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Abstract. If p is a prime (implicit in notation) and n a positive
integer, let ν(n) denote the exponent of p in n, and U(n) = n/pν(n),
the unit part of n. If α is a positive integer not divisible by p, we
show that the p-adic limit of (−1)pαe U((αpe)!) as e→∞ is a well-
defined p-adic integer, which we call zα. Note that if p = 2 or α is
even, this can be thought of as U((αp∞)!). In terms of these, we

then give a formula for the p-adic limit of
(
ape+c
bpe+d

)
as e→∞, which

we call
(
ap∞+c
bp∞+d

)
. Here a ≥ b are positive integers, and c and d are

integers.

1. Statement of results.

Let p be a prime number, fixed throughout. The set Zp of p-adic integers consists of

expressions of the form x =
∞∑
i=0

cip
i with 0 ≤ ci ≤ p−1. The nonnegative integers are

those x for which the sum is finite. The metric on Zp is defined by d(x, y) = 1/pν(x−y),

where ν(x) = min{i : ci 6= 0}. (See, e.g., [3].) The prime p will be implicit in most

of our notation.

If n is a positive integer, let U(n) = n/pν(n) denote the unit factor of n (with respect

to p). Our first result is as follows.

Theorem 1.1. Let α be a positive integer which is not divisible by p. If pe > 4, then

U((αpe−1)!) ≡ (−1)pα U((αpe)!) mod pe.

This theorem implies that

d
(
(−1)pα(e−1) U((αpe−1)!), (−1)pαe U((αpe)!)

)
≤ 1/pe,

from which the following corollary is immediate.

Corollary 1.2. If α is as in Theorem 1.1, then lim
e→∞

(−1)pαe U((αpe)!) exists in Zp.
We denote this limiting p-adic integer by zα.
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If p = 2 or α is even, then zα could be thought of as U((αp∞)!). It is easy for

Maple to compute zα mod pm for m fairly large. For example, if p = 2, then z1 ≡
1+2+23+27+29+210+212 mod 215. This is obtained by letting Cn denote the mod

2n+1 reduction of U(2n!) and computing C1 = 1, C2 = 3, C3 = C4 = C5 = C6 = 11,

C7 = C8 = 139, C9 = 651, C10 = C11 = 1675, and C12 = C13 = C14 = 5771. Similarly,

if p = 3, then z1 ≡ 1 + 2 · 3 + 2 · 32 + 2 · 34 + 36 + 2 · 37 + 2 · 38 mod 311. It would

be interesting to know, as a future investigation, if there are algebraic relationships

among the various zα for a fixed prime p.

There are two well-known formulas for the power of p dividing a binomial coefficient(
a
b

)
. (See, e.g., [4].) One is that

ν
(
a
b

)
= 1

p−1(dp(b) + dp(a− b)− dp(a)),

where dp(n) denotes sum of the coefficients when n is written in p-adic form as above.

Another is that ν
(
a
b

)
equals the number of carries in the base-p addition of b and a−b.

Clearly ν
(
ape

bpe

)
= ν

(
a
b

)
.

Our next result involves the unit factor of
(
ape

bpe

)
. Here one of a or b might be

divisible by p. For a positive integer n, let zn = zU(n), where zU(n) ∈ Zp is as defined

in Corollary 1.2.

Theorem 1.3. Suppose 1 ≤ b ≤ a and {ν(a), ν(b), ν(a − b)} = {0, k} with k ≥ 0.

Then

U

((
ape

bpe

))
≡ (−1)pck

za
zbza−b

mod pe,

where c =


a if ν(a) = k,

b if ν(b) = k,

a− b if ν(a− b) = k.

Note that since one of ν(a), ν(b), and ν(a− b) equals 0, at most one of them can be

positive.

Since ν
(
ape

bpe

)
is independent of e, we obtain the following immediate corollary.

Corollary 1.4. In the notation and hypotheses of Theorem 1.3, in Zp(
ap∞

bp∞

)
:= lim

e→∞

(
ape

bpe

)
= pν(

a
b)(−1)pck

za
zbza−b

.
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Our final result analyzes
(
ap∞+c
bp∞+d

)
, where c and d are integers, possibly negative.

Theorem 1.5. If a and b are as in Theorem 1.3, and c and d are integers, then in

Zp

(
ap∞ + c

bp∞ + d

)
:= lim

e→∞

(
ape + c

bpe + d

)
=


(
ap∞

bp∞

)(
c
d

)
c, d ≥ 0,(

ap∞

bp∞

)(
c
d

)
a−b
a

c < 0 ≤ d,(
ap∞

bp∞

)(
c
c−d

)
b
a

c < 0 ≤ c− d,
0 otherwise.

Here, of course,
(
ap∞

bp∞

)
is as in Corollary 1.4, and we use the standard definition that

if c ∈ Z and d ≥ 0, then(
c
d

)
= c(c− 1) · · · (c− d+ 1)/d!.

These ideas arose in extensions of the work in [1] and [2].

2. Proofs

In this section, we prove the three theorems stated in Section 1. The main ingre-

dient in the proof of Theorem 1.1 is the following lemma.

Lemma 2.1. Let α be a positive integer which is not divisible by p, and let e be a

positive integer. Let Iα,e = {i : αpe−1 < i ≤ αpe}, and let S denote the multiset

consisting of the least nonnegative residues mod pe of U(i) for all i ∈ Iα,e. Then every

positive p-adic unit less than pe occurs exactly α times in S.

Proof. Let Wα,e denote the set of positive integers prime to p which are less than

αpe. Then our unit function U : Iα,e → Wα,e has an inverse function φ : Wα,e → Iα,e

defined by φ(u) = ptu, where

t = max{i : piu ≤ αpe}.

Note that ptu ∈ Iα,e since pt+1u > αpe which implies ptu > αpe−1. One easily checks

that U and φ are inverse and hence bijective. Since reduction mod pe from Wα,e to

W1,e is an α-to-1 function, preceding it by the bijection U implies the result. �

Proof of Theorem 1.1. If pe > 4, the product of all p-adic units less than pe is con-

gruent to (−1)p mod pe. (See, e.g., [4, Lemma 1], where the argument is attributed

to Gauss.) The theorem follows immediately from this and Lemma 2.1, since, mod
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pe, U((αpe)!)/U((αpe−1)!) is the product of the elements of the multiset S described

in the lemma. �

Proof of Theorem 1.3. Suppose ν(b) = 0 and a = αpk with k ≥ 0 and α = U(a).

Then, mod pe,

U

((
αpe+k

bpe

))
=

U((αpe+k)!)

U((bpe)!) · U(((a− b)pe)!)

≡ (−1)pα(e+k)za
(−1)pbezb · (−1)p(a−b)eza−b

= (−1)pak
za

zbza−b
,

as claimed. Here we have used Theorem 1.1 and the notation introduced in Corollary

1.2. Also we have used that either p = 2 or a ≡ α mod 2. A similar argument works

if ν(b) = k > 0 (and ν(a) = 0), or if ν(a− b) = k > 0 (and ν(a) = ν(b) = 0). �

Our proof of Theorem 1.5 uses the following lemma.

Lemma 2.2. Suppose f is a function with domain Z × Z which satisfies Pascal’s

relation

(2.3) f(n, k) = f(n− 1, k) + f(n− 1, k − 1)

for all n and k. If f(0, d) = Aδ0,d for all d ∈ Z and f(c, 0) = Ar for all c < 0, then

f(c, d) =


A
(
c
d

)
c, d ≥ 0,

A
(
c
d

)
r c < 0 ≤ d,

A
(
c
c−d

)
(1− r) c < 0 ≤ c− d,

0 otherwise.

The proof of this lemma is straightforward and omitted. It is closely related to

work in [5] and [6], in which binomial coefficients are extended to negative arguments

in a similar way. However, in that case (2.3) does not hold if n = k = 0.

Proof of Theorem 1.5. Fix a ≥ b > 0. If fe(c, d) :=
(
ape+c
bpe+d

)
, where e is large enough

that ape + c > 0 and bpe + d > 0, then (2.3) holds for fe. If, as e → ∞, the limit

exists for two terms of this version of (2.3), then it also does for the third, and (2.3)

holds for the limiting values, for all c, d ∈ Z. The theorem then follows from Lemma

2.2 and (2.4) and (2.5) below, using also that if d < 0, then
(
ape

bpe+d

)
=
(

ape

(a−b)pe+|d|

)
, to

which (2.4) can be applied.
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If d > 0, then

(2.4)

(
ape

bpe + d

)
=

(
ape

bpe

)
((a− b)pe) · · · ((a− b)pe − d+ 1)

(bpe + 1) · · · (bpe + d)
→ 0

in Zp as e→∞, since it is pe times a factor whose p-exponent does not change as e

increases through large values.

Let c = −m with m > 0. Then

(2.5)(
ape −m
bpe

)
=

(
ape

bpe

)
((a− b)pe) · · · ((a− b)pe −m+ 1)

ape · · · (ape −m+ 1)
→
(
ap∞

bp∞

)
a− b
a

,

in Zp as e→∞, since

((a− b)pe − 1) · · · ((a− b)pe −m+ 1)

(ape − 1) · · · (ape −m+ 1)
≡ 1 mod pe−[log2(m)].

Here we have used that if t < e and v is not divisible by p, then (a−b)pe−vpt
ape−vpt ≡ 1 mod

pe−t. �
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