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Abstract. Let f(n) =
∑

k

(
n
k

)−1
. First, we show that f : N →

Qp is nowhere continuous in the p-adic topology. If x is a p-adic
integer, we say that f(x) is p-definable if lim f(xj) exists in Qp,
where xj denotes the jth partial sum for x. We prove that f(−1)
is p-definable for all primes p, and if p is odd, then −1 is the only
element of Zp−N for which f(x) is p-definable. For p = 2, we show
that if k is a positive integer, then f(−k − 1) is not 2-definable,
but that if the 1’s in the binary expansion of x are eventually very
sparse, then f(x) is 2-definable.

Some of our proofs require that p satisfy one of two conditions.
There are three small primes which do not satisfy the relevant con-
dition, but our theorems can be proved directly for these primes.
No other prime less than 100,000,000 fails to satisfy the conditions.

1. Statement of results

Let N ⊂ Zp ⊂ Qp denote the natural numbers (including 0), p-adic integers, and

p-adic numbers, respectively, with metric dp(x, y) = p−νp(x−y). Here and throughout,

νp(−) denotes the exponent of p in a rational or p-adic number.

The function f : N→ Qp defined by

f(n) =
n∑
k=0

(
n
k

)−1
has been studied in [2], [3], [6], and [7]. Throughout this paper, f will always refer to

this function. Cursory calculations suggested that perhaps this f might be continuous

in the 2-adic topology and extendable over Z2. For example, Maple computes

Proposition 1.1. If ν2(m+ 2) = ν2(n+ 2) ≥ 4 and m,n < 8000, then

ν2(f(m)− f(n)) = ν2(m− n) + 1− 2ν2(m+ 2).
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If n ≡ 14 mod 16 and n < 70, 000, then ν2(f(n)) = 1− ν2(n+ 2).

If this persisted without the bounds, then f would extend to a continuous function

on Z2 ∩ {x : x ≡ 14 (16), x 6= −2}. However these bounds are not large enough to

reveal the problems that can occur.

For technical reasons, some of our results involve the notion of Wieferich primes.

Recall that a Wieferich prime p is one for which p2 divides 2p−1− 1. The only known

Wieferich primes are 1093 and 3511. Let LW denote the set of Wieferich primes

greater than 3511. The name of this set refers to “large Wieferich.” As of May 2012,

it was known that LW contains no integers less than 17 · 1015.([4])

Others of our results require that p satisfies that for all n such that 1 ≤ n ≤ p− 2,

νp(f(n)) ≤ 1. We will call such primes good. Paul Zimmermann has tested all p < 108

and found that in this range there is only one case, p = 23 and n = 12, in which

νp(f(n)) > 1, with ν23(f(12)) = 2. Thus all primes less than 100, 000, 000 are good

except for p = 23.

We will prove the following theorem in Section 2. Its corollary is the first of our

main results.

Theorem 1.2. a. If k ≥ 1 and e > max{1, j + ν2(j) : 0 < j < k}, then

ν2(f(2e − k − 1)) = k + ν2(k)− e.

b. If p is an odd prime which is not a Wieferich prime, k ≥ 1, and

e > max{1, 1 + νp(j) : 0 < j < k}, then

(1.3) νp(f(pe − k − 1)) = νp(k) + 1− e.

c. If p = 1093 or 3511, k ≥ 1, and e > max{1, 2 + νp(j) : 0 < j <

k}, then

(1.4) νp(f(pe − k − 1)) = νp(k) + 2− e.

Corollary 1.5. If p 6∈ LW , then the function f : N→ Qp is nowhere continuous (in

the p-adic topology).

Proof. We give the proof when p = 2. The proof when p is odd is extremely similar,

using (1.3) and (1.4).
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Let n ∈ N, and let ε > 0 be given. We will show there exists m ∈ N such that

d2(m,n) < ε and d2(f(m), f(n)) > 1. Choose e so that 2−e < ε and 2e > n + 1. By

Theorem 1.2, if L > max{j + ν2(j) : 0 < j < 2e − n− 1}, then

ν2(f(2L − (2e − n))) = 2e − n− 1 + ν2(n+ 1)− L.

Choose L large enough that this is less than ν2(f(n)) and less than 0. Call this value

−r with r ≥ 1. Then ν2(f(2L − (2e − n))− f(n)) = −r and so

d2(f(2L − (2e − n)), f(n)) = 2r ≥ 2,

while d2(2
L− (2e−n), n) = 2−e < ε. So m = 2L− (2e−n) has the desired properties.

�

Since N is dense in Zp, this of course implies that f cannot be extended to a function

f that is continuous at even one point of Zp. We state this, but omit the elementary

and standard proof.

Corollary 1.6. If p 6∈ LW and x ∈ Zp, it is impossible to define f(x) so that for all

sequences 〈ni〉 in N such that ni → x we have f(ni)→ f(x).

We remark that the summand functions fk(x) :=
(
x
k

)−1
= k!

x(x−1)···(x−(k−1)) are

continuous on Zp − {0, . . . , k − 1}.
Although f(x) cannot be defined so that it works nicely for all sequences of positive

integers approaching x, it might happen that it can be defined so that it is the limit

of the most natural sequence of positive integers approaching x, namely the finite

partial sums.

Definition 1.7. For a p-adic integer x =
∞∑
i=0

εip
i with εi ∈ {0, . . . , p − 1}, let xn =

n∑
i=0

εip
i. Say f(x) is p-definable if lim f(xn) exists in Qp. If so, define f(x) =

lim f(xn).

The following result points to a similarity and a difference between the prime 2 and

the odd primes.

Theorem 1.8. For all primes p, f(−1) is p-definable. If p = 2, then f(−1) = 0,

while if p is odd, then f(−1) ≡ 1 mod p.
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Proof. We will prove in Proposition 4.7 that ν2(f(2e − 1) ≥ 2e, from which the

result for p = 2 is immediate since 2e − 1 = (−1)e−1 in the notation of Definition

1.7. Now let p be an odd prime. We will prove in Proposition 2.6 that, for e ≥ 1,

νp(f(pe − 1) − f(pe−1 − 1)) ≥ e. Thus 〈f(pe − 1)〉 is a Cauchy sequence, and since

pe−1 = (−1)e−1, we deduce that f(−1) is p-definable. Since f(p0−1) = 1, we obtain

f(pe − 1) ≡ 1 mod p for all e ≥ 0. �

We show now that, for all primes p 6∈ LW , f(x) is not p-definable if x is an integer

less than −1.

Theorem 1.9. Let k be a positive integer and p 6∈ LW . Then f(−k − 1) is not

p-definable.

Proof. We give the argument when p is odd. The argument when p = 2 is extremely

similar. Let x = −k − 1. Let e > max{1, δ + νp(j) : 0 < j < k}, where δ = 1 if

p is not Wieferich, and δ = 2 if p ∈ {1093, 3511}. Then xe−1 = pe − k − 1 and, by

Theorem 1.2, νp(f(xe−1)) = δ + νp(k)− e. Hence, as e→∞,

dp(f(xe−1), 0) = pe−δ−ν(k) →∞.

Thus 〈f(xn)〉 is not a Cauchy sequence. �

The following result applies only when p is odd; the analogous statement is not

true when p = 2. It says that −1 is the only element of Zp − N for which f(x) is

p-definable when p is a good odd prime or 23. As noted earlier, this includes all odd

primes less than 100,000,000.

Theorem 1.10. If p is a good odd prime or p = 23 and x ∈ Zp − {−1, 0, 1, 2, . . .},
then f(x) is not p-definable.

Proof. We will prove in Section 3 that if p is a good odd prime or 23 and 1 ≤ c ≤ p−1

and 0 ≤ i < pe − 1, then

(1.11) νp(f(c · pe + i)− f(i)) ≤ 0.

If x is as in the theorem, then there exist infinitely many e for which (1.11) applies

directly to say νp(f(xe) − f(xe−1)) ≤ 0. Thus dp(f(xe), f(xe−1)) ≥ 1 and so 〈f(xn)〉
is not a Cauchy sequence. �
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Our other main theorem says that f(x) is 2-definable for those x whose infinitely

many 1’s are eventually very sparse. This is a major difference between the prime 2

and the odd primes. This theorem will be proved in Section 4.

Theorem 1.12. Suppose x =
∞∑
i=0

2ei, e0 < e1 < · · · , and there exists a positive

integer N such that ek > k +
k−1∑
i=0

2ei for all k ≥ N . Then f(x) is 2-definable.

For example,

f(1 + 23 + 212 + 2212+13 + 224109+4110 + · · · )

is 2-definable.

Since negative integers are the 2-adic integers with only a finite number of 0’s in

their binary expansion, Theorems 1.9 and 1.12 tell whether f(x) is 2-definable for x

at two extremes. In Theorem 4.10 we describe 2-adic integers x with infinitely many

0’s which are eventually very sparse for which f(x) is not 2-definable. It would be

interesting to know more completely which 2-adic integers x have the property that

f(x) is 2-definable.

2. Some p-exponents of f(n)

In this section, we prove Theorem 1.2 and a result, Proposition 2.6, which was used

above and will be used again later. We begin the proof of Theorem 1.2 with a special

case.

Lemma 2.1. Let p be a prime not in LW , and e ≥ 2. Then

νp(f(pe − 2)) =

{
−(e− 2) p ∈ {1093, 3511}
−(e− 1) otherwise.
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Proof. Let αp(n) denote the sum of the coefficients in the base-p expansion of n. For

0 ≤ i ≤ pe − 2,

νp
(
pe−2
i

)
= 1

p−1

(
αp(i) + αp(p

e − 2− i)− αp(pe − 2)
)

= 1
p−1

(
αp(i) + (p− 1)e− αp(i+ 1)− ((p− 1)e− 1)

)
= 1

p−1

(
(αp(i+ 1)− 1 + (p− 1)νp(i+ 1))

+(p− 1)e− αp(i+ 1)− (p− 1)e+ 1
)

= νp(i+ 1).

This equals e− 1 when i = c · pe−1− 1 for 1 ≤ c ≤ p− 1 , and is less than e− 1 for all

other relevant i. The result when p = 2 follows since there is a single term of smallest

exponent in the sum which defines f(2e − 2).

Now let p be odd. We will show that for 1 ≤ c ≤ p− 1

(2.2)

(
pe − 2

c · pe−1 − 1

)
/pe−1 ≡ (−1)c+1c mod p.

Then we obtain

f(pe − 2) =
1

pe−1
(p−1∑
c=1

(−1)c+11

c
+ Ap) +

∑
j<e−1

1

pj
Aj,

where A,Aj ∈ Zp. By a result of Eisenstein ([1])

(2.3)

p−1∑
c=1

(−1)c+11

c
≡ 2p − 2

p
mod p.

If p is not a Wieferich prime, then νp(
2p−2
p

) = 0 and so νp(f(pe − 2)) = −(e− 1).

To prove (2.2), we note that the LHS equals

(pe − 2) · · · (pe − cpe−1)
2 · · · (cpe−1 − 1)pe−1

≡ −2

2
· · · −(cpe−1 − 1)

cpe−1 − 1
· (−c)

mod p. There are cpe−1 − 2 of the fractions equal to −1, which when multiplied

together and by −c give the desired (−1)c+1c.

If p = 1093 or 3511, we consider pe−1f(pe − 2) mod p2. This equals

2pe−1
(p2−1)/2∑
i=1

(
pe − 2

i · pe−2 − 1

)−1
.



FOR WHICH p-ADIC INTEGERS x CAN
∑
k

(
x
k

)−1
BE DEFINED? 7

Similarly to the above argument for (2.2), we can show that

pe−1(
pe−2

i·pe−2−1

) ≡ (−1)i−[
i
p
]+1 p

i
(
p−1
[i/p]

) mod p2.

Maple computes

(p2−1)/2∑
i=1

(−1)i−[
i
p
]+1 p

i
(
p−1
[i/p]

) mod p2

to equal 487·1093 when p = 1093 and 51·3511 if p = 3511. Thus νp(p
e−1f(pe−2)) = 1

when p ∈ {1093, 3511}. �

Proof of Theorem 1.2. The recursive formula

(2.4) f(n) =
n+ 1

2n
f(n− 1) + 1

was proved in [2]. We invert it to obtain

(2.5) f(n− 1) = (f(n)− 1)
2n

n+ 1
.

Our proof of Theorem 1.2 is by induction on k, with Lemma 2.1 being the case

k = 1. Assume the theorem has been proved for k − 1. Let

n =


n p = 2

1 p odd, not Wieferich

2 p ∈ {1093, 3511}.
Then, with νp(u) = νp(u

′) = 0,

f(pe − k)− 1 =
u · pνp(k−1)+k−1

pe
− 1 = u′ · pνp(k−1)+k−1−e,

since e > νp(k − 1) + k − 1. Now, using (2.5),

f(pe − k − 1) = u′ · pνp(k−1)+k−1−e · 2(pe − k)

pe − k + 1
= u′′ · pνp(k)+k−e,

with νp(u
′′) = 0, since νp(p

e − k) = νp(k) and νp(p
e − k + 1) = νp(k − 1). �

The following proposition was used in the proof of 1.8 and will be used in the proof

of 3.2.

Proposition 2.6. For any odd prime p and e ≥ 1 and 1 ≤ c ≤ p− 1,

f(cpe − 1)− f(cpe−1 − 1) ≡ c(1− 2p−1)pe−1f(cpe−1 − 1) mod pe+1.
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Proof. For any 1 ≤ j ≤ (p− 1)/2, we have(
cpe − 1

ip+ 2j − 1

)−1
+

(
cpe − 1

ip+ 2j

)−1
=

(
cpe

ip+ 2j

)/((
cpe − 1

ip+ 2j − 1

)(
cpe − 1

ip+ 2j

))
=

cpe

ip+ 2j

/(
cpe − 1

ip+ 2j

)
≡ cpe

2j

/((
cpe−1 − 1

i

)(
p− 1

2j

))
mod pe+1.

The case c = 1, i = 0 says(
pe − 1

2j − 1

)−1
+

(
pe − 1

2j

)−1
≡ pe

2j

/(
p− 1

2j

)
mod pe+1.

Combining these, we obtain(
cpe − 1

ip+ 2j − 1

)−1
+

(
cpe − 1

ip+ 2j

)−1
≡ c

(
cpe−1 − 1

i

)−1((pe − 1

2j − 1

)−1
+

(
pe − 1

2j

)−1)
mod pe+1.

Summing this over j gives
p−1∑
k=1

(
cpe − 1

ip+ k

)−1
≡ c

(
cpe−1 − 1

i

)−1 p−1∑
k=1

(
pe − 1

k

)−1
≡ c(1− 2p−1)pe−1

(
cpe−1 − 1

i

)−1
mod pe+1,

using Lemma 2.9 at the last step. Now sum over i to obtain

(2.7)
∑

k 6≡0 (p)

(
cpe − 1

k

)−1
≡ c(1− 2p−1)pe−1f(cpe−1 − 1) mod pe+1.

Summing
(
cpe−1
pj

)−1 − (cpe−1−1
j

)−1
over j gives∑

k≡0 (p)

(
cpe − 1

k

)−1
− f(cpe−1 − 1) ≡ 0 mod pe+2

by Lemma 2.8. Add this to (2.7) to obtain the claim of the proposition. �

The above proof required the following lemmas.

Lemma 2.8. If 1 < u < p and j < upe−1, and b = ap+ u with a ≥ 0, then

νp
((
bpe−1
pj

)−1 − (bpe−1−1
j

)−1)
≥ e+ 2.
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Proof. Note that(
bpe − 1

pj

)−1
−
(
bpe−1 − 1

j

)−1
=

(pj)(pj − 1) · · · 1
(bpe − pj)(bpe − (pj − 1)) · · · (bpe − 1)

− j(j − 1) · · · 1
(bpe−1 − j)(bpe−1 − (j − 1)) · · · (bpe−1 − 1)

.

When the factors in the numerator and denominator of the second quotient are mul-

tiplied by p, they just give the p-divisible factors of the first quotient. Thus the ex-

pression equals
(∏

i
bpe−i−1

)
·
(
bpe−1−1

j

)−1
, where the product is taken over 0 < i < pj

with i 6≡ 0 mod p. Since νp
(
bpe−1−1

j

)
= 0 and the number of values of i is even, this

has the same p-exponent as
∏
i−
∏

(i− bpe), and this is divisible by pe+2.

To see this, we will show that
p−1∏
i=1

(pk + i) ≡
p−1∏
i=1

(pk + i− bpe) mod pe+2.

The difference, mod pe+2, is, up to unit multiples,

bpeσp−2(pk + 1, . . . , pk + p− 1) + (bpe)2σp−3(pk + 1, . . . , pk + p− 1)

= bpeσp−2(1, . . . , p− 1) + (bpe · pk + (bpe)2)σp−3(1, . . . , p− 1).

This is 0 since the coefficient of x (resp. x2) in (x + 1) · · · (x + p − 1) is divisible by

p2 (resp. p). Indeed, the first is (p− 1)!(1 + · · ·+ 1
p−1), and this is divisible by p2 for

p > 3 by [5]. Mod p, the polynomial equals (x2 − 12)(x2 − 22) · · · (x2 − (p−1
2

)2), and

its coefficient of x2 is congruent to 1 + 1
4

+ · · ·+ 1
((p−1)/2)2 . Since i2 ≡ (p− i)2 mod p,

this is congruent to 1
2

p−1∑
i=1

1
i2

, and this is 0 mod p, also by [5]. �

Lemma 2.9. For any odd prime p,
p−1∑
k=1

(
pe−1
k

)−1 ≡ pe−1(1− 2p−1) mod pe+1.

Proof. Noting that
(
pe−1
i

)
≡ (−1)i mod p, and arguing as in the proof of 2.6, we

obtain
p−1∑
k=1

(
pe−1
k

)−1
=

(p−1)/2∑
j=1

pe

2j

(
pe − 1

2j

)−1
≡ pe

2

(p−1)/2∑
j=1

1

j
mod p2.
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Next note that, mod p

p−1∑
k=1

(−1)k

k
=

(p−1)/2∑
j=1

( 1

p− (2j − 1)
− 1

2j − 1

)
≡

(p−1)/2∑
j=1

−1
p−1
2

+ j
≡

(p−1)/2∑
j=1

1

j
.

Using (2.3), we obtain the claim of the lemma. �

3. Results for good primes and 23

In this section, we prove (1.11) (and hence Theorem 1.10), deferring most details

of the proof for p = 23 to Section 5. We will prove the following result in Section 5.

Proposition 3.1. If p is any odd prime, 1 ≤ c ≤ p− 1, and νp(f(c− 1)) > 0, then

f(cp− 1)− f(c− 1) ≡ c(1− 2p−1)f(c− 1) mod p3.

The following corollary follows easily from this and Proposition 2.6.

Corollary 3.2. If p is an odd prime, νp(f(c−1)) ≤ 2 and e ≥ 0, then νp(f(cpe−1)) =

νp(f(c− 1)).

Proof. Since 1 − 2p−1 is divisible by p, the result when νp(f(c − 1)) ≤ 1 follows by

induction on e using Proposition 2.6. The result when νp(f(c− 1)) = 2 follows in the

same way, using Proposition 3.1 for the first step. �

Now we can prove the following result, which implies (1.11) for good primes, since

νp(i+ 1) ≤ e− 1 here.

Proposition 3.3. If p is odd, νp(f(c − 1)) ≤ 1, 0 ≤ i < pe − 1, and 1 ≤ c ≤ p − 1,

then

(3.4) νp(f(cpe + i)− f(i)) = −e+ νp(i+ 1) + νp(f(c− 1)).

Proof. Let e and c be fixed, and let ∆(i) := f(cpe+i)−f(i). The proof is by induction

on i, using (2.4). From (2.4) we obtain

f(cpe)− 1 =
cpe + 1

2cpe
f(cpe − 1),

which, with Corollary 3.2, yields the claim for i = 0. From (2.4), we also deduce

(3.5) ∆(i) =
cpe + i+ 1

2(cpe + i)
∆(i− 1)− cpe

2i(cpe + i)
f(i− 1).
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Assume the result for i − 1. Then the first term in the RHS of (3.5) has exponent

νp(i+ 1)−νp(i) + (−e+νp(i) +νp(f(c−1)), which is the desired value. The exponent

of the second term in the RHS of (3.5) is

e− 2νp(i) + νp(f(i− 1)) ≥ e− 2νp(i)−max
j

(νp
(
i−1
j

)
).

We will know that the second term has larger exponent than the first once we have

shown that, for 1 ≤ i < pe − 1 and j ≤ i− 1,

2e− 1 > 2νp(i) + νp(i+ 1) + νp
(
i−1
j

)
.

This follows easily from the fact that νp
(
i−1
j

)
≤ e − 1 − νp(i), since it equals the

number of carries in a base-p addition whose sum is i− 1. �

We will prove the following result in Section 5. The implication of this is that

information about the case e = 1 yields similar information for all e.

Lemma 3.6. If 1 ≤ c, u ≤ p − 1 and νp(f(c − 1)) = 2, then for all e ≥ 1, the

expression f(cpe + upe−1 − 1)− f(upe−1 − 1) is divisible by p and its residue mod p2

is independent of e.

Now we can prove the following analogue of Proposition 3.3.

Proposition 3.7. Suppose νp(f(c− 1)) = 2 with 1 ≤ c ≤ p− 1, and for all u which

satisfy 1 ≤ u ≤ p− 1 and νp(f(u− 1)) = 0 we have νp(f(cp+ u− 1)− f(u− 1)) = 1

and

(3.8) 1
p
(f(cp+ u− 1)− f(u− 1)) 6≡ c

u
f(u− 1) mod p.

Then, for all e ≥ 3 and all i satisfying 0 ≤ i < pe − 1, (3.4) holds.

Suppose p is a prime which is not good but has νp(f(c−1)) ≤ 2 for all 1 ≤ c ≤ p−1

and whenever νp(f(c− 1)) = 2 the hypotheses of Proposition 3.7 are satisfied. Then

(3.4) holds for e ≥ 3 and hence so does (1.11). Maple easily verifies that the conditions

of Proposition 3.7 are satisfied when p = 23 and c = 13. Hence (1.11), and thus also

Theorem 1.10, holds when p = 23. Note that the proof of Theorem 1.10 only cares

about large values of e in (1.11), and so our restriction to e ≥ 3 is not a problem.

Proof of Proposition 3.7. As in the proof of Proposition 3.3, fix c and e, and let

∆(i) = f(cpe + i)− f(i). If we assume (3.4) holds for i− 1, the exponent of the first



12 DONALD M. DAVIS

term of (3.5) equals the desired value of νp(∆(i)). Now that ν(f(c − 1)) = 2, it can

happen that the second term has the same exponent if i = upe−1 − 1 or upe−1, in

which case it could conceivably happen that the exponent of the combination of the

two terms is larger than that of the individual terms.

In the next paragraph, we will use the hypothesis to prove directly that νp(∆(upe−1−
1)) and νp(∆(upe−1)) have the desired values when 1 ≤ u ≤ p − 1. The validity for

∆(0) is verified using (2.4) as in the proof of 3.3. For 0 ≤ u ≤ p − 1, the induction

from upe−1 through (u+ 1)pe−1 − 2 works just as it did in the proof of 3.3. Thus the

result is valid for all i < pe − 1, as claimed.

That νp(∆(upe−1 − 1)) has the desired value 1 is immediate from Lemma 3.6 and

the hypothesis that νp(∆(u− 1)) = 1. Mod p, (3.5) gives

2upe−2∆(upe−1) ≡ 1
p
∆(upe−1 − 1)− c

u
f(upe−1 − 1)

≡ 1
p
(f(cp+ u− 1)− f(u− 1))− c

u
f(u− 1),

using Lemma 3.6 and Proposition 2.6 at the last step. By Proposition 3.7, the last

expression has νp(−) = 0, and so ∆(upe−1) has the claimed value of −(e− 2). �

4. 2-primary results

In this section, we prove Theorem 1.12, which is a major difference between the

situation when p = 2 and the odd primes. We also state and prove a theorem, 4.10,

about 2-adic integers x with infinitely many, but sparse, 0’s for which f(x) is not

2-definable.

Our proof of Theorem 1.12 will use the following proposition.

Proposition 4.1. For n ≥ 1, ν2
( n∑
j=1

1
2j−1

)
= 2ν2(n).

Proof. The result when n is odd follows from the result for n− 1, since we are adding

a number with ν2 = 0 to one with ν2 > 0. We will use that

(4.2) ν2
( n∑
j=m+1

1
2j−1

)
= ν2(σn−m−1(2m+ 1, 2m+ 3, . . . , 2n− 1)),

where σ(−) denotes an elementary symmetric polynomial, and its arguments are

consecutive odd integers. The following lemma about these will be useful. We will

prove it after completing the proof of the proposition.
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Lemma 4.3. For e ≥ 1,

(4.4) σ2e−1(−(2e − 1),−(2e − 3), . . . ,−1, 1, . . . , 2e − 3, 2e − 1) = 0,

while for e ≥ 2,

(4.5) ν2(σ2e−2(−(2e−1),−(2e−3), . . . ,−1, 1, . . . , 2e−3, 2e−1)) = e−1.

We first prove the proposition when n = 2e. Note that, mod 22e+1,

σ2e−1(2
e − (2e − 1), . . . , 2e − 1, 2e + 1, . . . , 2e + (2e − 1))

≡ σ2e−1(−(2e − 1), . . . ,−1, 1, . . . , 2e − 1)

+2 · 2eσ2e−2(−(2e − 1), . . . ,−1, 1, . . . , 2e − 1)

+3 · 22eσ2e−3(−(2e − 1), . . . ,−1, 1, . . . , 2e − 1).

The factors of 2 and 3 occur since when k factors are omitted, there are k ways

that the first omission could have been chosen. The third term is 0 mod 22e+1 since

σ2e−3(−(2e − 1), . . . ,−1, 1, . . . , 2e − 1) is the sum of
(

2e

2e−3

)
odd numbers, and

(
2e

2e−3

)
is even. By Lemma 4.3, the first of the three terms is 0 and the second has ν2 = 22e,

implying the proposition when n = 2e.

We complete the proof by showing that validity for n = 2e(2a− 1) implies validity

for n = 2e(2a+ 1). This will be done by showing

(4.6) ν2
( 1

2e+2a− (2e+1 − 1)
+ · · ·+ 1

2e+2a+ (2e+1 − 1)

)
> 2e.

This is a sum of reciprocals of consecutive odd integers. The LHS is ν2(σ), where,

mod 22e+4,

σ = σ2e+1−1(2
e+2a− (2e+1 − 1), . . . , 2e+2a+ (2e+1 − 1))

≡ 2 · 2e+2aσ2e+1−2(−(2e+1 − 1), . . . ,−1, 1, . . . , 2e+1 − 1),

arguing similarly to the previous paragraph. By (4.5), ν2(σ) ≥ e+ 3 + e. �

Proof of Lemma 4.3. These are the coefficients of x and x2 in
2e−1∏
j=1

(x2 − (2j − 1)2).

Thus (4.4) is clear, and the LHS of (4.5) equals ν2(σ2e−1−1(1
2, 32, . . . , (2e − 1)2)). We

prove by induction on e that this equals e− 1. It is easily checked when e = 2. Since
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all arguments are odd, we need

ν2
(
1 +

1

32
+ · · ·+ 1

(2e − 1)2
)

= e− 1.

Mod 2e, 1/j2 ≡ 1/(2e − j)2. Thus we need

ν2
(
1 +

1

32
+ · · ·+ 1

(2e−1 − 1)2
)

= e− 2,

and this is the induction hypothesis. �

Our next step toward the proof of Theorem 1.12 is

Proposition 4.7. If e ≥ 3, then ν2(f(2e − 1)) ≥ 2e.

In fact, we conjecture that ν2(f(2e − 1)) = 3e− 2 for e ≥ 4, but this seems a good

bit harder to prove, and not much more useful in proving something like Theorem

1.12.

Proof of Proposition 4.7. For 1 ≤ j ≤ 2e−2 − 1, let

pe,j :=
(
2e−1
2j

)−1
+
(
2e−1
2j−1

)−1
+ (−1)j+1

((
2e−1−1

j

)−1
+
(
2e−1−1
j−1

)−1)
=

(2j − 1)!

(2e − 1) · · · (2e − (2j − 1))
· 2e

2e − 2j

+(−1)j+1 (j − 1)!

(2e−1 − 1) · · · (2e−1 − (j − 1))
· 2e−1

2e−1 − j

=
2e−1

2e−1 − j
1(

2e−1−1
j−1

)( (−1)j

(1− 2e)(1− 1
3
2e) · · · (1− 1

2j−12e)
+ (−1)j+1

)
= u · 2e−1−ν2(j)

(
1 + 2e(1 + 1

3
+ · · ·+ 1

2j−1) + 22eA− 1
)

= u · 22e−1−ν2(j)(1 + 1
3

+ · · ·+ 1
2j−1 + 2eA).

Here ν2(u) = 0, and A ∈ Z2 since it is a combination of elementary symmetric

polynomials whose arguments are fractions with odd denominators. The dots in the

second (double) line range over all integers in the range, while in subsequent lines

the dots range over odd integers in the range. In going from the second line to the

third, we have noted that the even factors in the first fraction, after dividing by 2,

give the factors of the second fraction. In going from the third line to the fourth, we

have used that
(
2e−1−1
j−1

)
is odd. Using Proposition 4.1 and that e > ν2(j), we obtain

ν2(pe,j) ≥ 2e− 1.
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Similarly we have

pe,mid :=
(

2e−1
2e−1−1

)−1 − (2e−1−1
2e−2−1

)−1
=

1(
2e−1−1
2e−2−1

)( 1

(1− 2e)(1− 1
3
2e) · · · (1− 1

2e−1−12e)
− 1
)

= u′(2e(1 + 1
3

+ · · ·+ 1
2e−1−1) + 22eA′),

satisfying ν2(pe,mid) ≥ 2e− 1. Thus

ν2
(2e−2−1∑

j=1

pe,j + pe,mid

)
≥ 2e− 1.

On the other hand,

2e−2−1∑
j=1

pe,j =
2e−2−2∑
i=1

(
2e−1
i

)−1
+
(
2e−1−1
2e−2−1

)−1
+
(
2e−1−1

0

)−1
,

since most of the terms with alternating signs cancel. Hence

2e−2−1∑
j=1

pe,j + pe,mid =
2e−1−1∑
i=0

(
2e−1
i

)−1
,

which is 1
2
f(2e − 1). Thus ν2(f(2e − 1)) ≥ 2e, as claimed. �

Proof of Theorem 1.12. We will use Proposition 4.7 and (2.4) to prove for i ≥ 0 and

2e > i,

(4.8) ν2(f(2e + i)− f(i)) ≥ e− i− 1.

Then, with x as in Theorem 1.12, let Ek =
k∑
i=0

2ei . The hypothesis of the theorem and

(4.8) imply that for k ≥ N , ν2(f(Ek)−f(Ek−1)) ≥ k, and so d(f(Ek), f(Ek−1)) ≤ 2−k.

Thus 〈f(Ek)〉 is a Cauchy sequence and so has a limit in Q2. Thus f(x) is definable.

Now we prove (4.8). Let e be fixed, and ∆(i) = f(2e + i)− f(i). Using Proposition

4.7, let f(2e − 1) = A · 22e with A ∈ Z2. Using (2.4) we obtain ∆(0) = A(2e + 1)2e−1

and

∆(i) =
2e + i+ 1

2(2e + i)
∆(i− 1)− 2e−1

(2e + i)i
f(i− 1).
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Applying this iteratively, we obtain

(4.9)

∆(i) = (2e + i+ 1)(A2e−i−1 −
i−1∑
j=0

2e+j−if(j)

(j + 1)(2e + j + 2)(2e + j + 1)
).

Thus it suffices to prove ν2(f(j)) ≥ −j − 1 + ν2((j + 1)2(j + 2)). This can be easily

checked for j ≤ 3. (It is sharp for j = 0 and j = 2.)

Since ν2
(
j
i

)
≤ [log2(j)], we deduce ν2(f(j)) ≥ −[log2(j)]. Since j + 1 ≥ [log2(j)] +

2ν2(j + 1) + ν2(j + 2) for j ≥ 4, as is easily proved, the desired result follows. �

Note how a comparison of (4.8) and Proposition 3.3 points to a huge difference

between the situations when p is an even or odd prime.

The following theorem describes 2-adic integers x with infinitely many 0’s in their

binary expansion, which are eventually very sparse, for which f(x) is not 2-definable.

Theorem 4.10. Suppose x = −1−
∑
i≥0

2ei with e0 > 0 and for all k > 0

ek ≥ 2ek−1 + ek−1 + e0.

Then f(x) is not 2-definable.

Proof. Let Ek = 2ek − 1 −
k−1∑
i=0

2ei . These are some of the partial sums for x. By

Theorem 1.2

ν2(f(Ek)) =
k−1∑
i=0

2ei + e0 − ek.

From this, we deduce that ν2(f(Ek)) < ν2(f(Ek−1)) and hence ν2(f(Ek)−f(Ek−1)) =

ν2(f(Ek)). Thus

d(f(Ek), f(Ek−1)) > d(f(Ek−1), f(Ek−2)).

These distances form an increasing sequence of 2-powers, and so 〈f(Ek)〉 cannot be

a subsequence of a Cauchy sequence. �

5. Proofs relevant to the case νp(f(c− 1)) = 2

In this section, we prove Proposition 3.1 and Lemma 3.6. The following lemmas

will be useful in the proof of Proposition 3.1.
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Lemma 5.1. If f(c− 1) ≡ 0 (p), then
c−1∑
i=1

i
(
c−1
i

)−1 ≡ 0 (p).

Proof. We will prove the stronger result that
∑
i
(
c−1
i

)−1
= 1

2
(c− 1)f(c− 1). This is

deduced from the following, where we use (2.4) in the last step.

f(c− 1) +
∑

i
(
c−1
i

)−1
= c

∑(
c
i+1

)−1
= c(f(c)− 1) = c c+1

2c
f(c− 1).

�

Lemma 5.2. If 0 ≤ C ≤ A < p and 0 ≤ D ≤ B < p, then, mod p2,

(5.3)(
Ap+B
Cp+D

)−1−(A
C

)−1(B
D

)−1 ≡ p
(
A
C

)−1(B
D

)−1
(C

D∑
i=1

1
i
+(A−C)

B−D∑
i=1

1
i
−A

B∑
i=1

1
i
).

Proof. Since, for any j, (pj + p− 1) · · · (pj + 1) ≡ (p− 1)! mod p2, in evaluating

(5.4)
(Cp+D)!((A− C)p+ (B −D))!

(Ap+B)!
mod p2,

all the products which appear in between two multiples of p cancel out. We cancel

out a factor of p from all multiples of p in the numerator and denominator of (5.4)

and obtain that (5.4) is congruent to

C!(A− C)!

A!
·(Cp+D) · · · (Cp+ 1)((A− C)p+ (B −D)) · · · ((A− C)p+ 1)

(Ap+B) · · · (Ap+ 1)
.

The second factor here equals D!(B−D)!
B!

· E, where

E =
(C
D
p+ 1) · · · (C

1
p+ 1)(A−C

B−Dp+ 1) · · · (A−C
1
p+ 1)

(A
B
p+ 1) · · · (A

1
p+ 1)

.

The LHS of (5.3) is congruent, mod p2, to
(
A
C

)−1(B
D

)−1
(E − 1), and this is congruent

to the claimed expression. �

Proof of Proposition 3.1. We are assuming that
∑(

c−1
i

)−1 ≡ 0 mod p. We will prove

that for 1 ≤ j ≤ p−1
2

,

(5.5)
c−1∑
i=0

(
1

ip+ 2j

1(
cp−1
ip+2j

) − 1

2j
(
c−1
i

)(
p−1
2j

)) ≡ 0 mod p2.
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Since (
cp− 1

ip+ 2j − 1

)−1
+

(
cp− 1

ip+ 2j

)−1
=

cp

(ip+ 2j)
(
cp−1
ip+2j

) ,
when (5.5) is summed over j and multiplied by cp, we obtain

(5.6)
∑

k 6≡0 (p)

(
cp− 1

k

)−1
≡ c

p−1∑
k=1

1(
p−1
k

) c−1∑
i=0

(
c− 1

i

)−1
mod p3.

By Lemma 2.8

(5.7)

(
cp− 1

pj

)−1
−
(
c− 1

j

)−1
≡ 0 mod p3.

Adding (5.6) and the sum over j of (5.7) and using Lemma 2.9 yields the claim of

the proposition.

The proof of (5.5) begins by noting that the LHS equals

(5.8)
1

cp− 1

c−1∑
i=0

(
cp− 2

ip+ 2j − 1

)−1
− 1

(p− 1)
(
p−2
2j−1

) c−1∑
i=0

(
c− 1

i

)−1
.

Since we are working mod p2 and assuming
∑(

c−1
i

)−1 ≡ 0 mod p, we may replace

the (p− 1) in its coefficient by −1. We will show

(5.9)

−
c−1∑
i=0

(
cp− 2

ip+ 2j − 1

)−1
+

(
p− 2

2j − 1

)−1 c−1∑
i=0

(
c− 1

i

)−1
≡ 0 mod p2.

This implies that
c−1∑
i=0

(
cp−2

ip+2j−1

)−1 ≡ 0 (p), and so whether its coefficient is −1 or 1
cp−1

is irrelevant. Thus (5.9) implies (5.5).

To prove (5.9), we note that −1 times its LHS is a sum of terms of the form of

(5.3) with A = c−1, B = p−2, C = i, and D = 2j−1. Let Sm :=
m∑
i=1

1
i
. By Lemma

5.2, the LHS of (5.9) equals −1 times

p
(
p−2
2j−1

)−1 c−1∑
i=0

(
c−1
i

)−1(
iS2j−1 + (c− 1− i)Sp−1−2j − (c− 1)Sp−2

)
= p

(
p−2
2j−1

)−1 c−1∑
i=0

(
c−1
i

)−1
(Ki+ L),
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where K and L do not depend on i. This is 0 mod p2, using Lemma 5.1 and the

assumption that νp(f(c− 1)) > 0.

�

The remainder of the paper is devoted to the proof of Lemma 3.6. Let De :=

f(cpe + upe−1 − 1) − f(upe−1 − 1). We will show that νp(De+1 −De) ≥ 2 for e ≥ 1.

Using (3.5), one easily shows that νp(D1) ≥ 1. We deduce that νp(De) ≥ 1 for all e.

Let

Le :=
∑

i<upe−1

((
cpe + upe−1 − 1

i

)−1
−
(
upe−1 − 1

i

)−1)
, and He :=

∑
i≥upe−1

(
cpe + upe−1 − 1

i

)−1
.

Then De = Le +He. We will prove νp(Le+1 − Le) ≥ 2 and νp(He+1 −He) ≥ 2.

We have

Le+1 − Le

=

upe−1−1∑
i=0

((
cpe+1 + upe − 1

pi

)−1
−
(
cpe + upe−1 − 1

i

)−1
(5.10)

−
((

upe − 1

pi

)−1
−
(
upe−1 − 1

i

)−1))
(5.11)

+

k<upe∑
k 6≡0 (p)

((
cpe+1 + upe − 1

k

)−1
−
(
upe − 1

k

)−1)
.(5.12)

Summands of (5.10) and (5.11) are divisible by p2 by Lemma 2.8. Similarly to the

beginning of the proof of 2.6, the sum (5.12) is a sum of terms of the form

(5.13)
cpe+1 + upe

2j

(
cpe+1 + upe − 1

2j

)−1
− upe

2j

(
upe − 1

2j

)−1
with j 6≡ 0 mod p. This is clearly divisible by p2 when e > 1. If e = 1, the cpe+1-part

is 0 mod p2, and
(
cpe+1+upe−1

2j

)
≡
(
upe−1
2j

)
mod p, which is good enough, since there is

an additional factor of p. Thus (5.13) is 0 mod p2 in this case, too.
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Finally,

He+1 −He

=

cpe+upe−1−1∑
i=upe−1

(
cpe+1 + upe − 1

pi

)−1
−
(
cpe + upe−1 − 1

i

)−1
(5.14)

+

k≥upe∑
k 6≡0 (p)

(
cpe+1 + upe − 1

k

)−1
.(5.15)

The summands of (5.14) are divisible by pe+1. To see this, we use the proof of Lemma

2.8 but note that the factor
(
cpe+upe−1−1

i

)−1
will have νp(−) = −1.

Similarly to the proof of 3.1, (5.15) is a sum over j of

cpe+1 + upe

cpe+1 + upe − 1

cpe+upe−1−1∑
i=upe−1

(
cpe+1 + upe − 2

ip+ 2j − 1

)−1
.

Since the terms in the sum certainly have νp(−) ≥ −1, we are reduced to proving

(5.16)

cp+u−1∑
i=u

(
cp2 + up− 2

ip+ 2j − 1

)−1
≡ 0 mod p, and

(5.17) νp

(cp2+up−1∑
i=up

(
cp3 + up2 − 2

ip+ 2j − 1

)−1)
≥ 0.

We begin by proving (5.16).

We split the sum as

c∑
a=1

u−1∑
b=0

(
cp2 + (u− 1)p+ (p− 2)

ap2 + bp+ 2j − 1

)−1
+
c−1∑
a=0

p−1∑
b=u

(
cp2 + (u− 1)p+ p− 2

ap2 + bp+ 2j − 1

)−1
.

The first sum, mod p, splits as
c∑

a=1

(
c
a

)−1 · u−1∑
b=0

(
u−1
b

)−1 · ( p−2
2j−1

)−1
. The first factor is

f(c) − 1 = f(c − 1) c+1
2c
≡ 0 mod p2, and the other factors are p-integral. With

Sm =
m∑
i=1

1

i
and ` = 2j−1, we can prove, using methods similar to those in the proof

of 3.1, that the term in the second sum above is congruent, mod p to(
cp+u−1
ap+b

)−1(p−2
`

)−1
(1 + p(b(S` − Sp−2−`) + (u− 1)(Sp−2−` − Sp−2))).
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Thus the second sum becomes, mod p,

(5.18) α

c−1∑
a=0

p−1∑
b=u

(
cp+u−1
ap+b

)−1
+ pβ

c−1∑
a=0

p−1∑
b=u

b
(
cp+u−1
ap+b

)−1
with α and β p-integral.

We can prove that when b ≥ u, mod p2,

p
(
cp+u−1
ap+b

)−1 ≡ u
c

(
c−1
a

)−1(b
u

)(
p−1
b−u

)−1
(1+p(aSb+(c−a−1)Su−b+p−1−cSu−1)),

with Sm as above. Thus p times (5.18) is congruent, mod p2, to

A

c−1∑
a=0

(
c−1
a

)−1
+Bp

c−1∑
a=0

a
(
c−1
a

)−1
,

with A and B p-integral. Since νp(f(c − 1)) = 2 and using Lemma 5.1, we obtain

that this expression is divisible by p2 and hence (5.18) is divisible by p, yielding the

claim.

The proof of (5.17) is very similar. In fact, the sum here is ≡ 0 mod p, stronger

than required. If we write the sum as
p−1∑
i0=0

cp+u−1∑
t=u

(
cp3 + (u− 1)p2 + (p2 − 2)

tp2 + (i0p+ `)

)−1
with ` = 2j−1 as before, then

(
p2−2
i0p+`

)
behaves here as

(
p−2
`

)
did before, and the t-sum

is split in the same way as the i-sum before.
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