# AN APPROACH TO THE TOPOLOGICAL COMPLEXITY OF THE KLEIN BOTTLE

#### DONALD M. DAVIS

ABSTRACT. Recently, Cohen and Vandembroucq proved that the reduced topological complexity of the Klein bottle is 4. Simultaneously and independently we announced a proof of the same result. Mistakes were found in our argument, which was quite different than theirs. After correcting these, we found that our description of the obstruction class agreed with theirs. Our approach to showing that this obstruction is nonzero failed to do so, while theirs did not fail. Here we discuss our approach, which deals more directly with the simplicial structure of the Klein bottle.

#### 1. INTRODUCTION

The reduced topological complexity, TC(X), of a topological space X, as introduced in [5], is roughly one less than the minimal number of rules required to tell how to move between any two points of X. A "rule" must be such that the choice of path varies continuously with the endpoints. An outstanding problem has been to determine TC(K), where K is the Klein bottle.

In a recent preprint ([1]), Cohen and Vandembroucq proved that TC(K) = 4. Simultaneously and independently we announced a proof of the same result. Mistakes were found in our argument, which was quite different than theirs. After correcting these, we found that our description of the obstruction class agreed with theirs. Our approach to showing that this obstruction is nonzero failed to do so, while theirs did not fail. Here we discuss our approach, which deals more directly with the simplicial structure of the Klein bottle.

The Klein bottle is homeomorphic to the space of all configurations of various physical systems. For example, it is homeomorphic to the space of all planar 5-gons

Date: February 1, 2017.

Key words and phrases. Topological complexity, Klein bottle, obstruction theory.

<sup>2000</sup> Mathematics Subject Classification: 55M30, 55N25, 57M20.

with side lengths 1, 1, 2, 2, and 3 ([7, Table B]). Such a polygon can be considered as linked robot arms. Knowing that TC(K) = 4 implies that five rules are required to program these arms to move from any configuration to any other.

Our main tool is a result of Costa and Farber ([2]), which we state later as Theorem 4.1, which describes a single obstruction in  $H^{2n}(X \times X; G)$ , where G is a certain local coefficient system, for an n-dimensional cell complex X to satisfy TC(X) < 2n. We present an approach to proving that this class is nonzero for the Klein bottle K, which would imply that  $TC(K) \ge 4$ , while  $TC(K) \le 4$  for dimensional reasons.([5, Cor 4.15])

# 2. The $\Delta$ -complex for $K \times K$

A  $\Delta$ -complex, as described in [6], is essentially a quotient of a simplicial complex, with certain simplices identified. As discussed there, this notion is equivalent to that of semi-simplicial complex introduced in [3]. It is important that vertices be numbered prior to identifications, and that simplices be described by writing vertices in increasing order.

The  $\Delta$ -complex that we will use for K is given below. It has one vertex v, three edges, (0,2) = (4,5), (1,2) = (3,4), and (0,1) = (3,5), and two 2-cells, (0,1,2) and (3,4,5).



If K and L are simplicial complexes with an ordering of the vertices of each, then the simplices of the simplicial complex  $K \times L$  are all  $\langle (v_{i_0}, w_{j_0}), \ldots, (v_{i_k}, w_{j_k}) \rangle$  such that  $i_0 \leq \cdots \leq i_k$  and  $j_0 \leq \cdots \leq j_k$  and  $\{v_{i_0}, \ldots, v_{i_k}\}$  and  $\{w_{j_0}, \ldots, w_{j_k}\}$  are simplices of K and L, respectively. Note that we may have  $v_{i_t} = v_{i_{t+1}}$  or  $w_{j_t} = w_{j_{t+1}}$ , but not both

(for the same t). Now, if K and L are  $\Delta$ -complexes, i.e., they have some simplices identified, then  $K \times L$  has

$$\langle (v_{i_0}, w_{j_0}), \dots, (v_{i_k}, w_{j_k}) \rangle \sim \langle (v_{i'_0}, w_{j'_0}), \dots, (v_{i'_k}, w_{j'_k}) \rangle$$

iff  $\{v_{i_0}, \ldots, v_{i_k}\} \sim \{v_{i'_0}, \ldots, v_{i'_k}\}$  and  $\{w_{j_0} \ldots w_{j_k}\} \sim \{w_{j'_0} \ldots w_{j'_k}\}$ , and the positions of the repetitions in  $(v_{i_0}, \ldots, v_{i_k})$  and  $(v_{i'_0}, \ldots, v_{i'_k})$  are the same, and so are those of  $(w_{j_0}, \ldots, w_{j_k})$  and  $(w_{j'_0}, \ldots, w_{j'_k})$ . This description is equivalent to the one near the end of [4], called  $K\Delta L$  there. There is also a discussion in [6, pp.277-278].

Following this description, we now list the simplices of  $K \times K$ , where K is the above  $\Delta$ -complex. We write v for the unique vertex when it is being producted with a simplex, but otherwise we list all vertices by their number. We omit commas in ordered pairs; e.g., 24 denotes the vertex of  $K \times K$  which is vertex 2 in the first factor and vertex 4 in the second factor. There are 1, 15, 50, 60, and 24 distinct simplices of dimensions 0, 1, 2, 3, and 4, respectively. This is good since 1 - 15 + 50 - 60 + 24 = 0, the Euler characteristic of  $K \times K$ . We number the simplices in each dimension, which will be useful later.

The only 0-simplex is (vv).

1-simplices:

1: (0v, 1v) = (3v, 5v). 2: (0v, 2v) = (4v, 5v). 3: (1v, 2v) = (3v, 4v). 4: (v0, v1) = (v3, v5). 5: (v0, v2) = (v4, v5). 6: (v1, v2) = (v3, v4). 7: (00, 11) = (30, 51) = (33, 55) = (03, 15). 8: (00, 12) = (30, 52) = (34, 55) = (04, 15). 9: (01, 12) = (31, 52) = (33, 54) = (03, 14). 10: (00, 21) = (40, 51) = (43, 55) = (03, 25). 11: (00, 22) = (40, 52) = (44, 55) = (04, 25). 12: (01, 22) = (41, 52) = (43, 54) = (03, 24). 13: (10, 21) = (30, 41) = (33, 45) = (13, 25). 14: (10, 22) = (30, 42) = (34, 45) = (14, 25).

15: (11, 22) = (31, 42) = (33, 44) = (13, 24).2-simplices 1: (0v, 1v, 2v). 2: (3v, 4v, 5v). 3: (v0, v1, v2).4: (v3, v4, v5). 5: (00, 10, 11) = (30, 50, 51) = (03, 13, 15) = (33, 53, 55).6: (00, 10, 12) = (30, 50, 52) = (04, 14, 15) = (34, 54, 55).7: (01, 11, 12) = (31, 51, 52) = (03, 13, 14) = (33, 53, 54).8: (00, 01, 11) = (30, 31, 51) = (03, 05, 15) = (33, 35, 55).9: (00, 02, 12) = (30, 32, 52) = (04, 05, 15) = (34, 35, 55).10: (01, 02, 12) = (31, 32, 52) = (03, 04, 14) = (33, 34, 54).11: (00, 20, 21) = (40, 50, 51) = (03, 23, 25) = (43, 53, 55).12: (00, 20, 22) = (40, 50, 52) = (04, 24, 25) = (44, 54, 55).13: (01, 21, 22) = (41, 51, 52) = (03, 23, 24) = (43, 53, 54).14: (00, 01, 21) = (40, 41, 51) = (03, 05, 25) = (43, 45, 55).15: (00, 02, 22) = (40, 42, 52) = (04, 05, 25) = (44, 45, 55).16: (01, 02, 22) = (41, 42, 52) = (03, 04, 24) = (43, 44, 54).17: (10, 20, 21) = (30, 40, 41) = (13, 23, 25) = (33, 43, 45).18: (10, 20, 22) = (30, 40, 42) = (14, 24, 25) = (34, 44, 45).19: (11, 21, 22) = (31, 41, 42) = (13, 23, 24) = (33, 43, 44).20: (10, 11, 21) = (30, 31, 41) = (13, 15, 25) = (33, 35, 45).21: (10, 12, 22) = (30, 32, 42) = (14, 15, 25) = (34, 35, 45).22: (11, 12, 22) = (31, 32, 42) = (13, 14, 24) = (33, 34, 44).23: (00, 11, 22).24: (30, 41, 52).25: (03, 14, 25).26: (33, 44, 55).27: (00, 01, 22) = (40, 41, 52).28: (30, 31, 52) = (00, 01, 12).29: (03, 04, 25) = (43, 44, 55).30: (33, 34, 55) = (03, 04, 15).

31: (00, 10, 22) = (04, 14, 25).32: (30, 40, 52) = (34, 44, 55).33: (03, 13, 25) = (00, 10, 21).34: (33, 43, 55) = (30, 40, 51).35: (00, 21, 22) = (40, 51, 52).36: (03, 24, 25) = (43, 54, 55).37: (30, 51, 52) = (00, 11, 12).38: (33, 54, 55) = (03, 14, 15).39: (00, 12, 22) = (04, 15, 25).40: (30, 42, 52) = (34, 45, 55).41: (03, 15, 25) = (00, 11, 21).42: (33, 45, 55) = (30, 41, 51).43: (01, 12, 22) = (03, 14, 24).44: (31, 42, 52) = (33, 44, 54).45: (03, 13, 24) = (01, 11, 22).46: (33, 43, 54) = (31, 41, 52).47: (10, 21, 22) = (30, 41, 42).48: (13, 24, 25) = (33, 44, 45).49: (10, 11, 22) = (30, 31, 42).50: (13, 14, 25) = (33, 34, 45).

3-simplices

1: (00, 10, 21, 22)
 2: (00, 11, 21, 22).
 3: (00, 10, 11, 22).
 4: (00, 11, 12, 22).
 5: (00, 01, 11, 22).
 6: (00, 01, 12, 22).
 7: (30, 40, 51, 52).
 8: (30, 41, 51, 52).
 9: (30, 40, 41, 52).
 10: (30, 41, 42, 52).
 11: (30, 31, 41, 52).

12: (30, 31, 42, 52).13: (03, 13, 24, 25). 14: (03, 14, 24, 25).15: (03, 13, 14, 25).16: (03, 14, 15, 25). 17: (03, 04, 14, 25). 18: (03, 04, 15, 25).19: (33, 43, 54, 55). 20: (33, 44, 54, 55).21: (33, 43, 44, 55).22: (33, 44, 45, 55).23: (33, 34, 44, 55).24: (33, 34, 45, 55).25: (00, 10, 20, 21) = (03, 13, 23, 25).26: (00, 10, 11, 21) = (03, 13, 15, 25).27: (00, 01, 11, 21) = (03, 05, 15, 25).28: (00, 10, 20, 22) = (04, 14, 24, 25).29: (00, 10, 12, 22) = (04, 14, 15, 25).30: (00, 02, 12, 22) = (04, 05, 15, 25).31: (01, 11, 21, 22) = (03, 13, 23, 24).32: (01, 11, 12, 22) = (03, 13, 14, 24).33: (01, 02, 12, 22) = (03, 04, 14, 24).34: (00, 01, 02, 12) = (30, 31, 32, 52).35: (00, 01, 11, 12) = (30, 31, 51, 52).36: (00, 10, 11, 12) = (30, 50, 51, 52).37: (00, 01, 02, 22) = (40, 41, 42, 52).38: (00, 01, 21, 22) = (40, 41, 51, 52).39: (00, 20, 21, 22) = (40, 50, 51, 52).40: (10, 11, 12, 22) = (30, 31, 32, 42).41: (10, 11, 21, 22) = (30, 31, 41, 42).42: (10, 20, 21, 22) = (30, 40, 41, 42).43: (30, 40, 50, 51) = (33, 43, 53, 55).

44: (30, 40, 41, 51) = (33, 43, 45, 55).45: (30, 31, 41, 51) = (33, 35, 45, 55).46: (30, 40, 50, 52) = (34, 44, 54, 55).47: (30, 40, 42, 52) = (34, 44, 45, 55).48: (30, 32, 42, 52) = (34, 35, 45, 55).49: (31, 41, 51, 52) = (33, 43, 53, 54).50: (31, 41, 42, 52) = (33, 43, 44, 54).51: (31, 32, 42, 52) = (33, 34, 44, 54).52: (03, 04, 05, 15) = (33, 34, 35, 55).53: (03, 04, 14, 15) = (33, 34, 54, 55).54: (03, 13, 14, 15) = (33, 53, 54, 55).55: (03, 04, 05, 25) = (43, 44, 45, 55).56: (03, 04, 24, 25) = (43, 44, 54, 55).57: (03, 23, 24, 25) = (43, 53, 54, 55).58: (13, 14, 15, 25) = (33, 34, 35, 45).59: (13, 14, 24, 25) = (33, 34, 44, 45).60: (13, 23, 24, 25) = (33, 43, 44, 45).

## 4-simplices

1: (00, 10, 20, 21, 22). 2: (00, 10, 11, 21, 22). 3: (00, 10, 11, 12, 22). 4: (00, 01, 11, 21, 22). 5: (00, 01, 11, 12, 22). 6: (00, 01, 02, 12, 22). 7: (30, 40, 50, 51, 52). 8: (30, 40, 41, 51, 52). 9: (30, 40, 41, 42, 52). 10: (30, 31, 41, 42, 52). 11: (30, 31, 41, 42, 52). 12: (30, 31, 32, 42, 52). 13: (03, 13, 23, 24, 25). 14: (03, 13, 14, 24, 25). 3.  $H^4(K \times K)$  with local coefficients

We will need to show that a certain class is nonzero in  $H^4(K \times K; G)$  with coefficients in a certain local coefficient system G. In this section, we describe the relations in  $H^4(K \times K; G)$  for an arbitrary free abelian local coefficient system G.

For a  $\Delta$ -complex X with a single vertex  $x_0$ , such as the one just described for  $K \times K$ , a local coefficient system G is an abelian group G together with an action of  $\pi_1(X; x_0)$  on G, giving G the structure of  $\mathbb{Z}[\pi_1(X; x_0)]$ -module. If  $C_k$  denotes the free abelian group generated by the k-cells of X, homomorphisms

$$\delta_{k-1} : \operatorname{Hom}(C_{k-1}, G) \to \operatorname{Hom}(C_k, G)$$

are defined by

$$\delta_{k-1}(\phi)(\langle v_{i_0}, \dots, v_{i_k} \rangle) = \rho_{i_0, i_1} \cdot \phi(\langle v_{i_1}, \dots, v_{i_k} \rangle) + \sum_{i=1}^k (-1)^i \phi(\langle v_{i_0}, \dots, \hat{v_i}, \dots, v_{i_k} \rangle),$$
(3.1)

where  $\hat{v}_i$  denotes omission of that vertex, and  $\rho_{i_0,i_1}$  is the element of  $\pi_1(X; x_0)$  corresponding to the edge from  $v_{i_0}$  to  $v_{i_1}$ . Then

$$H^k(X;G) = \ker(\delta_k) / \operatorname{im}(\delta_{k-1}).$$

This description is given in [3, p.501].

We have

$$\pi_1(K;v) = \langle a, b, c \rangle / (c = ab^{-1} = ba)$$

and

$$\pi_1(K \times K; (v, v)) = \langle a, b, c, a', b', c' \rangle / (c = ab^{-1} = ba, c' = a'b'^{-1} = b'a'),$$

where the primes correspond to the second factor. We will prove the following key result, in which  $\gamma_1, \ldots, \gamma_{24}$  denote the generators corresponding to the 4-cells of  $K \times K$  listed at the end of the previous section, and G is any free abelian local coefficient system.

# Theorem 3.2. Let

$$\varepsilon_j = \begin{cases} -1 & j \equiv 2 \mod 3\\ 1 & j \equiv 0, 1 \mod 3, \end{cases}$$

and let  $\psi \in \text{Hom}(C_4, G)$ . Then  $[\psi] = 0 \in H^4(K \times K; G)$  if and only if  $\sum_{j=1}^{24} \varepsilon_j \psi(\gamma_j)$  is 0 in the quotient of G modulo the action of b-1, b'-1, c+1, and c'+1.

*Proof.* We find the image of  $\delta$ : Hom $(C_3, G) \to$  Hom $(C_4, G)$  by row-reducing, using only integer operations, the 60-by-24 matrix M whose entries  $m_{i,j} \in \mathbb{Z}[\pi_1(K \times K)]$ satisfy

$$\delta(\phi)(\gamma_j) = \sum_{i=1}^{60} m_{i,j}\phi(\beta_i), \quad j = 1, \dots, 24.$$
 (3.3)

Here  $\beta_i$  denotes the generator of  $C_3$  corresponding to the *i*th 3-cell.

We list the matrix M below. Each row has two nonzero entries, as each 3-cell is a face of two 4-cells, while each column has five nonzero entries, as each 4-cell is bounded by five 3-cells. For example,  $m_{42,1} = c$  because (10, 20, 21, 22) is obtained from (00, 10, 20, 21, 22) by omission of the initial vertex, and  $\rho_{00,10} = c$ .

The row reduction of this matrix can be done by hand in less than 30 minutes. We find that the row-reduced form has 27 nonzero rows, with its only nonzero elements in rows i = 1, ..., 23 being 1 in position (i, i) and  $-\varepsilon_i$  in position (i, 24), while in rows 24 through 27 the only nonzero element is in column 24, and equals b - 1, b' - 1, c + 1, and c' + 1, respectively.

A row  $(r_1, \ldots, r_{24})$ , with  $r_j = \psi(\gamma_j)$  for  $\psi \in \text{Hom}(C_4, G)$ , is equivalent, modulo the first 23 rows just described, to a row with 0's in the first 23 positions, and  $\sum_{j=1}^{24} \varepsilon_j r_j$  in the 24th column. The last four rows of the reduced matrix yield the claim of Theorem 3.2.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19 20                                                             | 21 22 | $2 \ 23 \ 24$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------|---------------|
| $1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 0                                                               | 0 0   | 0 0 0         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 0                                                               | 0 0   | 0 0           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 0                                                               | 0 0   |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0                                                               |       |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |       |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                   |       |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                   |       |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |       |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 0                                                               | 0 0   |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 0                                                               | 0 0   | 0 0           |
| 12 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0                                                               | 0 0   | 0 0 0         |
| 13 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 0                                                               | 0 0   | 0 0 0         |
| 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 0                                                               | 0 0   | 0 0 0         |
| 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 0                                                               | 0 0   | 0 0 0         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 0                                                               | 0 0   | 0 0 0         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 0                                                               | 0 0   | 0 0 0         |
| 18         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 | $   \begin{array}{ccc}       0 & 0 \\       1 & 1   \end{array} $ | 0 0   |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                   | 0 0   |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 -1<br>0 -1                                                      | -1 0  |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   | -1 0  | ) -1 0        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 0                                                               | 0 -   | 1 - 1 0       |
| 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 0                                                               | 0 0   | ) 1 1         |
| 25 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 0                                                               | 0 0   | 0 0 0         |
| 26 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 0                                                               | 0 0   | 0 0 0         |
| 27 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 0                                                               | 0 0   | 0 0 0         |
| 28 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b' 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 0                                                               | 0 0   | 0 0 0         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 0                                                               | 0 0   | 0 0           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |       |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |       |               |
| 33 0 0 0 0 c' 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                   |       |               |
| 34 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 0                                                               | 0 0   | 0 0 0         |
| 35 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 0                                                               | 0 0   | 0 0           |
| 36 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 0                                                               | 0 0   | 0 0           |
| 37 0 0 0 0 0 -1 0 0 b 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 0                                                               | 0 0   | 0 0 0         |
| 38       0       0       1       0       0       b       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                     | 0 0                                                               | 0 0   | 0 0 0         |
| $39 -1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 0                                                               | 0 0   | 0 0 0         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 0                                                               | 0 0   |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                   |       |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1 0                                                              |       |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0                                                               | 1 0   |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 0                                                               | 0 0   | 0 0 -1        |
| 46 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 0                                                               | 0  b' | ′ 0 0         |
| 47 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 0                                                               | 0 0   | b' = 0        |
| 48 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 0                                                               | 0 0   | 0  0  b'      |
| 49 0 0 0 0 0 0 0 0 0 <i>c</i> ' 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 0                                                               | 0 0   | 0 0 0         |
| 50 0 0 0 0 0 0 0 0 0 0 0 c' 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 1                                                               | 0 0   | 0 0 0         |
| 51 0 0 0 0 0 0 0 0 0 0 <i>c</i> ' 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0                                                               | 0 1   |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   | 0 0   | 0 0 -1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _1 0                                                              |       |               |
| 5500000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 0                                                               |       |               |
| 56         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 | $\begin{array}{c} 0 \\ 0 \end{array}$                             | 0 0   | 0 0           |
| 57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | b = 0                                                             | 0 0   | 0 0 0         |
| 58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 0                                                               | 0 0   | 0 1           |
| 59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 0                                                               | 0 0   | 0 1 0         |
| 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 0                                                               | 1 0   | 0 0 0         |

#### 4. Our specific obstruction class

In [2], the following theorem is proved.

**Theorem 4.1.** Let X be an n-dimensional  $\Delta$ -complex with a single vertex  $x_0$ , and let  $\pi = \pi_1(X, x_0)$ . Let  $I \subset \mathbb{Z}[\pi]$  denote the augmentation ideal. The action of  $\pi \times \pi$  on I by  $(g, h) \cdot \alpha = g\alpha h^{-1}$  makes I a  $\mathbb{Z}[\pi \times \pi]$ -module, defining a local coefficient system I over  $X \times X$ . If  $C_1(X \times X)$  denotes the free abelian group on the set of edges of  $X \times X$ , then the homomorphism  $f : C_1(X \times X) \to I$  defined by  $(e_1, e_2) \mapsto [e_1][e_2]^{-1} - 1$  defines an element  $\nu \in H^1(X \times X; I)$ . Then  $\mathrm{TC}(X) < 2n$  iff  $\nu^{2n} = 0 \in H^{2n}(X \times X; I^{\otimes 2n})$ , where  $\pi \times \pi$  acts diagonally on  $I^{\otimes 2n}$ .

The discussion of the function f of this theorem in [2] refers to [9, Ch.6:Thm 3.3], and we use the proof of that result for our interpretation of the function.

When X = K is the Klein bottle, we have  $\pi = \pi_1(K) = \{a^m b^n\}$  with the multiplication of these elements determined by the relation  $ab^{-1} = ba$ . Also relevant for us is the element  $c = ab^{-1} = ba$ . The ideal I for us is the free abelian group with basis  $\{\alpha_{m,n} = a^m b^n - 1 : (m,n) \in \mathbb{Z} \times \mathbb{Z} - \{(0,0)\}\}$ . Using the numbering of the 1-cells  $e_i$ of  $K \times K$  given in Section 2, we obtain that the function f is given as in the following table.

For example,  $f(e_1) = \alpha_{1,-1}$  because  $c = ab^{-1}$ , while  $f(e_{12}) = \alpha_{1,-1}$  because the edge from 0 to 2 is a, while that from 1 to 2 is b.

In [3, p.500], it is noted that the Alexander-Whitney formula for cup products in simplicial complexes applies also to  $\Delta$ -complexes. Our mistake was to overlook the twisting in this formula due to local coefficients. The correct formula, from [8], is

$$(f^{p} \cup g^{n-p})\langle v_{0}, \dots, v_{n} \rangle = (-1)^{p(n-p)} f(v_{0}, \dots, v_{p}) \otimes \rho_{v_{0}, v_{p}} g(v_{p}, \dots, v_{n}),$$
(4.3)

where  $\rho_{i,j}$  is as in (3.1) and is what we overlooked.

We apply this to  $f^4(\gamma_j)$ , where  $f^4 = f \cup f \cup f \cup f$  with f the function on 1-cells defined above, and  $\gamma_j$  is any of the 24 4-cells listed in Section 2. For example,

$$f^{4}(\gamma_{1}) = f(00, 10) \otimes cf(10, 20) \otimes af(20, 21) \otimes af(21, 22)c^{-1}$$
  
$$= f(e_{1}) \otimes cf(e_{3}) \otimes af(e_{4}) \otimes af(e_{6})c^{-1}$$
  
$$= (ab^{-1} - 1) \otimes c(b - 1) \otimes a(a^{-1}b^{-1} - 1) \otimes a(b^{-1} - 1)c^{-1}$$
  
$$= (ab^{-1} - 1) \otimes (a - ab^{-1}) \otimes (b^{-1} - a) \otimes (1 - b^{-1}). \quad (4.4)$$

Formula (4.4) equals (T19) in the expansion of the obstruction class in Section 3.2 of [1], after adjusting for different notation. They use x, y for our a, b, and they write their classes as  $y^n x^m$  rather than our  $a^m b^n$ . The relations in  $\pi_1(K)$  must be used to compare these.

For all of our 4-cells, consecutive vertices are constant in one factor, and so only  $f(e_i)$  for  $i \leq 6$  are relevant for  $f^4$ . Once we knew about incorporating the twisting in (4.3), our obstruction class exactly agreed with the class in Section 3.2 of [1]. Prior to this realization, we worked with a different obstruction class for several months.

# 5. Approaches to proving that our class is nonzero

As just noted, once (4.3) was understood, our obstruction class agreed with the obstruction class of [1]. They successfully showed that this was nonzero in  $H^4(K \times K; I^{\otimes 4})$ . From our viewpoint, the relations were of the form

- (1)  $b\alpha_{m_1,n_1} \otimes b\alpha_{m_2,n_2} \otimes b\alpha_{m_3,n_3} \otimes b\alpha_{m_4,n_4} \alpha_{m_1,n_1} \otimes \alpha_{m_2,n_2} \otimes \alpha_{m_3,n_3} \otimes \alpha_{m_4,n_4}$
- (2)  $\alpha_{m_1,n_1}b^{-1} \otimes \alpha_{m_2,n_2}b^{-1} \otimes \alpha_{m_3,n_3}b^{-1} \otimes \alpha_{m_4,n_4}b^{-1}$

 $-\alpha_{m_1,n_1}\otimes\alpha_{m_2,n_2}\otimes\alpha_{m_3,n_3}\otimes\alpha_{m_4,n_4}$ 

- $(3) \quad c\alpha_{m_1,n_1} \otimes c\alpha_{m_2,n_2} \otimes c\alpha_{m_3,n_3} \otimes c\alpha_{m_4,n_4} + \alpha_{m_1,n_1} \otimes \alpha_{m_2,n_2} \otimes \alpha_{m_3,n_3} \otimes \alpha_{m_4,n_4},$
- (4)  $\alpha_{m_1,n_1}c^{-1} \otimes \alpha_{m_2,n_2}c^{-1} \otimes \alpha_{m_3,n_3}c^{-1} \otimes \alpha_{m_4,n_4}c^{-1}$

 $+\alpha_{m_1,n_1}\otimes\alpha_{m_2,n_2}\otimes\alpha_{m_3,n_3}\otimes\alpha_{m_4,n_4},$ 

and we hoped to show our class could not be reduced to 0 mod these relations.

The factors  $b\alpha_{m,n}$ ,  $\alpha_{m,n}b^{-1}$ ,  $c\alpha_{m,n}$ , and  $\alpha_{m,n}c^{-1}$  appearing above are, respectively,

 $1 : \alpha_{m,n+(-1)^m} - \alpha_{0,1},$   $2 : \alpha_{m,n-1} - \alpha_{0,-1},$   $3 : \alpha_{m+1,n+(-1)^{m+1}} - \alpha_{1,-1},$  $4 : \alpha_{m-1,-n-1} - \alpha_{-1,-1}.$ 

The relations are much simpler in  $\mathbb{Z}[\pi]^{\otimes 4}$ , and we had a nice form for those. For example,

$$ba^{m_1}b^{n_1}\otimes\cdots\otimes ba^{m_4}b^{n_4}\sim a^{m_1}b^{n_1}\otimes\cdots\otimes a^{m_4}b^{n_4}$$

is much simpler than (1). Prior to our understanding of the twisting in (4.3), we had been able to show our class was not 0 mod the  $\mathbb{Z}[\pi]^{\otimes 4}$ -relations. Once we were made aware of the twisting, we showed our corrected class was 0 mod these relations. Then it was pointed out to us (by Cohen and Vandembroucq) that it followed from the work in [2] that the class would necessarily be zero with coefficients in  $\mathbb{Z}[\pi]^{\otimes 4}$ . Our methods lent no insight toward showing it nonzero with coefficients  $I^{\otimes 4}$ .

We wish to thank the authors of [1] for their help in our understanding of this project. Still, we feel that our approach to obtaining the obstruction class, quite different from theirs, is worth publicizing.

### References

- D.C.Cohen and L.Vandembroucq, Topological complexity of the Klein bottle, http://arxiv.org/abs/1612.03133.
- [2] A.Costa and M.Farber, Motion planning in spaces with small fundamental groups, Commun Contemp Math 12 (2010) 107–119.
- [3] S.Eilenberg and J.A.Zilber, Semi-simplicial complexes and singular homology, Annals of Math 51 (1950) 499-513.
- [4] \_\_\_\_\_, On products of complexes, Amer Jour Math **75** (1953) 200-204.
- [5] M.Farber, Invitation to topological robotics, European Math Society (2008).
- [6] A.Hatcher, Algebraic Topology, Cambridge Univ Press (2002).
- [7] J.-C.Hausmann, Geometric descriptions of polygon and chain spaces, Contemp Math Amer Math Soc 438 (2007) 47-57.
- [8] N.E.Steenrod, Homology with local coefficients, Annals of Math 44 (1943) 610-627.
- [9] G.W.Whitehead, *Elements of Homotopy Theory*, Springer-Verlag (1978).

DEPARTMENT OF MATHEMATICS, LEHIGH UNIVERSITY, BETHLEHEM, PA 18015, USA *E-mail address*: dmd1@lehigh.edu