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Abstract

We determine, within 1, the value of N for which
∑
i

(
s1
i

)(
s2
N

)(
s1

N−i

)(
N
i

)
achieves its

maximum value. Here s1 and s2 are fixed integers. This problem arises in studying
the most likely value of |A ∪ B ∪ C| if A and C are disjoint sets of cardinality s1,
and |B| = s2. Attempting to remove the 1 unit of indeterminacy leads to interesting
conjectures about a family of rational functions.
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1 Introduction

The question considered here arises from problems involving estimating sizes of
crowds. You count sizes of certain subsets and want to estimate the size of the union.

The case considered here involves three sets A, B, and C with the property that A∩C =
∅, but B may intersect the other sets. Suppose also that |A| = s1, |B| = s2, and |C| = s3.
What is the most likely value for |A ∪ B ∪ C|? This question was suggested to the author
by Fred Cohen, along with the mathematical model which we now present.

The assumption being made is that any choice of i people in A∩B and j other people in
B∩C is equally likely, for all i and j. For example, it is equally likely that |A∩B| = 1 with
that person a specified person of A and a specified person of B or that |A ∩ B| = 3 with
those people a specified subset of A and a specified subset of B. This can be formulated in
the following way.

Suppose Â, B̂, and Ĉ are disjoint sets with |Â| = s1, |B̂| = s2, and |Ĉ| = s3. The
sample space consists of all 4-tuples

(A1, B1, B2, C2) ⊂ (Â, B̂, B̂, Ĉ)

such that |A1| = |B1|, |B2| = |C2|, and B1 ∩ B2 = ∅. Thus A1 and B1 correspond to
A ∩B in the earlier formulation, and we have

|A ∪B ∪ C| = s1 + s2 + s3 − |B1| − |B2|.
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We assume that each element of the sample space is equally likely. Let Ei,j denote the
event that |B1| = i and |B2| = j. Then

|Ei,j | =
(
s1
i

)(
s2
i

)(
s2−i

j

)(
s3
j

)
.

If EN is the event that |B1|+ |B2| = N , i.e., that |A ∪B ∪ C| = s1 + s2 + s3 −N , then

|EN | =
∑

i+j=N

|Ei,j |.

Hence the most likely value of |A ∪B ∪ C| is s1 + s2 + s3 −N , where N maximizes

∑

i

(
s1
i

)(
s2
i

)(
s2−i
N−i

)(
s3

N−i

)
=

∑

i

(
s1
i

)(
s2
N

)(
s3

N−i

)(
N
i

)
.

We focus attention primarily on the case in which s1 = s3. In this case we obtain in
Corollary 1.1 a simple formula for the maximizing N within 1, and in 1.2 a much-less-
tractable formula which removes the indeterminacy. In Section 3, we attempt to obtain a
more useful approximation to 1.2, and in doing so we notice fascinating patterns in a family
of rational functions, but can only conjecture that these patterns persist. See Table 3.3 and
Conjecture 3.2. In Section 4, we consider the general case when s1 and s3 need not be
equal. Our results there are somewhat similar, but not so complete.

Our main theorem is

Theorem 1.1. Let fs1,s2(N) :=
(
s2
N

)∑
i

(
s1
i

)(
s1

N−i

)(
N
i

)
for integer values of N . For each

s1 and s2, there is an integer, which we denote by g(s1, s2), such that fs1,s2(N) is an
increasing function of N for N ≤ g(s1, s2), and a decreasing function of N for N ≥
g(s1, s2). Moreover,

g(s1, s2) =
[
2s1 + s2 + 3

2 −
√

4s2
1 + 4s1 + (s2 + 1

2 )2
]

+ δ (1.1)

with δ = 0 or 1.

Corollary 1.1. The maximum value of
∑
i

(
s1
i

)(
s2
N

)(
s1

N−i

)(
N
i

)
occurs when

N =
[
2s1 + s2 + 3

2 −
√

4s2
1 + 4s1 + (s2 + 1

2 )2
]

+ δ

with δ = 0 or 1. The most likely value of |A∪B∪C| in the situation discussed above, with

s3 = s1, is
⌈√

4s2
1 + 4s1 + (s2 + 1

2 )2 − 3
2

⌉
− δ.

It is conceivable that fs1,s2 might achieve equal maxima at both N and N + 1. In such
a case, we accept either as an allowable value of g(s1, s2).
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It was pointed out by the referee that the unimodality of fs1,s2(N) follows from a
result of Walkup ( [1]) which states that a binomial convolution of log-concave functions is
log-concave. Since the sequence of binomial coefficients is log-concave, and log-concave
implies unimodal, the unimodality of our f follows. But finding the mode is much more
delicate.

To illustrate the efficacy of our formula, we consider the typical case s1 = 15, and
tabulate in Table 1.1 the actual values of g(15, s2) for all s2, and in Table 1.2 the five
values of s2 for which δ = 1 in (1.1). Note how in these five cases the expression whose
integer part appears in (1.1) falls slightly short of the required value.

The following proposition generalizes the beginning and end of Table 1.1. Theorem 1.1
is true with δ = 0 in these cases. Note also that the case d = 0 of part (b) of Proposition
1.1 shows that if B is much larger than A and C, then the most likely occurrence is that
both A and C are contained in B.

Proposition 1.1.

a. If s2 ≤ 1
2 (
√

8s1 + 9− 1), then g(s1, s2) = s2.

b. For all s1, s2, we have g(s1, s2) ≤ 2s1. For 0 ≤ d ≤ 4,

g(s1, s2) ≥ 2s1 − d iff s2 ≥ 2
d+1 (s2

1 + s1)− d+2
2 . (1.2)
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Table 1.1: Values of g(15, s2)

s2 g(15, s2)
[1, 6] s2

[7, 10] s2 − 1
[11, 12] s2 − 2
[13, 15] s2 − 3
[16, 17] s2 − 4

18 13
[19, 21] 14
[22, 23] 15
[24, 26] 16
[27, 29] 17
[30, 33] 18
[34, 37] 19
[38, 42] 20
[43, 48] 21
[49, 55] 22
[56, 64] 23
[65, 76] 24
[77, 92] 25
[93, 117] 26
[118, 157] 27
[158, 238] 28
[239, 478] 29
≥ 479 30

Table 1.2: Cases in which equality does not hold in (1.1) when s1 = 15 and δ = 0

s2 g(15, s2) 2s1 + s2 + 3
2 −

√
4s2

1 + 4s1 + (s2 + 1
2 )2

6 6 5.84
10 9 8.78
15 12 11.85
17 13 12.91
19 14 13.89

Next we introduce the polynomials involved in the proof. We will usually replace s1

by x, both because it will occur as a variable in polynomials, and so that we can use the
notation xi = x(x − 1) · · · (x − i + 1). For a nonnegative integer d, define a polynomial
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Pd(x) of degree 2d by

Pd(x) =
d∑

i=0

(xi)2(xd−i)2

i!(d− i)!
.

We will prove the following key result in Section 2.

Lemma 1.1. When Pd+1(x) is divided by Pd(x), the quotient is 2
d+1x2 − 2d

d+1x + d
2 . Let

Rd(x) denote the remainder. If f is as in 1.1, then, if x and d are integers,

fx,s2(2x− d) ≥ fx,s2(2x− d− 1) iff s2 ≥ 2
d+1 (x2 + x)− d+2

2 + Rd(x)
Pd(x) . (1.3)

In Section 2, we will also prove the following result, the proof of which is less straight-
forward than that of Lemma 1.1.

Lemma 1.2. For d ≥ 5 and x > d/2, −0.5 < Rd(x)/Pd(x) < 0.

Now we can prove the main theorem.

Proof of Theorem 1.1. By Lemma 1.2, increasing d by 1 changes Rd(x)/Pd(x) by at most
1/2, and clearly it decreases 2

d+1 (x2 + x) − d+2
2 by more than 1/2. Thus, for x > d/2,

the RHS of (1.3) is a decreasing function of d, at least for integer values of d. This, with
(1.3), implies the unimodality part of the theorem, with maximum of fs1,s2(N) occurring
for N = 2s1 − d for the smallest integer d such that the RHS of (1.3) is satisfied.

We will show that Lemma 1.2 also implies that

[2s1 − d1] ≤ g(s1, s2) ≤ [2s1 − d1] + 1, (1.4)

where d1 satisfies
s2 = 2

d1+1 (s2
1 + s1)− d1+2

2 .

This value is d1 = −s2 − 3
2 +

√
4s2

1 + 4s1 + (s2 + 1
2 )2, yielding (1.1).

To prove (1.4), write d1 = d2− t, with 0 ≤ t < 1, and d2 an integer. Thus [2s1−d1] =
2s1 − d2. The RHS of (1.3) is satisfied using d2 since, using 1.2 at the last step,

s2 = 2
d1+1 (s2

1 + s1)− d1+2
2 ≥ 2

d2+1 (s2
1 + s1)− d2+2

2 ≥ 2
d2+1 (s2

1 + s1)− d2+2
2 + Rd2 (s1)

Pd2 (s1)
.

Therefore g(s1, s2) ≥ 2s1 − d2. We will now show that the RHS of (1.3) is not satisfied
using d = d2 − 2, which implies g(s1, s2) ≤ 2s1 − d2 + 1, hence completing the proof.

To see this, let h(d) = s2 −
(

2
d+1 (s2

1 + s1) − d+2
2

)
. Then h(d1) = 0 and d1 − (d2 −

2) > 1, hence h(d2 − 2) < − 1
2 . Therefore when d = d2 − 2, using Lemma 1.2 again,

s2 −
(

2
d+1 (s2

1 + s1)− d+2
2 + Rd(s1)

Pd(s1)
) < 0, as desired.

In terms of Rd/Pd, we give in 1.2 a precise result about whether δ = 0 or 1 in Theorem
1.1. The usefulness of this is limited by the complicated nature of Rd/Pd. In Section 3, we
discuss a very strong conjecture regarding Rd/Pd, which, if proved, would make Theorem
1.2 more useful. See Theorem 3.1. The evidence for this conjecture leads to remarkable
conjectural patterns among some rational functions. See Table 3.3 and Conjecture 3.2.
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Theorem 1.2. Let

d0 =
[√

4s2
1 + 4s1 + (s2 + 1

2 )2 − s2 − 3
2

]
.

Then (1.1) is true with δ = 1 iff

0 < 2
d0+1 (s2

1 + s1)− d0+2
2 − s2 ≤ −Rd0 (s1)

Pd0 (s1)
. (1.5)

Proof. Let d1 =
√

4s2
1 + 4s1 + (s2 + 1

2 )2 − s2 − 3
2 . Then s2 = 2

d1+1 (s2
1 + s1)− d1+2

2 .
If d1 is an integer, then d0 = d1 and the (> 0)-condition in (1.5) is not satisfied, and

the RHS of (1.3) is not satisfied when d = d1 − 1 by an argument similar to the proof of
1.1. Hence g(s1, s2) = 2s1 − d1, verifying Theorem 1.2 in this case.

If d1 is not an integer, then (1.1) is true with δ = 1 iff the RHS of (1.3) is satisfied
using d0 (since 2s1 − d0 = [2s1 − d1] + 1), but the RHS of (1.3) is exactly the ≤-part of
(1.5). Note that the (> 0)-part of (1.5) is certainly satisfied in this case, since the middle
expression in (1.5) equals 0 using d1, and is a strictly decreasing function of d.

2 Combinatorial proofs

In this section we prove Lemma 1.1, Proposition 1.1, and Lemma 1.2.

Proof of Lemma 1.1. Cancelling common factors in the binomial coefficients involving s2,
we find that the LHS of (1.3) is equivalent to

(s2 − 2x + d + 1)
∑ (x!)2(2x− d)!

(i!)2((2x− d− i)!)2(x− i)!(d + i− x)!

≥ (2x− d)
∑ (x!)2(2x− d− 1)!

(i!)2((2x− d− 1− i)!)2(x− i)!(d + 1 + i− x)!
.

Cancelling (2x− d)! and letting j = x− i, we obtain the equivalent condition

(s2 − 2x + d + 1)
∑ (x!)2

(x− j)!2(x + j − d)!2j!(d− j)!

≥
∑ (x!)2

(x− j)!2(x + j − d− 1)!2j!(d + 1− j)!
.

Multiplying both sides by (x!)2, the inequality becomes

(s2 − 2x + d + 1)
∑ (xj)2(xd−j)2

j!(d− j)!
≥

∑ (xj)2(xd+1−j)2

j!(d + 1− j)!
,

and this readily yields

fx,s2(2x− d) ≥ fx,s2(2x− d− 1) iff s2 ≥ Pd+1(x)
Pd(x)

+ 2x− d− 1. (2.1)
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Our next claim is that the leading terms of Pd(x) are given by

Pd(x) =
2d

d!
x2d − 2d−1

(d− 2)!
x2d−1 +

2d−3

3(d− 2)!
(3d2 − 5d + 4)x2d−2 + lower. (2.2)

The proof of (2.2) makes frequent use of

∑
1

i!(d−i)! = 2d

d! , (2.3)

which is true since each side is the coefficient of xd in ex · ex = e2x. Then (2.3) is exactly
the coefficient of x2d in Pd(x). The coefficient of x2d−1 is

−
d∑

i=0

i(i− 1) + (d− i)(d− i− 1)
i!(d− i)!

= −2
d∑

i=0

1
(i−2)!(d−i)! = − 2d−1

(d−2)! .

We have used symmetry in the first step. Note that the i(i− 1) comes as
i−1∑
j=0

2j.

The next coefficient of Pd(x) is obtained similarly, but involves much more work. The
coefficient of x2d−2 in (xi)2(xd−i)2 is

i−1∑

j=0

j2 +
d−i−1∑

j=0

j2 + 4
i−1∑

j=0

j

d−i−1∑

j=0

j +
∑

1≤j1<j2<i

4j1j2 +
∑

1≤j1<j2<d−i

4j1j2.

Noting that

2
∑

1≤j1<j2<i

j1j2 =
(i−1∑

j=1

j

)2

−
i−1∑

j=1

j2,

we obtain

−
i−1∑

j=0

j2 −
d−i−1∑

j=0

j2 + (i− 1)i(d− i− 1)(d− i) + 2
( (i−1)i

2

)2 + 2
( (d−i−1)(d−i)

2

)2

= − (i−1)i(2i−1)
6 − (d−i−1)(d−i)(2d−2i−1)

6 + (i− 1)i(d− i− 1)(d− i)

+ i2(i−1)2

2 + (d−i)2(d−i−1)2

2 .

Thus, using symmetry, the coefficient of x2d−2 in
d∑

i=0

(xi)2(xd−i)2

i!(d− i)!
is

∑
i(i−1)

(i−2)!(d−i)! +
∑

1
(i−2)!(d−i−2)! − 1

3

∑
2i−1

(i−2)!(d−i)! .
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Next note that

∑
i(i−1)

(i−2)!(d−i)! =
∑

(j+1)(j+2)
j!(d−2−j)!

= 2
2d−2

(d− 2)!
+ 3

2d−3

(d− 3)!
+

∑ (j − 1) + 1
(j − 1)!(d− 2− j)!

=
2d−1

(d− 2)!
+ 3

2d−3

(d− 3)!
+

2d−4

(d− 4)!
+

2d−3

(d− 3)!

=
2d−4

(d− 2)!
(8 + 8(d− 2) + (d− 2)(d− 3))

=
2d−4

(d− 2)!
(d2 + 3d− 2).

Also,

∑
2i−1

(i−2)!(d−i)! = 2
∑

1
(i−3)!(d−i)! + 3

∑
1

(i−2)!(d−i)! = 2d−2

(d−2)! (d− 2 + 3).

Hence the desired coefficient equals

2d−4

(d− 2)!
(d2 + 3d− 2) +

2d−4

(d− 4)!
− 2d−2

3(d− 2)!
(d + 1)

=
2d−3

3(d− 2)!
(3d2 − 5d + 4),

as asserted in (2.2).
Next we claim that

Pd+1(x)
Pd(x)

= 2
d+1x2 − 2d

d+1x + d
2 + Rd(x)

Pd(x) , (2.4)

with deg(Rd(x)) < 2d, the claim of the first part of Lemma 1.1. This can be discovered
by division of polynomials, using (2.2), but it is simpler just to verify that

(
2d

d! x
2d − 2d−1

(d−2)!x
2d−1 + 2d−3

3(d−2)! (3d2 − 5d + 4)x2d−2

)(
2

d+1x2 − 2d
d+1x + d

2

)

= 2d+1

(d+1)!x
2d+2 − 2d

(d−1)!x
2d+1 + 2d−2

3(d−1)! (3(d + 1)2 − 5(d + 1) + 4)x2d + lower.

Combining (2.1) and (2.4), we obtain (1.3).

Proof of Proposition 1.1. (a). One can easily show that the bracketed expression in (1.1) is
always less than s2 + 1, and equals s2 if and only if s2 satisfies the hypothesis of 1.1(a).
Noting that g(s1, s2) is ≥ the bracketed expression of (1.1) by Theorem 1.1, and is ≤ s2

since fs1,s2(s2 + 1) = 0, part (a) follows.
(b). The first statement is true since fs1,s2(2s1 + 1) = 0.
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After cancelling common factors in the numerator and denominator, one can compute
that

−Rd(x)
Pd(x)

=





0 d = 0, 1

(2x− 1)/(3(2x2 − 2x + 1)) d = 2

3(x− 1)/(4(x2 − x + 1)) d = 3

6(2x3 − 9x2 + 3x− 9)/(5(2x4 − 8x3 + 14x2 − 5x + 3)) d = 4

Thus (1.2) follows immediately from (1.3) if d = 0 or 1.

Note that (1.3) is only meaningful if 2x > d. If d = 2, then x ≥ 2. For such x,
−0.2 ≤ R2(x)/P2(x) < 0. Since, for integer x, 2

3 (x2 + x) − 2 is either an integer or an
integer plus 1/3, an integer s2 satisfies

s2 ≥ 2
3 (x2 + x)− 2 + R2(x)

P2(x) iff s2 ≥ 2
3 (x2 + x)− 2,

and so (1.2) follows from (1.3).

A similar argument works for d = 3 and 4. For d = 3, we have that 2
d+1 (x2 +x)− d+2

2

is an integer plus 1/2, and for x ≥ 2, −0.25 ≤ R3(x)/P3(x) < 0. If d = 4 and x > 3,
then 2

d+1 (x2 + x) − d+2
2 is an integer or an integer plus t with t ≥ 0.2, while −0.12 ≤

R4(x)/P4(x) < 0. If d = 4 and x = 3, (1.3) says s2 ≥ 2.8 − 0.55, while the hypothesis
says s2 ≥ 2.8. These are, of course, equivalent.

Proof of Lemma 1.2. We begin by removing common factors in Pd(x) and Pd+1(x). Since
parity of d plays a role, we let d = 2b + ε with ε ∈ {0, 1}. When considering R2b+ε(x),
we let, for δ ∈ {0, 1},

P̃2b+ε+δ(x) :=
P2b+ε+δ(x)∏b−1+ε
i=0 (x− i)2

.

Note that P̃2b+ε+1(x)/P̃2b+ε(x) has the same quotient as P2b+ε+1(x)/P2b+ε(x), while
its remainder R̃2b+ε(x) satisfies R̃2b+ε(x) = R2b+ε(x)/

∏b−1+ε
i=0 (x − i)2, and hence

R̃2b+ε(x)/P̃2b+ε(x) = R2b+ε(x)/P2b+ε(x).

To prove the lemma, we will prove

1. P̃2b+ε(x + b) > 0 for x > 0,

2. R̃2b+ε(x + b) < 0 for x > 0, and

3. R̃2b+ε(x + b) + 1
2 P̃2b+ε(x + b) > 0 for x > 0.
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We have, with ci,b = 1 unless i = b, while cb,b = 1
2 ,

(2b+ε+δ)!
2 P̃2b+ε+δ(x + b)

=





b∑
i=0

ci,b

(
2b
i

) b−i∏
j=1

(x− j + 1)2
b∏

j=b−i+1

(x + j)2 ε + δ = 0

b∑
i=0

(
2b+1

i

) b−i∏
j=0

(x− j)2
b∏

j=b−i+1

(x + j)2 ε + δ = 1

b+1∑
i=0

ci,b+1

(
2b+2

i

) b−i∏
j=0

(x− j − 1)2
b∏

j=b−i+1

(x + j)2 ε + δ = 2.

Part (1) is true since P̃2b+ε(x + b) is a sum of nonnegative terms including the term
b∏

j=1−ε

(x + j)2, which is positive for x > 0.

Next we consider (2) with ε = 1. We compute q2b+1(x + b) = 1
b+1 (x2 − x) + 1

2 . We
have

(2b+2)!
2 R̃2b+1(x + b) = (2b+2)!

2 (P̃2b+2(x + b)− q2b+1(x + b)P̃2b+1(x + b))

=
b∑

i=0

(b−i∏

j=1

(x− j)2
b∏

j=b−i+1

(x + j)2
)

Fi,

where

Fi =
(
2b+2

i

)
(x− b + i− 1)2 − (2b + 2)

(
2b+1

i

)
( 1

b+1 (x2 − x) + 1
2 ) + 1

2

(
2b+2
b+1

)
δi,bx

2

=
((

2b+1
i−1

)− (
2b+1

i

)
+ δi,b

(
2b+1

b

))
x2 − 2

((
2b+1
i−1

)
+ (b− i)

(
2b+2

i

))
x

+
(
2b+2

i

)
(b + 1− i)2 − (b + 1)

(
2b+1

i

)

=





(
2b+1
i−1

)
(x− (b + 1− i))2 − (

2b+1
i

)
(x + b− i)2

+
(
2b+1

i

)
(2(b− i)2 + b− 2i) i < b

(
2b+1
b−1

)
(x− 1)2 − b

(
2b+1

b

)
i = b.

Here δi,b is the Kronecker delta.
The first term of (the last form of) Fi and second term of Fi−1, when multiplied by the

appropriate double products, cancel. Thus we obtain

(2b+2)!
2 R̃2b+1(x + b) (2.5)

=
b−1∑

i=0

(b−i∏

j=1

(x− j)2
b∏

j=b−i+1

(x + j)2
)(

2b+1
i

)
(2(b− i)2 + b− 2i)

−
( b∏

j=1

(x + j)2
)

b
(
2b+1

b

)
.
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One can easily prove that

b−1∑

i=0

(
2b+1

i

)
(2(b− i)2 + b− 2i)− b

(
2b+1

b

)
= 0.

Also 2(b− i)2 + b− 2i > 0 iff i < b + 1
2 − 1

2

√
2b + 1. Note also that the double products

are increasing with i for x > 0. Thus our expression for (2b+2)!
2 R̃2b+1(x + b) is of the

form
b∑

i=0

αiβi with 0 ≤ α1 ≤ · · · < αb,
∑

βi = 0, and βi > 0 iff i < i0. Such a sum is

negative.
The proof for (2) when ε = 0 is extremely similar. We have q2b(x+b) = 2

2b+1x2+ b
2b+1 .

Then

(2b+1)!
2 R̃2b(x + b) =

b∑

i=0

b−i∏

j=1

(x− j + 1)2
b∏

j=b−i+1

(x + j)2 · Fi,

where now

Fi =
(
2b+1

i

)
(x− b + i)2 − ci,b

(
2b
i

)
(2x2 + b)

=





(
2b

i−1

)
(x− (b− i))2 − (

2b
i

)
(x + b− i)2 +

(
2b
i

)
(2(b− i)2 − b) i < b

(
2b

b−1

)
x2 − b

(
2b−1
b−1

)
i = b.

The rest of the argument follows exactly the same steps as in the last paragraph of the above
proof of the case ε = 1, using

∑b−1
i=0

(
2b
i

)
(2(b− i)2 − b)− b

(
2b−1
b−1

)
= 0.

The proof of (3) is essentially the same, except that we are subtracting 1/2 from
q2b+ε(x + b). The effect, when ε = 1, is to add (b + 1)

(
2b+1

i

)
to Fi. The replacement

for (2.5) is

(2b+2)!
2 (R̃2b+1(x + b) + 1

2 P̃2b+1(x + b))

=
b−1∑

i=0

(b−i∏

j=1

(x− j)2
b∏

j=b−i+1

(x + j)2
)(

2b+1
i

)
(2(b− i)2 + 2b− 2i + 1)

+
( b∏

j=1

(x + j)2
)(

2b+1
b

)

which is clearly positive for x > 0. The proof when ε = 0 is similar.

3 Conjectures about Rd(x)/Pd(x)

In Theorem 1.2, we determined the precise value of our focal function g(s1, s2) in
terms of Rd(s1)/Pd(s1). In order to make this result useful, we need better information
about the family of functions Rd(x)/Pd(x). In this section, we present several conjectures
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about this family of functions, one of which is supported by remarkable patterns. See Table
3.3 and Conjecture 3.2. We also discuss their implications.

We now state the simplest of these conjectures.

Conjecture 3.1. If d ≥ 5 and x ≥ 1
2 (d +

√
d + 2), then −Rd(x)

Pd(x) ≥ .995(d−2)
2x+d−2 .

The implication of this conjecture is given by the following theorem.

Theorem 3.1. Assume Conjecture 3.1 and s2 > 1
2 (
√

8s1 + 9− 1). Let

d0 =
[√

4s2
1 + 4s1 + (s2 + 1

2 )2 − s2 − 3
2

]
≥ 5.

Then (1.1) is true with δ = 1 if

0 < 2
d0+1 (s2

1 + s1)− d0+2
2 − s2 ≤ 0.995(d0−2)

2s1+d0−2 . (3.1)

For s1 ≤ 38, the only cases in which (1.1) is true with δ = 1 which are missed by this
theorem are (s1, s2) = (6, 4), (18, 56), (36, 16), and (38, 155). The significance of the
0.995 in 3.1 is that it is, to three decimal places, the largest number for which the inequality
appears to be true.

Proof of Theorem 3.1. Let d =
√

4s2
1 + 4s1 + (s2 + 1

2 )2 − s2 − 3
2 . The theorem is vac-

uously true if d0 = d because 2
d+1 (s2

1 + s1) − d+2
2 − s2 = 0. So we assume d is not an

integer. Then 2s1 − d0 = [2s1 − d] + 1, and so, using (1.3), the assertion that (1.1) is true
with δ = 1 can be stated as

s2 ≥ 2
d0+1 (s2

1 + s1)− d0+2
2 + Rd0 (s1)

Pd0 (s1)
.

This will follow from (3.1) and our assumption of Conjecture 3.1 once we know that s1 ≥
1
2 (d0 +

√
d0 + 2).

Since
√

4s2
1 + 4s1 + (s2 + 1

2 )2 − s2 − 3
2 is a decreasing function of s2, and d0 < d, it

suffices to prove s1 ≥ 1
2 (d +

√
d + 2) if

d =
√

4s2
1 + 4s1 + ( 1

2

√
8s1 + 9)2 − 1

2

√
8s1 + 9− 1

= 2s1 + 1
2 −

√
2s1 + 9

4 .

Solving the latter equation for s1 yields exactly s1 = 1
2 (d +

√
d + 2).

Extensive Maple calculation led the author to expect that, for d ≥ 5 and x > d/2,

Rd(x)
Pd(x)

≈ −(d− 2)
2x + d− 2

. (3.2)
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To understand how good is the approximation (3.2), we consider the ratio of the two
sides, using the reduced versions R̃ and P̃ . As this will be close to 1, we study

Qd(x) := 1− R̃d(x)/P̃d(x)
−(d− 2)/(2x + d− 2)

=
(d− 2)P̃d(x) + (P̃d+1(x)− qd(x)P̃d(x))(2x + d− 2)

(d− 2)P̃d(x)
, (3.3)

where qd(x) = 2
d+1x2 − 2d

d+1x + d
2 is the quotient in (2.4). We would like to prove that

Qd(x) ≈ 0 in some sense, when x > d/2.

Similarly to the methods in deriving (2.2), we can show that

lim
x→±∞

Qd(x) = −2
(d+1)(d−2) . (3.4)

To see this, note that the numerator and denominator of (3.3) are both polynomials of degree
2[d

2 ]. The desired limit in (3.4) is the ratio of their leading coefficients. We omit the details
in this computation.

We begin by considering Q25(x). It is a ratio of two polynomials of degree 24. Maple
computes that the derivative of Q25(x) is 0 only at x ≈ 4.0409 and 60.50336. Moreover,
Maple plots the graph of Q25(x), which turns out to look something like the rough sketch
in the top half of Figure 3.1. This sketch is not at all to scale. We are particularly interested
in the values for x ≥ 13. As x increases from 13 to 60.5, Q25(x) decreases from 0.01672
to −0.006867.



14 Donald M. Davis

Figure 3.1.

The amazing observation is that, for all odd d, Qd(x) apparently has a form very similar
to that in the top half of Figure 3.1, with only one local maximum and one local minimum,
which are the absolute maximum and minimum. Note that Qd(x) is a ratio of two polyno-
mials of degree d− 1, yet it apparently has this simple form for all odd d.

In Table 3.3, we tabulate for odd d satisfying 5 ≤ d ≤ 61, the values, xmax and xmin, of
x where the derivative Q′d(x) equals 0, the values of Qd(x) at these points, which will be
absolute maximum and minimum values, and the limiting value Qlim of Q(x) as x → ±∞.
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Table 3.3: Max, min, and lim of Qd(x) when d is odd

d xmax Qd(xmax) xmin Qd(xmin) Qlim

5 0.6874697648 3.069437405 10.48133802 −0.1360199330 −0.1111111111
7 1.044428415 4.216907295 15.48679761 −0.06528852351 −0.05000000000
9 1.371314912 5.374255987 20.49141428 −0.03966514187 −0.02857142857
11 1.706180162 6.540442715 25.49465519 −0.02724322575 −0.01851851852
13 2.040065994 7.712042960 30.49698936 −0.02018382313 −0.01298701299
15 2.373641870 8.886960397 35.49873537 −0.01574295269 −0.009615384615
17 2.707177063 10.06413875 40.50008573 −0.01274397486 −0.007407407407
19 3.040658416 11.24291343 45.50115931 −0.01060966757 −0.005882352941
21 3.374105921 12.42285407 50.50203244 −0.009028116216 −0.004784688995
23 3.707530371 13.60364584 55.50275603 −0.007817967242 −0.003968253968
25 4.040938032 14.78513590 60.50336525 −0.006867535404 −0.003344481605
27 4.374333149 15.96714209 65.50388509 −0.006104769071 −0.002857142857
29 4.707718646 17.14958715 70.50433380 −0.005481366771 −0.002469135802
31 5.041096602 18.33236558 75.50472499 −0.004963889096 −0.002155172414
33 5.374468538 19.51542724 80.50506904 −0.004528540629 −0.001897533207
35 5.707835592 20.69872494 85.50537395 −0.004157982647 −0.001683501683
37 6.041198635 21.88222143 90.50564603 −0.003839317503 −0.001503759398
39 6.374558339 23.06588687 95.50589030 −0.003562775224 −0.001351351351
41 6.707915237 24.24969671 100.5061108 −0.003320834926 −0.001221001221
43 7.041269754 25.43363246 105.5063109 −0.003107623257 −0.001108647450
45 7.374622231 26.61767652 110.5064932 −0.002918493910 −0.00101112234
47 7.707972951 27.80181575 115.5066600 −0.002749728194 −0.000925925926
49 8.041322143 28.98603869 120.5068132 −0.002598318198 −0.00085106383
51 8.374670000 30.17033570 125.5069545 −0.002461807379 −0.00078492936
53 8.708016684 31.35469854 130.5070851 −0.002338171717 −0.00072621641
55 9.041362332 32.53912015 135.5072062 −0.002225729996 −0.00067385445
57 9.374707059 33.72359445 140.5073188 −0.002123075281 −0.00062695925
59 9.708050964 34.90811616 145.5074238 −0.002029022010 −0.00058479532
61 10.041394134 36.09268071 150.5075219 −0.001942564749 −0.00054674686
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When d is even, the functions Qd fall into almost the same pattern, except that they
have an additional wiggle between d

2 and d
2 +1. For example, a schematic graph of Q24(x)

is given in the bottom half of Figure 3.1. Note that the graph is drawn wildly out of scale.
Similarly to Q25, it has an absolute maximum at x = 3.87 and an absolute minimum
at x = 58.003. But instead of decreasing steadily between these, it has an additional
single local minimum and local maximum which occur between x = 12 and 13. Maple
calculations strongly suggest that for all even d, the graph of Qd will have a form similar to
that in the bottom half of Figure 3.1, and that the positions and values of the maxima and
minima will have patterns extremely similar to those for odd d in Table 3.3. We will not
pursue those here, as we prefer to concentrate on the simpler situation when d is odd.

The reader will immediately be struck by the pattern in Table 3.3, which seems espe-
cially striking for xmin(d). We have extended these calculations through d = 151, using
80 digits of accuracy in Maple. Then for k = 3, . . . , 10, we have found the real numbers
c0, . . . , ck which satisfy

xmin(d) = 5
2d− 2 +

k∑

i=0

ci

(d− 1)i
, d = 51, 61, . . . , 51 + 10k. (3.5)

Each ci seems to stabilize as k increases in (3.5). Moreover, using the formula (3.5) for
xmin(d) derived using just a few values of d gives agreement with computed values of
xmin(d) for all odd values of d to an increasing number of decimal places as k increases. In
addition, we have, with k = 10, c0 equals, to 19 decimal places, .0104166666666666666 ≈
1/96.

Conjecture 3.2. For odd d ≥ 5, there are numbers xmax and xmin such that Qd(x) is
decreasing for xmax ≤ x ≤ xmin, and increasing elsewhere. There are real numbers ci for
i ≥ 1 such that

xmin(d) = 5
2d− 2 + 1

96 +
∞∑

i=1

ci

(d− 1)i
.

The initial digits of c1, . . . , c6 are −.176504629629629, .16562740498, .20004439,
.291872, .3215, and .28.

The 3-digit repetend in c1 leads one to guess that c1 = −305/123 and that the ci are all
rational numbers.

We have performed similar analyses for xmax and Qd(xmin). The initial terms are ap-
parently xmax = d

6 − 1
8 − 1

64(d−1) and Qd(xmin) = − 1
12(d−1) . The series for Qd(xmin)

seems to converge more slowly than the others.
We wish to emphasize that we cannot prove that Qd(x) for odd d has a unique maxi-

mum and minimum. This is all based on Maple calculations obtained by setting its deriva-
tive equal to 0, where Qd is a ratio of two polynomials of degree d− 1.
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Table 3.4: Evidence for Conjecture 3.1

d Qd(1
2 (d +

√
d + 2))

5 −.08632297
6 −.0563567189
7 −.031250000
8 −.021426047
9 −.012806353

10 −.008467636
11 −.004769088
12 −.002577860
13 −.000764689
14 0.0004262575
15 0.001391319
16 0.002066212
17 0.002604694
18 0.002994356
19 0.003300396
20 0.00352431
21 0.00369610
22 0.00382002
23 0.00391095
24 0.00397283
25 0.00401357
26 0.00403620
27 0.004045174
28 0.004042664
29 0.0040313148
30 0.004012644
31 0.003988285

Conjecture 3.1 is equivalent to saying that Qd(x) ≤ .005 for x ≥ 1
2 (d +

√
d + 2).

This latter statement would follow from Conjecture 3.2 expanded to include a formula for
Qd(xmin) and to include even values of d, together with a proof that Qd( 1

2 (d+
√

d + 2)) ≤
.005. Some justification for this conjecture is given by Table 3.4, which also shows why
we use .005.

There is one value of Qd(x), occurring just before the crucial range x > d/2, for which
the value of Qd(x) is easily determined. This is given in the following result, whose easy
proof we omit.
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Proposition 3.1. If d is odd, then Qd(d−1
2 ) = 1. If d is even, then Qd(d

2 ) = −2
(d+1)(d−2) .

4 The general case (s1 and s3 not necessarily equal)

In this section, we present our analysis of the general case, which is similar to, but not
nearly so thoroughly developed as, the case s1 = s3 considered in the preceding sections.

For arbitrary s1, s2, and s3, now let

fs1,s2,s3(N) :=
(
s2
N

) ∑

i

(
s1
i

)(
s3

N−i

)(
N
i

)
.

The argument of Walkup mentioned in the introduction implies that this fs1,s2,s3 is a uni-
modal function of N . We can find the value of N at which f achieves a maximum by an
analysis extremely similar to that employed in the case s1 = s3.

The formula for f is symmetric in s1 and s3. We write s1 = x and s3 = x+∆, ∆ ≥ 0.
Let d = s1 + s3 −N , and

P∆,d(x) =
∑

j!(d− j)!
(
x+∆

j

)2( x
d−j

)2 =
∑ ((x + ∆)j)2(xd−j)2

j!(d− j)!
.

Generalizing (2.4), which is the case ∆ = 0, we have

P∆,d+1

P∆,d
=

2x2 − 2(d−∆)x + 1
2d(d + 1− 2∆) + ∆2

d + 1
+

R∆,d(x)
P∆,d(x)

. (4.1)

The easy generalization of (1.3) is

fx,s2,x+∆(2x + ∆− d) ≥ fx,s2,x+∆(2x + ∆− d− 1)

iff

s2 ≥ 2x2+2(∆+1)x+∆2+∆
d+1 − d+2

2 + R∆,d(x)
P∆,d(x) , (4.2)

where R∆,d(x) is the remainder in (4.1). If we assume this remainder is negligible, then
imposing equality in (4.2) and recalling s1 = x and s3 = x + ∆ yields

d =
√

2s2
1 + 2s1 + 2s2

3 + 2s3 + (s2 + 1
2 )2 − s2 − 3

2

and
N = s1 + s2 + s3 + 3

2 −
√

2s2
1 + 2s1 + 2s2

3 + 2s3 + (s2 + 1
2 )2, (4.3)

as nice a generalization of 1.2 and (1.1) as one could possibly desire. This yields
√

2s2
1 + 2s1 + 2s2

3 + 2s3 + (s2 + 1
2 )2 − 3

2

as the most likely number of elements in the union, assuming remainder terms are negligi-
ble. More analysis of the remainder terms is required.

We have seen that when s1 = s3, the remainder terms can apparently only affect the
value of N by 1. In Table 4.5 we present data when s3 = s1 + 8, indicating rather good
agreement. Here “actual N” is where the maximum actually occurs.
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Table 4.5: Comparison of actual N and formula N

s1 s3 s2 actual N (4.3)
4 12 4 4 2.20621862
4 12 5 4 2.94878520
4 12 6 5 3.64427035
4 12 7 6 4.29480265
4 12 8 6 4.90267008
4 12 9 7 5.47025916
4 12 10 7 6.00000000
4 12 11 7 6.49431892
4 12 12 8 6.95559936
4 12 13 8 7.38615134
4 12 14 9 7.78818860
4 12 15 9 8.16381295
4 12 16 9 8.51500450
4 12 17 9 8.84361678
4 12 18 10 9.15137575
4 12 19 10 9.43988174
4 12 20 10 9.71061354

12 20 4 4 3.26186337
12 20 5 5 4.11613751
12 20 6 6 4.94207761
12 20 7 6 5.74010932
12 20 8 7 6.51071593
12 20 9 8 7.25443290
12 20 10 9 7.97184215
12 20 11 9 8.66356603
12 20 12 10 9.33026127
12 20 13 11 9.97261301
12 20 14 11 10.59132893
12 20 15 12 11.18713359
12 20 16 12 11.76076312
12 20 17 13 12.31296031
12 20 18 13 12.84446999
12 20 19 14 13.35603495
12 20 20 14 13.84839221
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