)
τ(x, 3i, 1), and will show that

f1(3x + 1) =
∑ (

9x+3
9i+3

)
τ(3x + 1, 9i + 3, 1). (4.12)

If x−3i = 2`, then τ(x, 3i, 1) = (−1)δ
(

`−1
y

)
and τ(3x+1, 9i+3, 1) = −

(
3`−2
3y+δ

)
≡ −

(
`−1
y

)

since δ 6= 2. Thus f1(3x + 1) = (−1)δ+1f1(x). To see that (4.12) contains all possible
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nonzero terms, note that terms
(

9x+3
9i

)
τ(3x+1, 9i, (−1)x−i−1) contribute 0 to f1(3x+1)

since the τ -part is −
(

(3x−9i)/2
x

)
≡ 0 or −

(
(3x−9i−1)/2

x

)
≡ 0, since (x, i) is not special.

If x is sparse, the special term (x, i) contributes −1 to f1(x). If also x ≡ 1 mod 3,

then the corresponding term in (4.12) is τ(3x+1, 9i+3,−1) with x− i odd, equaling

−
(

(3x−9i−3)/2
x

)
≡ −1 by 4.7.(3). That the terms added to each are equal is consistent

with f1(3x + 1) = (−1)δ+1f1(x).

Case 4: Let x = 3y. Ignoring temporarily the special term when x is sparse, we

have f1(x) =
∑ (

3x
3i

)
τ(x, 3i, 1) and will show that f1(3x + 2) =

∑ (
9x+6
9i+6

)
τ(3x + 2, 9i +

6, 1). If x− 3i = 2`, then

τ(x, 3i, 1) ≡
(

`−1
y

)
≡

(
3`−3
3y

)
≡ τ(3x + 2, 9i + 6, 1).

If the 9i + 6 in the sum for f1(3x + 2) is replaced by 9i or 9i + 3, then the associated

τ is 0, for different reasons in the two cases.

We illustrate what happens to a special term (x, i) when x is sparse, using the case

x = 30 and i = 3. It is perfectly typical. This term contributes −1 to f1(x). We will

show that it also contributes −1 to f1(3x + 2), using 9i + 3 rather than 9i + 6, which

is what contributed in all the other cases. The reader can check that for terms with

k = 9i + 〈0, 3, 6〉, the τ -terms are, respectively

τ(92, 27,−1) = 0, τ(92, 30, 1) ≡
(

30
30

)
≡ 1, τ(92, 33,−1) = 0.

The binomial coefficient accompanying the case i = 30 is
(

9·30+6
9·3+3

)
≡ 2.

Next we prove a theorem, similar to 4.8, which, with 4.3, implies another part of

the “if” part of Theorem 1.9.

Theorem 4.13. With T as in Theorem 1.9, if n ∈ (9T + 3) then φ(n) 6= 0.

Proof. We define f3(x) = φ(9x+3) and write 2 ∈ x to mean that a 2 occurs somewhere

in the 3-ary expansion of x. We organize the proof into four cases, which imply the

result.

(1) If 2 6∈ x, then f3(x) 6= 0.

(2) For all x, f3(3x) = f3(x).

(3) For all x, f3(9x + 2) = f3(x).

(4) If x is not sparse and x 6≡ 2 mod 3, then f3(3x+1) = (−1)x+1f3(x).
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Case 1: Let 9x =
t∑

i=1

3ai with ai > ai−1 and a1 ≥ 2. Let i0 be the largest i ≥ 1

such that ai+1 − ai = 1. Note that x is sparse iff no such i exists; let i0 = 1 in this

situation. For any j, let p(j) denote the number of i ≤ j for which ai−1 < ai − 1 or

i = 1. We will sketch a proof that, mod 3,

(
9x+2

k

)
τ(3x + 1, k, (−1)x−k) ≡





1 · (−1)p(j)+1 k = 9x + 2− 3at − 3aj , i0 ≤ j < t

2 · (−1) k = 9x + 1− 3at , n sparse

0 otherwise. (4.14)

We have written the values in a form which separates the binomial coefficient factor

from the τ factor. The binomial coefficient factor follows from (2.11). One readily

verifies from (4.14) that the nonzero terms in (4.4) written in increasing k-order

alternate between 1 and −1 until the last one which repeats its predecessor. Thus

the sum is nonzero.

The hard part in all of these is discovering the formula; then the verifications are

straightforward, and extremely similar to those of the preceding proof. We give one,

that shows where (−1)p(j)+1 comes from.

If k = 9x+2−3at−3aj = 2+3a1+· · ·+3aj−1+3aj+1+· · ·+3at−1 , then 3x+1−k = 2`+1

with

` =
t∑

i=2
i6=j+1

ai−2∑
s=ai−1

3s +
aj+1−2∑

s=0

3s +
a1−2∑

s=0

3s.

We desire τ(3x + 1, k, 1) = −
(

`
x

)
with x =

∑t
i=1 3ai−2. Note that ` has a 3ai−2-

summand for each i 6= j + 1 for which ai−1 6= ai − 1, and another for each i ≤ j + 1.

Thus the 3-ary expansion of ` will have 0 in position ai−2, causing τ = 0, if i > j +1

and ai = ai−1 + 1. That explains the choice of i0. If j ≥ i0, then
(

`
x

)
from (2.11) has

a factor
(

2
1

)
in positions i enumerated by p(j).

Case 2: If x is sparse, the result follows from the proof of Case 1, and so we assume

x is not sparse. Then we are comparing

f3(x) =
∑ (

9x+2
9i+2

)
τ(3x + 1, 9i + 2, (−1)x−i), (4.15)

mod 3, with

f3(3x) =
∑ (

27x+2
27i+2

)
τ(9x + 1, 27i + 2, (−1)x−i). (4.16)
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The binomial coefficients are clearly equal, mod 3. One can show that, for the

other possible contributors to (4.16), τ(9x + 1, 27i + 1, (−1)x−i+1) = 0 = τ(9x +

1, 27i, (−1)x−i). If x− i is odd, the τ -terms in (4.15) and (4.16) are 0, while if x− i

is even and Q = x−3i
2

, then

τ(3x + 1, 9i + 2, 1) ≡ −
(

3Q−1
x

)
≡ −

(
9Q−1

3x

)
≡ τ(9x + 1, 27i + 2, 1).

Case 3: If x is not sparse, we are comparing

f3(x) =
∑ (

9x+2
9i+2

)
τ(3x + 1, 9i + 2, (−1)x−i)

with

f3(9x + 2) =
∑ (

9(9x+2)+2
9(9i+2)+2

)
τ(3(9x + 2) + 1, 9(9i + 2) + 2, (−1)x−i).

(4.17)

We will show below that no other terms can contribute to (4.17). Given this, then

the binomial coefficients clearly agree, mod 3.

When x − i is odd, the terms in both sums are 0, since they are of the form

τ(3m + 1, 3m + 1− 2`,−1).

Suppose x − i is even. Let Q = x−3i
2

. The first τ is −
(

3Q−1
x

)
, while the second is

the negative of
(

27Q−7
9x+2

)
≡

(
3Q−1

x

)
, as desired.

As a possible additional term in (4.17), if k = 9(9i + 2) + 2 is replaced with

k = 9(9i + α) + β with 0 ≤ α, β ≤ 2, which are the only ways to obtain a nonzero

binomial coefficient, then we show that the relevant τ is 0. Still assuming x− i even,

if α + β is odd, then we obtain τ(3m + 1, 3m + 1 − 2`,−1) = 0, while if β = 0 and

α 6= 1, then we obtain τ =
(

3y
9x+2

)
≡ 0 for some y. Finally, if β = 2 and α = 0,

τ =
(

9(3x−9i)/2+2
9x+2

)
≡

(
(3x−9i)/2

x

)
.

Since, in order to have
(

9(9x+2)+2
9(9i+2)+2

)
6≡ 0, we must have ν3(i) ≥ ν3(x), we conclude(

(3x−9i)/2
x

)
≡ 0 mod 3. The case x− i odd is handled similarly.

If 9x = 3a1 + · · · + 3at is sparse and 9i = 9x − 3at , there is an additional term,(
9x+2
9i+1

)
τ(3x+1, 9i+1, 1) ≡ 1, in the sum for f3(x). The additional term in f3(9x+2)

is (
9(9x+2)+2
9(9i+1)+2

)
τ(3(9x + 2) + 1, 9(9i + 1) + 2, 1) ≡

(
`
m

)
,
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with m = 9x + 2 = 2 + 3a1 + · · ·+ 3at , and 2` + 1 = 3(9x + 2) + 1− 9(9i + 1)− 2, so

that

` =
t∑

j=2

aj∑

s=aj−1+2

3s +
a1∑

s=2

3s + 2,

and so the additional term in f(9x + 2) is 1.

Case 4: We first show

(−1)x+1f3(x) = (−1)x+1
∑ (

9x+2
9i+2

)
τ(3x + 1, 9i + 2, (−1)x−i)

=
∑ (

27x+11
27i+11

)
τ(9x + 4, 27i + 11, (−1)x−i)

= f3(3x + 1)

for x ≡ 0, 1 (3). Both τ ’s are 0 if x− i is odd, while if x− i is even and x ≡ 0, 1 (3),

then

(−1)x+1τ(3x+1, 9i+2, 1) ≡ (−1)x
(

3Q+2
x

)
≡ −

(
9Q+5
3x+1

)
= τ(9x+4, 27i+11, 1),

where Q = (x− 3i− 2)/2.

We must also show that
(

27x+11
k

)
τ(9x+4, k, (−1)x+1−k) ≡ 0 for k 6≡ 11 (27). When

k ≡ 2 (27), the result follows from Lemma 4.7. When k ≡ 0, 9 (27), τ is of the form(
3A

3x+1

)
≡ 0.

The “if” part of Theorem 1.9 when n = 3T ′ + 2 divides into two parts, Theorems

4.18 and 4.22, noting that 3T ′ + 2 = (9T + 2) ∪ (9T ′ + 5).

Theorem 4.18. If T is as in 1.9 and n ∈ (9T ′ + 5), then φ(n) 6= 0.

Proof. Let f5(x) = φ(9x + 5). We will prove that if x ∈ T ′ then

f5(x) = (−1)xf3(x). (4.19)

With Theorem 4.13, this implies the result.

Case 1: Assume x not sparse and recall x 6≡ 2 (3). We show that, mod 3,
(

9x+4
k

)
τ(3x + 1, k, (−1)9x+4−k) ≡ (−1)x

(
9x+2
k−2

)
τ(3x + 1, k − 2, (−1)9x+4−k).

(4.20)

Since f5(x) is the sum over k of the LHS, and (−1)xf3(x) the sum over k of the RHS,

(4.19) will follow when x is not sparse.
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We first deal with cases when the RHS of (4.20) is nonzero. By the proof of 4.13,

this can only happen when k − 2 = 9i + 2,
(

x
i

)
6≡ 0 mod 3, and x − i is even. Mod

3, we have
(

9x+4
9i+4

)
≡

(
9x+2
9i+2

)
by (2.11). The two τ ’s in (4.20) are, with Q := 3x−9i

2
,

−
(

Q−2
x

)
and −

(
Q−1

x

)
, respectively. Since Q ≡ 0 mod 3, these are equal if x ≡ 0 and

negatives if x ≡ 1.

We conclude the proof of (4.20) by showing that other values of k cause
(

9x+4
k

)
τ(3x+

1, k, (−1)x−k) ≡ 0. If k 6≡ 0, 1, 3, 4 mod 9, then
(

9x+4
k

)
≡ 0. If k = 9i + 1 or 9i + 3

and x− i even, or if k = 9i or 9i + 4 and x− i odd, then τ = 0 by 4.2. If k = 9i and

x− i is even, then τ ≡
(

3x−9i
x

)
≡ 0. For k = 9i + 1 or 9i + 3 and x− i odd, the result

follows from Lemma 4.7.

Case 2: Assume x is sparse. Let 9x =
t∑

j=1

3aj with aj−aj−1 ≥ 2. We call k = 9i+d,

d ∈ {0, 1, 3, 4}, special if (9x, 9i) is special. The analysis of Case 1 shows that the

f5-sum over non-special values of k equals (−1)x times the f3-sum over non-special

values of k.

We saw in (4.14) that the only special value of k giving a nonzero summand for

f3(x) is k = 9i + 1 (with 9i = 9x − 3at) and this summand is 1. We will show that

if x ≡ 1 (3), then the only special value of k giving a nonzero summand for f5(x) is

k = 9i + 1, and it gives −1, while if x ≡ 0 (3), both k = 9i + 1 and k = 9i + 3 give

summands of −1 for f5(x). This will imply the claim.

Recall 9i = 9x− 3at , and hence x− i is odd. If k = 9i + 〈0, 4〉, then the τ -factor is

τ(3x + 1, 9i + 〈0, 4〉,−1) = 0. If k = 9i + 〈1, 3〉, the relevant term in f5(x) is
(

9x+4
9i+〈1,3〉

)
τ(3x + 1, 9i + 〈1, 3〉, 1) = −

(
`
x

)
,

where

` =
t∑

i=2

ai−2∑
s=ai−1

3s +
a1−2∑

s=0

3s + 〈0,−1〉.

Using (2.11),
(

`
x

)
≡ 1 in the (9i + 1)-case, while in the (9i + 3)-case

(
`

x

)
≡

(
(
∑a1−2

s=0 3s)− 1

3a1−2

)
,

which is 0 if x ≡ 1 (3), since then a1 = 2, but is 1 if x ≡ 0 (3) since then a1 ≥ 3.
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When n ∈ (9T +2), the equality of e3(n−1, n) and s3(n) in Theorem 1.9 comes not

from ν3(a3(n−1, n)), as it has in the other cases, but rather from ν3(a3(n−1, n+1)).

To see this, we first extend Theorem 4.3, as follows.

Theorem 4.21. If N ≥ n, then ν3(a3(n− 1, N)) = s3(n) iff [N/9] = [n/9] and
∑ (

n−1
k

)
τ([N

3
], k, (−1)n−k−1) 6≡ 0 (3).

Proof. This is very similar to the proof, centered around (2.7), that Theorem 2.2

implies Theorem 1.7. We have

0 = (−1)NS(n− 1, N)N ! = a3(n− 1, N) + 3n−1
∑

(−1)k
(

N
3k

)
kn−1.

Thus ν3(a3(n− 1, N)) = s3(n) iff B 6≡ 0 (3), where, mod 3,

B := 1
[n/3]!

∑
(−1)k

(
N
3k

)
kn−1

≡
2∑

d=1

1
[n/3]!

∑

k≡d (3)

(−1)k
(

N
3k

)
kn−1

≡ 1
[n/3]!

2∑

d=1

(−1)d
∑

j

(−1)j
(

N
9j+3d

) ∑

`

3`j`
(

n−1
`

)
dn−1−`

≡ 1
[n/3]!

2∑

d=1

(−1)d
∑

j

(−1)j
(

N
9j+3d

) ∑

`

3`
(

n−1
`

)
dn−1−`

∑

i

S(`, i)i!
(

j
i

)

≡ 1
[n/3]!

2∑

d=1

(−1)d
∑

j

(−1)j
(

N
9j+3d

) ∑

i

3i
(

n−1
i

)
dn−1−ii!

(
j
i

)

≡ [N/3]!
[n/3]!

∑

i

(
n−1

i

)
(Ti,2(N, 3) + (−1)n−1−iTi,2(N, 6))

≡ [N/3]!
[n/3]!

∑

i

(
n−1

i

)
(Ti,1([

N
3
], 1) + (−1)n−1−iTi,1([

N
3
], 2))

= [N/3]!
[n/3]!

∑

i

(
n−1

i

)
τ([N

3
], i, (−1)n−i−1).

The “if” part of 1.9 when n ∈ (9T + 2) now follows from Theorem 4.21 and the

following result.

Theorem 4.22. If T is as in 1.9 and n ∈ (9T + 2), then
∑ (

n−1
k

)
τ([n+1

3
], k, (−1)n−k−1) 6≡ 0 (3).
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Proof. We prove that for such n
∑ (

n−1
k

)
τ([n+1

3
], k, (−1)n−k−1) ≡ ∑ (

n
k

)
τ([n+1

3
], k, (−1)n−k)

(4.23)

and then apply Theorem 4.13. Note that the RHS is φ(n + 1).

If n = 9x + 2 with x not sparse, then the proof of 4.13 shows that the nonzero

terms of the RHS of (4.23) occur for k = 9i+2 with
(

x
i

)
6≡ 0 (3) and x− i even. Now

(4.23) in this case follows from
(

9x+1
9i+1

)
τ(3x + 1, 9i + 1, 1) ≡ −

(
x
i

)(
(3x−9i−2)/2

x

)
≡

(
9x+2
9i+2

)
τ(3x + 1, 9i + 2, 1).

(4.24)

One must also verify that no other values of k contribute to the LHS of (4.23); this

is done by the usual methods.

If n = 9x + 2 with x sparse, (4.24) holds unless (x, i) is special. For such i, the

contribution to the RHS of (4.23) using k = 9i + 1 is 2 · 2 ≡ 1. The LHS of (4.23)

obtains contributions of 1 · 2 from both k = 9i and k = 9i + 1. Indeed both τ ’s equal

−
(

(3x−9i−1)/2
x

)
≡ −1 by 4.7.

The “if” part of Theorem 1.9 is an immediate consequence of Theorems 4.8, 4.13, 4.18,

and 4.22. We complete the proof of Theorem 1.9 by proving the following result.

Proposition 4.25. If n is not one of the integers described in Theorem 1.9, then for

all integers N ≥ n satisfying [N/9] = [n/9], we have
∑ (

n−1
k

)
τ([N

3
], k, (−1)n−k−1) ≡ 0 (3).

Proof. We break into cases depending on n mod 9, and argue by induction on n with

the integers ordered so that 9x + 3 immediately precedes 9x + 2.

Case 1: n ≡ 0 (9). Let n = 9a. If [N
3
] = 3a or 3a+2, then τ([N

3
], k, (−1)a−1−k) = 0

by 4.2. Now suppose [N
3
] = 3a + 1. We show that for each nonzero term in

∑

k

(
9a−1

k

)
τ(3a + 1, k, (−1)a−k−1)

with a− k odd, the (k + 1)-term is the negative of the k-term. Thus the sum is 0.

Both τ ’s equal −
(

(3a−k−1)/2
a

)
. Since

(
9a−1

k

)
+

(
9a−1
k+1

)
=

(
9a

k+1

)
, the binomial coef-

ficients are negatives of one another unless k + 1 = 9t with
(

a
t

)
6≡ 0 (3). Then

ν(t) ≥ ν(a) and so
(

(3a−k−1)/2
a

)
=

(
(3a−9t)/2

a

)
≡ 0 (3), so the τ ’s were 0.
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Case 2: n ≡ 6, 7, 8 (9). In these cases, [N/9] = [n/9] implies [N/3] = [n/3] and

so we need not consider N > n. By 4.2, τ(3x + 2, k, (−1)x+1−k) = 0, which implies

φ(9x + 6) = 0 = φ(9x + 8). We have

φ(9x + 7) =
∑ (

9x+6
k

)
τ(3x + 2, k, (−1)x−k).

This is 0 if x− k is odd, while if x− k is even, a summand is
(

9x+6
k

)(
(3x−k)/2

x

)
, which

is 0 unless k ≡ 0 (3) and hence x ≡ 0 (3). In the latter case, with x = 3x′ and f1 as

in the proof of 4.8, we have φ(n) = f1(9x
′ + 2), which, by Case 4 of the proof of 4.8,

equals f1(3x
′), and this is 0 by induction unless x′ ∈ T .

Case 3: n = 9x + 5. If x ≡ 0, 1 (3), then φ(9x + 5) = ±φ(9x + 3) was proved

in Case 1 of the proof of 4.18. The induction hypothesis thus implies the result for

N = n in these cases. If x = 3y + 2, then

φ(n) =
∑ (

27y+22
k

)
τ(9y + 7, k, (−1)y−k).

The k-term is 0 if y − k is odd, while if y − k is even, τ = −
(

(9y+6−k)/2
3y+2

)
. This is

0 unless k ≡ 2 mod 3, but then
(

27y+22
k

)
≡ 0 (3). The k-term for N = n + 1 is

nonzero iff the k-term in φ(n) is nonzero; this is true because τ(3z + 2, k, (−1)z−k) =

±τ(3z + 1, k, (−1)z−k). Thus the sum for N = n + 1 is 0 if x 6∈ T ′.

Case 4: n = 9x + 2. Since, for ε = 0 or 2, τ(3x + ε, k, (−1)x−k+1) = 0, we deduce

that
∑ (

n−1
k

)
τ([N

3
], k, (−1)n−k−1) = 0 for N = n and N = n + 4. For N = n + 1, this

is just the LHS of (4.23). By (4.23), it equals φ(n + 1), which is 0 for x 6∈ T by the

induction hypothesis.

Case 5: n = 9x + 3. Let f3(x) = φ(9x + 3). Let x be minimal such that x 6∈ T

and f3(x) has a nonzero summand. By the proof of 4.13, x is not 0 mod 3, 2 mod 9,

1 mod 9, or 4 mod 9.

If x ≡ 5, 7, or 8 mod 9, then f3(x) has no nonzero summands. For example, if

x = 9t + 7, the summands are
(

81t+65
k

)
τ(27t + 22, k, (−1)t−k−1). This is 0 if t − k

is even, while if t − k is odd, the τ -factor is
(

(27t+21−k)/2
9t+7

)
. For this to be nonzero,

we must have k ≡ 5 or 7 mod 9, but these make the first factor 0. Other cases are

handled similarly.

One can show that for ε = 0, 1, 2,

τ(3x + 2, 9i + ε, (−1)x−i−ε) = ±τ(3x + 1, 9i + ε, (−1)x−i−ε) ∈ Z/3.



30 DONALD M. DAVIS

This implies that when we use N = n + 3, nonzero terms will be obtained iff they

were obtained for n.

Case 6: n ≡ 1, 4 mod 9. Let f1(x) = φ(3x+1). By the proof of Theorem 4.8, there

can be no smallest x ≡ 0, 1 mod 3 which is not in T and has f1(x) 6= 0. When using

N = n+2 or, if n ≡ 1 (9), N = n+5, then the k-summands,
(

9x
k

)
τ(3x+1, k, (−1)x−k),(

9x+3
k

)
τ(3x + 2, k, (−1)x+1−k), and

(
9x
k

)
τ(3x + 2, k, (−1)x−k), are easily seen to be 0.

5. Discussion of Conjecture 1.17

In this section we discuss the relationship between e2(n), e2(n − 1, n), and s2(n).

In particular, we discuss an approach to Conjecture 1.17, which suggests that the

inequality e2(n−1, n) ≥ s2(n) fails by 1 to be sharp if n = 2t, while if n = 2t +1, it is

sharp but the maximum value of e2(k, n) occurs for a value of k 6= n− 1. The prime

p = 2 is implicit in this section; in particular, ν(−) = ν2(−) and a(−,−) = a2(−,−).

Although our focus will be on the two families of n with which Conjecture 1.17 deals,

we are also interested, more generally, in the extent to which equality is obtained in

each of the inequalities of

s2(n) ≤ e2(n− 1, n) ≤ e2(n). (5.1)

In Table 1, we list the three items related in (5.1) for 2 ≤ n ≤ 38, and also the

smallest positive k for which e2(k, n) = e2(n). We denote this as kmax, since it is the

simplest k-value giving the maximum value of e2(k, n). Note that in this range kmax

always equals n− 1 plus possibly a number which is rather highly 2-divisible.

We return to more specific information leading to Conjecture 1.17. To obtain

the value of e2(n), we focus on large values of e2(k, n). For n = 2t and 2t + 1,

this is done in the following conjecture, which implies Conjecture 1.17. Note that

s2(2
t) = 2t +2t−1− 2, and s2(2

t +1) = 2t +2t−1− 1. We employ the usual convention

ν(0) = ∞.

Conjecture 5.2. If t ≥ 3, then

e2(k, 2t)





= min(ν(k + 1− 2t) + 2t − t, 2t + 2t−1 − 1) if k ≡ −1 (mod 2t−1)

< 2t + 2t−1 − 1 if k 6≡ −1 (mod 2t−1);
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Table 1. Comparison for (5.1) when p = 2

n s2(n) e2(n, n− 1) e2(n) kmax

2 1 1 1 1
3 2 2 2 2
4 4 4 4 3
5 5 5 6 4 + 23

6 6 6 8 5 + 23

7 7 8 8 6
8 10 11 11 7
9 11 11 12 8 + 26

10 12 12 14 9 + 26

11 13 13 15 10 + 26

12 15 15 15 11
13 16 18 18 12
14 17 21 21 13
15 18 22 22 14
16 22 23 23 15
17 23 23 24 16 + 211

18 24 24 26 17 + 211

19 25 25 28 18 + 211

20 27 27 28 19 + 211

21 28 28 28 20
22 29 29 30 21 + 210

23 30 31 31 22
24 33 34 34 23
25 34 36 38 24 + 216

26 35 37 40 25 + 2165
27 36 38 40 26 + 216

28 38 40 40 27
29 39 42 44 28 + 218

30 40 43 45 29 + 218

31 41 46 46 30
32 46 47 47 31
33 47 47 48 32 + 220

34 48 48 50 33 + 220

35 49 49 52 34 + 220

36 51 51 53 35 + 220

37 52 52 54 36 + 2203
38 53 53 56 37 + 2207
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e2(k, 2t+1)





= min(ν(k − 2t − 22t−1+t−1) + 2t − t, 2t + 2t−1) if k ≡ 0 (mod 2t−1)

< 2t + 2t−1 if k 6≡ 0 (mod 2t−1).

Note from this that conjecturally the smallest positive value of k for which e2(k, n)

achieves its maximum value is n − 1 when n = 2t but is n − 1 + 22t−1+t−1 when

n = 2t +1. The reason for this is explained in the next result, involving a comparison

of the smallest ν(a(k, j)) values.

Conjecture 5.3. There exist odd 2-adic integers u, whose precise value varies from

case to case, such that

(1) if k ≡ −1 (mod 2t−1), then

ν(a(k, 2t + 1)) = ν(k + 1− 2t − 22t−1+t−1u) + 2t − t

ν(a(k, 2t + 2)) = ν(k + 1− 2t − 22t−1+t−2u) + 2t − t + 1

ν(a(k, 2t + 3)) = ν(k + 1− 2t − 22t−1+t−2u) + 2t − t + 1;

(2) if k ≡ 0 (mod 2t−1), then

ν(a(k, 2t + 1)) = ν(k − 2t − 22t−1+t−1u) + 2t − t

ν(a(k, 2t + 2)) = ν(k − 2t − 22t−1+tu) + 2t − t + 1

ν(a(k, 2t + 3)) = ν(k − 2t − 22t−1+t−2u) + 2t − t + 2.

For other values of j ≥ 2t (resp. 2t +1), ν(a(k, j)) is at least as large as all the values

appearing on the RHS above.

Note that, for fixed j, ν(a(k, j)) is an unbounded function of k; it is the interplay

among several values of j which causes the boundedness of e2(k, n) for fixed n.

We show now that Conjecture 5.3 implies the “= min”-part of Conjecture 5.2. In

part (1), the smallest ν(a(k, j)) for j ≥ 2t is




ν(k + 1− 2t) + 2t − t if ν(k + 1− 2t) ≤ 2t−1 + t− 2, using j = 2t + 1

2t + 2t−1 − 1 if ν(k + 1− 2t) = 2t−1 + t− 1, using j = 2t + 2

2t + 2t−1 − 1 if ν(k + 1− 2t) > 2t−1 + t− 1, using either.

In part (2), the smallest ν(a(k, j)) for j ≥ 2t + 1 is




ν(k − 2t) + 2t − t if ν(k − 2t) ≤ 2t−1 + t− 2, using j = 2t + 1

2t + 2t−1 if ν(k − 2t) = 2t−1 + t− 1, using j = 2t + 2

2t + 2t−1 − 1 if ν(k − 2t) ≥ 2t−1 + t, using j = 2t + 1.
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Conjecture 5.3 can be thought of as an application of Hensel’s Lemma, following

Clarke ([2]). We are finding the first few terms of the unique zero of the 2-adic

function f(x) = ν(a(x, 2t + ε)) for x in a restricted congruence class.

6. Relationships with algebraic topology

In this section, we sketch how the numbers studied in this paper are related to topics

in algebraic topology, namely James numbers and v1-periodic homotopy groups.

Let Wn,k denote the complex Stiefel manifold consisting of k-tuples of orthonormal

vectors in Cn, and Wn,k → S2n−1 the map which selects the first vector. In work

related to vector fields on spheres, James ([8]) defined U(n, k) to be the order of the

cokernel of

π2n−1(Wn,k) → π2n−1(S
2n−1) ≈ Z,

now called James numbers. A bibliography of many papers in algebraic topology

devoted to studying these numbers can be found in [4]. It is proved in [11] that

νp(U(n, k)) ≥ νp((n− 1)!)− ẽp(n− 1, n− k).

Our work implies the following sharp result for certain James numbers.

Theorem 6.1. If p = 2 or 3, n is as in Theorems 1.7 or 1.9, and L is sufficiently

large, then

νp(U((p− 1)pL + n, (p− 1)pL)) = pL − (p− 1)[n
p
]− νp(n)− n.

Proof. We present the argument when p = 3. By [4, 4.3] and 1.9, we have

ν3(U(2 · 3L + n, 2 · 3L)) = ν3((2 · 3L + n− 1)!)− (n− 1 + ν3([n/3]!)).

Using Proposition 3.1, this equals

1
2
(2 · 3L − n− 1− d3(n− 1)− [n

3
] + d3([

n
3
])).

If n 6= 0 and n = 3m + n, this equals 3L − 2m − n, while if n = 3m, we use

d3(k − 1) = d3(k)− 1 + 2ν3(k) to obtain 3L − 2m− ν3(3m).

The p-primary v1-periodic homotopy groups of a topological space X, denoted

v−1
1 π∗(X)(p) and defined in [5], are a first approximation to the p-primary actual

homotopy groups π∗(X)(p). Each group v−1
1 πi(X)(p) is a direct summand of some
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homotopy group πj(X). It was proved in [4] that for the special unitary group SU(n),

we have, if p or n is odd,

v−1
1 π2k(SU(n))(p) ≈ Z/pep(k,n),

and v−1
1 π2k−1(SU(n))(p) has the same order. The situation when p = 2 and n is even

is slightly more complicated; it was discussed in [1] and [6]. In this case, there is a

summand Z/2e2(k,n)) or Z/2e2(k,n)−1 in v−1
1 π2k(SU(n))(2). From Theorems 1.9 and 1.7

we immediately obtain

Corollary 6.2. If n is as in Theorem 1.9 and k ≡ n− 1 mod 2 · 3s3(n), then

v−1
1 π2k(SU(n))(3) ≈ Z/3s3(n).

If n is as in Theorem 1.7 and is odd, and k ≡ n− 1 mod 2s2(n)−1, then

v−1
1 π2k(SU(n))(2) ≈ Z/2s2(n).

We are especially interested in knowing the largest value of ep(k, n) as k varies over

all integers, as this gives a lower bound for expp(SU(n)), the largest p-exponent of

any homotopy group of the space. It was shown in [7] that this is ≥ sp(n) if p or n is

odd. Our work here immediately implies Corollary 6.3 since v−1
1 π2n−2(SU(n))(p) has

p-exponent greater than sp(n) in these cases.

Corollary 6.3. If p = 3 and n is not as in 1.9 or p = 2 and n is odd and not as in

1.7, then expp(SU(n)) > sp(n).

Table 1 illustrates how we expect that k = n− 1 will give almost the largest group

v−1
1 π2k(SU(n))(p), but may miss by a small amount. There is much more that might

be done along these lines.
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