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Abstract. Let f(n) =
∑

k

(
n
k

)−1
. In a previous paper, we defined

for a p-adic integer x that f(x) is p-definable if lim f(xj) exists in
Qp, where xj denotes the mod pj reduction of x. We proved that
if p is odd, then −1 is the only element of Zp − N for which f(x)
is p-definable. For p = 2, we proved that if the 1’s in the binary
expansion of x are eventually extraordinarily sparse, then f(x)
is 2-definable. Here we present some conjectures that f(x) is 2-
definable for many more 2-adic integers. We discuss the extent to
which we can prove these conjectures.

1. Statement of conjectures and their consequences

Let N ⊂ Zp ⊂ Qp denote the natural numbers (including 0), p-adic integers, and

p-adic numbers, respectively, with metric dp(x, y) = p−νp(x−y). Here and throughout,

νp(−) denotes the exponent of p in a rational number. Let f : N→ Qp be defined by

f(n) =
n∑
k=0

(
n
k

)−1
.

In [1], we made the following definition.

Definition 1.1. Let x ∈ Zp, and let xj denote the mod pj reduction of x. Then f(x)

is p-definable if 〈f(xj)〉 is a Cauchy sequence in Qp.

Then f(x) could be defined to be the limit in Qp of this Cauchy sequence.

We proved in [1] that if p is an odd prime, then f(x) is p-definable if and only if

x = −1 or x ∈ N. (Actually, p was required to satisfy a technical condition which

is satisfied by all primes less than 108, and for which there are no primes which are

known not to satisfy it.) We also proved that if x =
∑

2ei with ei < ei+1, then f(x)
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is 2-definable if, roughly, i + 1 > 2i for all sufficiently large i. The 1’s in the binary

expansion of such an x are eventually extraordinarily sparse. Here we discuss our

attempts to prove that f(x) is 2-definable for many more 2-adic integers.

Let α(n) denote the number of 1’s in the binary expansion of n, lg(−) = [log2(−)],

and ν(−) = ν2(−). Our strongest conjecture is

Conjecture 1.2. If 0 ≤ k < 2e, then

ν(f(2e + k)− f(k)) ≥ e− 2α(k)− 2.

Conjecture 1.2 has been verified for e ≤ 15. In this range, equality holds iff k =

2e− 4 or 2e− 2. The following result describes the consequence of this conjecture for

2-definability.

Proposition 1.3. Assume Conjecture 1.2. If the number of 0’s minus the number of

1’s in xj approaches ∞ as j goes to ∞, then f(x) is 2-definable.

We include leading 0’s in xj here, since they will eventually be seen. An alternative

statement is that f(x) would be 2-definable if the fraction of 0’s in x is greater than

1/2.

Proof of Proposition 1.3. Let x =
∞∑
i=1

2ei with ei < ei+1. The ith distinct point in

the sequence of f(xj)’s is f(2ei + xei), and the (i− 1)st distinct point is f(xei). The

distance between these points is 2−v, where

v = ν(f(2ei + xei)− f(xei)) ≥ ei − 2α(xei)− 2,

according to Conjecture 1.2. The number of 0’s in xei equals ei−α(xei). Our hypoth-

esis says that ei − 2α(xei) becomes arbitrarily large, and hence the distance between

the ith and (i−1)st distinct points in the sequence is 2−v where v becomes arbitrarily

large. Thus our sequence is Cauchy. �

Although we have very strong evidence for Conjecture 1.2, we feel that we are more

likely to be able to prove the following conjecture.

Conjecture 1.4. If 0 ≤ k < 2e−1, then

ν(f(2e + 2k + 1)− f(2k + 1)) ≥ e− 2 lg(k + 3) + 2ν(k + 1).
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Conjecture 1.4 has been verified for e ≤ 15. In this range, equality holds iff k =

2e−1 − 2. The following result describes the consequence of this conjecture for 2-

definability.

Proposition 1.5. Assume Conjecture 1.4. Suppose x =
∑

2ei has e1 = 0 and

ei < ei+1 and satisfies lim
i→∞

(ei+1 − 2ei) =∞. Then f(x) is 2-definable.

Note that this would be exponentially stronger than the result proved in [1] and

referenced above, but still much weaker than the conclusion of Proposition 1.3.

Proof of Proposition 1.5. Arguing similarly to the previous proof, the distance be-

tween consecutive points in the sequence is 2−v with

v = ν(f(2ei + xei)− f(xei)) ≥ ei − 2 lg(xei)− 2 = ei − 2ei−1 − 2

according to Conjecture 1.4. Since our assumption is that v becomes arbitrarily large,

the sequence is Cauchy. �

2. Steps toward a proof of Conjecture 1.4

In this section, we outline a program which we hope might lead to a proof of Conjec-

ture 1.4. Using symmetry of binomial coefficients, the following result is immediate.

Proposition 2.1. Let 0 ≤ k < 2e−1. If the following two statements are true, then

so is Conjecture 1.4.

i. ν
( k∑
i=0

((
2e+2k+1

i

)−1 − (2k+1
i

)−1)) ≥ e− 2 lg(k + 2) + 2ν(k + 1),

ii. ν
(2e−1+k∑
i=k+1

(
2e+2k+1

i

)−1) ≥ e− 2 lg(k + 3) + 2ν(k + 1)− 1.

Our main result is

Theorem 2.2. Let 0 ≤ k < 2e−1. Then statement i. of Proposition 2.1 is true.

Indeed, with

Ti :=
(
2e+2k+1

i

)−1 − (2k+1
i

)−1
,

we have
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a. if 0 ≤ i ≤ [(k − 1)/2], then

ν(T2i + T2i+1) ≥ e− 2 lg(k + 1) + 2ν(k + 1), and

b. if k is even, then

ν(Tk) ≥ e− 2 lg(k + 2).

Our proof will use the standard results that ν
(
m+n
m

)
= α(m) + α(n) − α(m + n),

and that ν
(
m+n
m

)
equals the number of carries when m and n are added in binary

arithmetic. It follows from this that

(2.3) ν
(
k
i

)
≤ lg(k + 1)− ν(k + 1),

since, if ν(k + 1) = t, then there cannot be any carries in the last t positions in the

binary addition of i and k − i.

Proof of part b of Theorem 2.2. We first note that

(2.4)
(
2e+a
b

)−1 − (a
b

)−1
= −

(
2e+a
b

)−1∑
j≥1

2jeσj(
1
a
, . . . , 1

a−b+1
),

where σj(−) denotes an elementary symmetric function.

Let k = 2`. Including only the (j = 1)-term, which we will justify, (2.4) yields that

T2` has the same 2-exponent as

(2.5) 2e
(
2e+4`+1

2`

)−1( 1
2`+2

+ · · ·+ 1
4`+1

)
.

Note that 2`+ 2 ≤ 2t ≤ 4`+ 1 iff 2t−2 ≤ ` ≤ 2t−1 − 1, and so ν( 1
2`+2

+ · · ·+ 1
4`+1

) =

− lg(`)−2. Thus the 2-exponent of (2.5) equals e−α(`)− lg(`)−2 ≥ e−2 lg(2`+ 2),

as claimed. Here we use that 2 lg(`+1) ≥ α(`)+lg(`), which is proved by considering

separately 2t ≤ ` < 2t+1 − 1 and ` = 2t+1 − 1.

Now we justify including only the term with j = 1 in the above sum. Let

vj = ν(2jeσj(
1

2`+2
, . . . , 1

4`+1
)).

If ν(σ1(−)) = −t, then v1 = e − t > 0, and if j > 1 then vj > j(e − t) > v1, since

σj(−) is a sum of products of j factors, each with 2-exponent ≥ −t, and at most one

equal to −t. �
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Proof of part a of Theorem 2.2. Including only the (j = 1)-term of (2.4), which again

will be justified, we obtain that T2i + T2i+1 equals

(2.6)

−2e
(
2e+2k+1

2i

)−1(( 1
2k+1

+· · ·+ 1
2k−2i+2

)(
1+ 2i+1

2e+2k−2i+1

)
+ 2i+1

(2e+2k−2i+1)(2k−2i+1)

)
.

Thus, using (2.3) at the second step,

ν(T2i + T2i+1) ≥ e− ν
(
k
i

)
+ min(− lg(2k) + ν(2e + 2k + 2), 0)

≥ min(e+ 2ν(k + 1)− lg(k + 1)− lg(k), e− lg(k + 1) + ν(k + 1)),

which is as claimed.

We complete the proof by showing that if j > 1, then using the j-term of the sum

in (2.4) in T2i + T2i+1 would give an expression with 2-exponent at least as large as

was obtained with j = 1. Analogous to part of (2.6), the j-term would be, up to odd

multiples,

(2.7) 2je((2e + 2k + 2)σj(−) + σj−1(−)).

If ν(σ1(−)) = −t, then ν(σj(−)) > −jt. When k < 2e−1 − 1, since e > t and

e > ν(2k + 2), the claim follows from

je+ ν(2k + 2)− jt > e+ ν(2k + 2)− t

and

je− (j − 1)t > e+ ν(2k + 2)− t.
If k = 2e−1 − 1, then t = e− 1 and (2.7) has 2-exponent e if j = 1 (from σ0(−)) and

a larger value if j > 1. �

Despite much effort, we have been unable to prove statement ii. of Proposition 2.1.

Note that the application to 2-definability given in Proposition 1.5 would be true even

if Conjecture 1.4 or Proposition 2.1 did not contain the “+2ν(k + 1).”

References

[1] D. M. Davis, For which p-adic integers x can
∑
k

(
x
k

)−1
be de-

fined?, to appear in Journal of Combinatorics and Number Theory.
http://www.lehigh.edu/∼dmd1/define3.pdf

Department of Mathematics, Lehigh University, Bethlehem, PA 18015, USA
E-mail address: dmd1@lehigh.edu


