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Abstract. We use the spectrum tmf to obtain new nonimmer-
sion results for many real projective spaces RPn for n as small
as 113. The only new ingredient is some new calculations of tmf-
cohomology groups. We present an expanded table of nonimmer-
sion results. Our new theorem is new for 17% of the values of n
between 2i and 2i + 214 for i ≥ 15.

1. Introduction

We use the spectrum tmf to prove the following new nonimmersion theorem for

real projective spaces P n.

Theorem 1.1. Let α(n) denote the number of 1’s in the binary expansion of n.

a. If α(M) = 3, then P 8M+9 does not immerse in ( 6⊆) R16M−1.

b. If α(M) = 6, then P 8M+9 6⊆ R16M−11.

c. If α(M) = 7, then P 16M+16 6⊆ R32M−7 and P 16M+17 6⊆ R32M−6.

d. If α(M) = 9, then P 32M+25 6⊆ R64M−4 and P 32M+26 6⊆ R64M−3.

e. If α(M) = 10, then P 16M+17 6⊆ R32M−20 and P 16M+18 6⊆ R32M−19.

We apply the same method that was used in [4], using tmf∗(−) to detect nonex-

istence of axial maps. The novelty here is that we compute and utilize groups

tmf∗(Pm ∧ P n) when m and/or n is odd. In [4], only even values of m and n were

studied. There is, however, no significant difference or complication in using the odd

values. We prove Theorem 1.1 in Section 2.

Date: January 28, 2011.
2000 Mathematics Subject Classification. 57R42, 55N20.
Key words and phrases. Immersions, projective space, topological modular

forms.

1



2 DONALD M. DAVIS

For many years, the author has maintained a website ([5]) which listed all known

immersion, nonimmersion, embedding, and nonembedding results for P n and tab-

ulated them for n = 2i + d with 2i > d and 0 ≤ d ≤ 63. In [12], W. Stephen

Wilson acknowledged how this table motivated him to try (and succeed) to prove

nonimmersions for small P n. Our Theorem 1.1(a.) includes P 2i+49 6⊆ R2i+1+79 and

P 2i+57 6⊆ R2i+1+95 for i ≥ 6, which improve on previous best results (of [12]) by 1 and

2 dimensions, respectively, and hence enter the table [5].

To facilitate checking whether results are new, the author has greatly expanded his

table of nonimmersion results at www.lehigh.edu/∼dmd1/imms.html. We have listed

there the best known nonimmersions for P 2i+d for 2i > d and 0 ≤ d ≤ 16,383 together

with the first acknowledged source. A listing of and link to the Maple program that

generated this table is also included there. This table gives all known nonimmersion

results for P n with 7 < n < 49,152 except for James’ nonimmersions of P 2e−1 in

dimension 2e+1 − 2e− 〈3, 2, 2, 4〉 if e ≡ 〈0, 1, 2, 3〉 mod 4.([11])

Theorem 1.1 appears 2796 times in this table, thus giving new results for 17% of

the projective spaces of dimension between 2i and 2i + 214 for i ≥ 15. The seminal

result of [6],

(1.2) P 2(m+α(m)−1) 6⊆ R4m−2α(m),

appears 7063 times in the table, but is divided among four references. The first 4361

of them appeared in [1], which obtained a result equivalent to (1.2) for P n with n

satisfying a very complicated condition. The statement (1.2) was first conjectured in

[2] and proved there for α(m) ≤ 6, which yielded 168 new results in this table. It

was extended to α(m) = 7 in [13], and this still applies to 700 values. This left 1834

values which were covered by the general result (1.2) and not by any of the three

preceding references, and have not been bettered in subsequent work.

The first tmf-paper, ([4]), appears 2866 times in the table; there are 110 additional

values for small α(−) of tmf-implied nonimmersions which were overlooked in [4]

and noted in [7]. The other big collection of nonimmersion results is those obtained

in [12] using ER(2)-cohomology, which appears 2092 times. Both ER(2) and tmf

can be considered as real-versions of BP 〈2〉. Using ER(2) is advantageous because

ER(2)∗(P n) has a 2-dimensional class, while tmf∗(P n) only has an 8-dimensional

class. Also ER(2) is more closely related to BP 〈2〉, and so, as W. Stephen Wilson
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says, it can “mooch” off the result (1.2). The advantage of tmf is that some of its

groups are one 2-power larger than those of ER(2).

In [6], it was stated that (1.2) was within 2 dimensions of all known nonimmersion

results, in the sense that the two dimensions could come from the Euclidean space, the

projective space, or a combination. In other words, if D(n) denotes the nonimmer-

sion dimension for P n obtained from (1.2), and K(n) the best known nonimmersion

dimension for P n, then, at the time, it was true that

(1.3) K(n) ≤ max(D(n) + 2, D(n + 1) + 1, D(n + 2)).

This is no longer true. There are 10 values of n in the table for which the result of [9],

which states that if α(n) = 4 and n ≡ 10 mod 16 then P n 6⊆ R2n−9, does not satisfy

(1.3), and there are 418 values of n in the table for which Theorem 1.1(c) does not

satisfy (1.3). These are the only results which are more than 2 stronger than (1.2) in

the sense of (1.3), and it is still true that (1.2) is within 3 dimensions of all known

results in the same sense. That is, the following statement is currently true.

K(n) ≤ max(D(n) + 3, D(n + 1) + 2, D(n + 2) + 1, D(n + 3)).

The first example of (1.3) not being satisfied occurs for n = 58; we have K(58) = 107

due to [9] (which used modified Postnikov towers) while D(58) = D(59) = 98 and

D(60) = D(61) = 106. The first example of our 1.1(c) causing (1.3) to be not satisfied

occurs from K(3584) = 7129 (due to 1.1(c)) while D(3584) = D(3585) = 7124 and

D(3586) = D(3587) = 7128.

Theorem 1.1 can be extended to larger values of α(M) similarly to what was done in

[4]. We have emphasized the results for small values of α(M) for clarity of exposition.

The extension, whose proof we sketch in Section 3, is as follows. The lettering of the

parts corresponds to the parts of Theorem 1.1.

Theorem 1.4. Let p(h) denote the smallest 2-power ≥ h.

b,e. Suppose α(M) = 4h + 2 and h ≤ 2e1 − 2e0 if M ≡ 2e0 + 2e1

mod 2e1+1 with e0 < e1. Then

b. If h is odd, P 8M+8h+1 6⊆ R16M−8h−3, and

e. If h is even, then P 8M+8h+1 6⊆ R16M−8h−4 and P 8M+8h+2 6⊆
R16M−8h−3.
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c. If α(M) = 4h + 3 with h odd and M ≡ 0 mod p(h + 1), then

P 8M+8h+8 6⊆ R16M−8h+1 and P 8M+8h+9 6⊆ R16M−8h+2.

d. If α(M) = 4h + 1 with h even and M ≡ 0 mod p(h + 1), then

P 8M+8h+9 6⊆ R16M−8h+12 and P 8M+8h+10 6⊆ R16M−8h+13.

2. Proof of Theorem 1.1

Let tmf denote the 2-local connective spectrum introduced in [10], whose mod-

2 cohomology is the quotient of the mod-2 Steenrod algebra A by the left ideal

generated by Sq1, Sq2, and Sq4. Thus tmf∗(X) may be computed by the Adams

spectral sequence (ASS) with E2 = ExtA2(H
∗X,Z2), where A2 is the subalgebra

of A generated by Sq1, Sq2, and Sq4. We rely on Bob Bruner’s software ([3]) for

our calculations of these Ext groups. It was proved in [7, p.167] that there are 8-

dimensional classes X, X1, and X2 such that the homomorphism in tmf∗(−) induced

by an axial map Pm×P n → P k effectively sends X to u(X1 + X2), where u is a unit

in tmf0(Pm × P n) which will be omitted from our exposition.

We will often use duality isomorphisms tmfi(P n) ≈ tmf−i−1(P−n−1) for i > 2,

and tmfi(Pm ∧ P n) ≈ tmf−i−2(P−m−1 ∧ P−n−1) for i > max(m,n) + 2. For any

integer m, Pm denotes the spectrum P∞
m . We make frequent use of the periodicity

P t+8
b+8 ∧ tmf ' Σ8P t

b ∧ tmf proved in [4, Prop 2.6].

We let ν(−) denote the exponent of 2 in an integer, and use ν
((

m
n

))
= α(n) +

α(m − n) − α(n). Also, if L is large, ν
((

2L−k
n

))
= ν

((−k
n

))
= ν

((
n+k−1

n

))
. We will

never be interested in the values of odd factors of coefficients, and will not list them.

Proof of (a). If the immersion exists, there is an axial map P 8M+9×P 8M+9 → P 16M−1.

The induced homomorphism in tmf∗(−) sends 0 = X2M to

(2.1)
∑(

2M
i

)
X i

1X
2M−i
2

in tmf16M(P 8M+9 ∧ P 8M+9). This group is isomorphic to tmf−2(P−10 ∧ P−10) ≈
tmf30(P6 ∧ P6). The portion of the ASS for tmf30(P6 ∧ P6) arising from filtration

0 by h0-extensions appears in Diagram 2.2.
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Diagram 2.2. Portion of tmf30(P6 ∧ P6)

r
r
r
r

r
r

r
r

There are several elements in higher filtration which are not relevant to our argument.

The elements pictured in Diagram 2.2 cannot be hit by differentials in the ASS because

in dimension 31 there is only one tower in low enough filtration and it cannot support

a differential by the argument of [4, p.54], namely that its generator is a constructible

homotopy class. The filtration-0 elements must correspond to XM−1
1 XM+1

2 , XM
1 XM

2 ,

and XM+1
1 XM−1

2 in tmf16M(P 8M+9 ∧ P 8M+9). Since

(2.3) 22XM+1 = 0 in tmf∗(P 8M+9),

the two Z/4’s in Diagram 2.2 must represent XM±1
1 XM∓1

2 , and multiples of these

are 0 in all filtrations > 1. Thus XM
1 XM

2 generates the Z/24 in tmf16M(P 8M+9 ∧
P 8M+9). Since ν

((
2M
M

))
= α(M) = 3, we obtain that (2.1) is nonzero, contradicting

the existence of the immersion. ¤

Proof of (b). If the immersion exists, there is an axial map P 8M+9 × P 2L+3−16M+9 →
P 2L+3−8M−11 for sufficiently large L. Hence

(2.4)∑ (−M−1
i

)
X i

1X
2L−M−1−i
2 = 0 ∈ tmf2

L+3−8M−8(P 8M+9 ∧ P 2L+3−16M+9).

This group is isomorphic to tmf38(P6 ∧ P6), and the relevant part of it is given in

Diagram 2.5. Similarly to case (a), and continuing in all remaining cases, it cannot

be hit by a differential in the ASS.

Diagram 2.5. Portion of tmf38(P6 ∧ P6)

r
r
r
r

r
r

r
r

¥¥ DD

r
r
r
r
r
r
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The outer (Z/4) generators must correspond to XM−2
1 X2L−2M+1

2 and XM+1
1 X2L−2M−2

2 .

(Note that 4 times each of these classes is 0 by (2.3), and so they cannot produce a

higher-filtration component impacting the middle summands. This will be the case

also for the outer summands in subsequent diagrams.) The inner generators must

be XM−1
1 X2L−2M

2 and XM
1 X2L−2M−1

2 . By [4, Thm 2.7], the class 24(XM−1
1 X2L−2M

2 +

XM
1 X2L−2M−1

2 ) is 0 in filtration 4, although it might be nonzero in filtration 5. This

is depicted by the behavior of the chart between filtration 3 and 4. Since α(M) = 6,

the component of these terms in (2.4) is
(−M−1

M−1

)
XM−1

1 X2L−2M
2 +

(−M−1
M

)
XM

1 X2L−2M−1
2 = 25XM−1

1 X2L−2M
2 +26XM

1 X2L−2M−1
2 ,

which is nonzero in the group depicted by Diagram 2.5, contradicting the existence

of the immersion. ¤

Proof of (c). If the first immersion exists, there is an axial map P 16M+16×P 2L+3−32M+5 →
P 2L+3−16M−18. Hence

(2.6)
∑(−2M−2

i

)
X i

1X
2L−2M−2−i
2 = 0 ∈ tmf∗(P 16M+16∧P 2L+3−32M+5).

This group is isomorphic to tmf46(P7 ∧P2), and the relevant part of it is given in the

left side of Diagram 2.7.

Diagram 2.7. Portion of tmf46(P7 ∧ P2) and tmf46(P6 ∧ P3)

r
r
r
r

r
r
r
r

r
r
r
r

r
r
r
r

r
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r
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r
r

r
r
r
r
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r
r
r

r
r
r
r

r
r

¥¥ ¥¥DD DD
r
r

r
r
r
r

The generators, from left to right, correspond to X2M−2
1 X2L−4M

2 , . . . , X2M+2
1 X2L−4M−4

2 ,

with the sum relation in filtration 4 similar to that of the previous (and future) parts.

Since α(M) = 7, the component of the middle terms in (2.6) is

28+ν(M)X2M−1
1 X2L−4M−1

2 + 27X2M
1 X2L−4M−2

2 + 28X2M+1
1 X2L−4M−3

2 ,
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which is nonzero in the group depicted by Diagram 2.7. The argument for the second

nonimmersion involves the same sum in a group isomorphic to tmf46(P6 ∧P3), which

is pictured on the right side of Diagram 2.7. ¤

Proof of (d). The proof is similar to those of parts (b) and (c). The first nonimmersion

is proved by showing if α(M) = 9, then

(2.8)∑(−4M−3
i

)
X i

1X
2L−4M−3−i
2 6= 0 ∈ tmf2

L+3−32M−24(P 32M+25∧P 2L+3−64M+2).

This group is isomorphic to tmf62(P6 ∧ P5), the relevant part of which is depicted in

Diagram 2.9, with generators corresponding to i = 4M − 3, . . . , 4M + 3 in (2.8). The

sum relation in filtration 8 follows from [4, Thm 2.7]. The middle components of our

class are

210+ν(M)X4M−1
1 X2L−8M−2

2 + 29X4M
1 X2L−8M−3

2 + 29X4M+1
1 X2L−8M−4

2 ,

which is nonzero in filtration 9. Note that 29X4M
1 X2L−8M−3

2 is 0 in filtration 9, as

can be seen from Diagram 2.9 or from [4, 2.7], which says that if g1, g2, g3 denote

the middle three generators, then there are relations that both 28(g1 + g2 + g3) and

28(g1 + g3) have filtration > 8.

Diagram 2.9. Portion of tmf62(P6 ∧ P5)

r
r
r
r

r
r
r

r
r
r
r

r
r
r
r

r
r
r
r

r
r
r
r

r
r

¥¥ ¥¥ ¥¥ ¥¥DD DD DD DD
r
r
r
r

r
r
r
r

r
r

r
r
r
¥¥ DD
r
r

The argument for the second nonimmersion is virtually identical. Its obstruction is

the same sum in a group isomorphic to tmf62(P5∧P6), so just the reverse of Diagram

2.9. ¤
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Proof of (e). The obstruction this time is
∑ (−2M−2

i

)
X i

1X
2L−2M−2−i
2 in a group iso-

morphic to the one depicted in Diagram 2.9. The middle terms are

29X2M−2
1 X2L−4M

2 + 211+ν(M)X2M−1
1 X2L−4M−1

2 + 210X2M
1 X2L−4M−2

2 ,

which is nonzero. ¤

3. Sketch of proof of Theorem 1.4

We use the v8
2-periodicity of ExtA2 proved in [8, p.299,Thm 5.9] to see that, if one

of the diagrams of Section 2 depicts a portion of tmf i(Pa ∧ Pb), then the top part of

the portion of tmfi+48j(Pa∧Pb) generated by filtration-0 classes has the same form 8j

units higher. We also use the arguments on [4, p.54] to see that, when this portion is

interpreted as a quotient of a tmfk(P c∧P d) group, the relations are of the same sort as

those in [4, Thm 2.7]. The relation [4, (2.10)] is especially important and will be noted

specifically below. We use cofiber sequences such as Sa ∧ Pb → Pa ∧ Pb → Pa+1 ∧ Pb

to deduce results for our spaces, in which at least one of the bottom dimensions is

even, from those of [4], which dealt with the situation when both bottom dimensions

are odd. The nice form of ExtA2(H
∗Pb) below a certain line of slope 1/6 is important

here. As noted on [4, p.54], it is just a sum of copies of ExtA1(Z2), suitably placed.

Proof of 1.4(b,e). If the immersion in (b) exists, there is an axial map

P 8M+8h+1 × P 2L+3−16M+8h+1 → P 2L+3−8M−8h−3.

We obtain a contradiction to this by showing

(3.1)∑ (−M−h
i

)
X i

1X
2L−M−h−i
2 6= 0 ∈ tmf∗(P 8M+8h+1 ∧ P 2L+3−16M+8h+1).

Our obstruction will be in filtration 4h + 1, where there is a nonzero class by v8
2-

periodicity from Diagram 2.5, which is the case h = 1. Note that the group in

which (3.1) lies is isomorphic to tmf24h+14(P6 ∧ P6). The terms in (3.1) with i > M

cannot interfere in this filtration because for such i, 24h−2X i
1 = 0 in tmf∗(P 8M+8h+1).

The same holds for terms with i < M − h due to the second factor. By [4, 3.12],

the coefficients of the terms in (3.1) with M − h ≤ i ≤ M are all divisible by

2α(M)−1 = 24h+1. This is where the strange hypothesis comes into play. Next we note
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that

ν
( h∑

j=0

(
h
j

)(−M−h
M−j

))
= ν

((−M
M

))
= α(M)− 1.

By a variant on [4, Cor 2.13.3], this implies that (3.1) is nonzero. There are four

things that are required to make this work. (a) No interference from the outer terms

because they are precisely 0 in a lower filtration. (b) All the h+1 intermediate terms

have filtration at least 4h + 1. (c) The chart is nonzero in filtration 4h + 1. (d) An

odd number of the intermediate terms which have
(

h
j

)
odd, 0 ≤ j ≤ h, are nonzero in

filtration 4h+1. This latter is a version of [4, (2.10)]. It is a consequence of a relation

in every fourth filtration that the sum of the basic classes in the previous filtration

is 0 in that filtration. By “basic,” we mean those obtained from canonical classes in

filtration 0 or 4 by v8
2 periodicity.

The proof of (e) is virtually identical. ¤

Proof of 1.4(c,d). The proof of (d) is virtually identical to that of (c), and this is

similar to that of (b) with the main difference being that the obstruction is due

to
(−M−1

M

)
instead of

(−M
M

)
, which causes a very different-looking hypothesis. The

contradiction to the first result of (c) is obtained by showing

(3.2)∑(−M−h−1
i

)
X i

1X
2L−M−h−1−i
2 6= 0 ∈ tmf∗(P 8M+8h+8∧P 2L+3−16M+8h−3).

The obstruction will be in filtration α(M) = 4h + 3. The terms with i > M or

i < M − h are precisely 0 in filtration less than 4h + 3 due to their first or second

factor. By our hypothesis and [4, 3.8], the intermediate terms are all divisible by

2α(M). Since

ν
( h∑

j=0

(
h
j

)(−M−h−1
M−j

))
= ν

((−M−1
M

))
= α(M),

and, by v8
2-periodicity from Diagram 2.7, the obstruction group is nonzero in filtration

α(M) = 4h + 3. ¤
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