BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES

DONALD M. DAVIS

ABSTRACT. If p is a prime (implicit in notation) and n a positive integer, let $\nu(n)$ denote the exponent of p in n, and $U(n) = n/p^{\nu(n)}$, the unit part of n. If α is a positive integer not divisible by p, we show that the p-adic limit of $(-1)^{p\alpha e} U((\alpha p^e)!)$ as $e \to \infty$ is a well-defined p-adic integer, which we call z_{α} . Note that if p = 2 or α is even, this can be thought of as $U((\alpha p^{\infty})!)$. In terms of these, we then give a formula for the p-adic limit of $\binom{ap^e+c}{bp^e+d}$ as $e \to \infty$, which we call $\binom{ap^{\infty}+c}{bp^{\infty}+d}$. Here $a \ge b$ are positive integers, and c and d are integers.

1. Statement of results.

Let p be a prime number, fixed throughout. The set \mathbb{Z}_p of p-adic integers consists of expressions of the form $x = \sum_{i=0}^{\infty} c_i p^i$ with $0 \le c_i \le p-1$. The nonnegative integers are those x for which the sum is finite. The metric on \mathbb{Z}_p is defined by $d(x, y) = 1/p^{\nu(x-y)}$, where $\nu(x) = \min\{i : c_i \ne 0\}$. (See, e.g., [3].) The prime p will be implicit in most of our notation.

If n is a positive integer, let $U(n) = n/p^{\nu(n)}$ denote the unit factor of n (with respect to p). Our first result is as follows.

Theorem 1.1. Let α be a positive integer which is not divisible by p. If $p^e > 4$, then

$$U((\alpha p^{e-1})!) \equiv (-1)^{p\alpha} U((\alpha p^e)!) \mod p^e.$$

This theorem implies that

$$d((-1)^{p\alpha(e-1)} \operatorname{U}((\alpha p^{e-1})!), (-1)^{p\alpha e} \operatorname{U}((\alpha p^{e})!)) \le 1/p^{e},$$

from which the following corollary is immediate.

Corollary 1.2. If α is as in Theorem 1.1, then $\lim_{e\to\infty} (-1)^{p\alpha e} \operatorname{U}((\alpha p^e)!)$ exists in \mathbb{Z}_p . We denote this limiting p-adic integer by z_{α} . If p = 2 or α is even, then z_{α} could be thought of as $U((\alpha p^{\infty})!)$. It is easy for Maple to compute $z_{\alpha} \mod p^m$ for m fairly large. For example, if p = 2, then $z_1 \equiv 1+2+2^3+2^7+2^9+2^{10}+2^{12} \mod 2^{15}$. This is obtained by letting C_n denote the mod 2^{n+1} reduction of $U(2^n!)$ and computing $C_1 = 1$, $C_2 = 3$, $C_3 = C_4 = C_5 = C_6 = 11$, $C_7 = C_8 = 139$, $C_9 = 651$, $C_{10} = C_{11} = 1675$, and $C_{12} = C_{13} = C_{14} = 5771$. Similarly, if p = 3, then $z_1 \equiv 1 + 2 \cdot 3 + 2 \cdot 3^2 + 2 \cdot 3^4 + 3^6 + 2 \cdot 3^7 + 2 \cdot 3^8 \mod 3^{11}$. It would be interesting to know, as a future investigation, if there are algebraic relationships among the various z_{α} for a fixed prime p.

There are two well-known formulas for the power of p dividing a binomial coefficient $\binom{a}{b}$. (See, e.g., [4].) One is that

$$\nu\binom{a}{b} = \frac{1}{p-1}(d_p(b) + d_p(a-b) - d_p(a)),$$

where $d_p(n)$ denotes sum of the coefficients when n is written in p-adic form as above. Another is that $\nu {a \choose b}$ equals the number of carries in the base-p addition of b and a-b. Clearly $\nu {ap^e \choose bp^e} = \nu {a \choose b}$.

Our next result involves the unit factor of $\binom{ap^e}{bp^e}$. Here one of a or b might be divisible by p. For a positive integer n, let $z_n = z_{\mathrm{U}(n)}$, where $z_{\mathrm{U}(n)} \in \mathbb{Z}_p$ is as defined in Corollary 1.2.

Theorem 1.3. Suppose $1 \le b \le a$ and $\{\nu(a), \nu(b), \nu(a-b)\} = \{0, k\}$ with $k \ge 0$. Then

$$U\left(\binom{ap^e}{bp^e}\right) \equiv (-1)^{pck} \frac{z_a}{z_b z_{a-b}} \mod p^e,$$

where $c = \begin{cases} a & \text{if } \nu(a) = k, \\ b & \text{if } \nu(b) = k, \\ a-b & \text{if } \nu(a-b) = k. \end{cases}$

Note that since one of $\nu(a)$, $\nu(b)$, and $\nu(a-b)$ equals 0, at most one of them can be positive.

Since $\nu \begin{pmatrix} ap^e \\ bn^e \end{pmatrix}$ is independent of e, we obtain the following immediate corollary.

Corollary 1.4. In the notation and hypotheses of Theorem 1.3, in \mathbb{Z}_p

$$\binom{ap^{\infty}}{bp^{\infty}} := \lim_{e \to \infty} \binom{ap^e}{bp^e} = p^{\nu\binom{a}{b}} (-1)^{pck} \frac{z_a}{z_b z_{a-b}}.$$

2

Our final result analyzes $\binom{ap^{\infty}+c}{bp^{\infty}+d}$, where c and d are integers, possibly negative.

Theorem 1.5. If a and b are as in Theorem 1.3, and c and d are integers, then in \mathbb{Z}_p

$$\begin{pmatrix} ap^{\infty} + c \\ bp^{\infty} + d \end{pmatrix} := \lim_{e \to \infty} \begin{pmatrix} ap^e + c \\ bp^e + d \end{pmatrix} = \begin{cases} \begin{pmatrix} ap^{\infty} \\ bp^{\infty} \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix} & c, d \ge 0, \\ \begin{pmatrix} ap^{\infty} \\ bp^{\infty} \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix} & c < 0 \le d, \\ \begin{pmatrix} ap^{\infty} \\ bp^{\infty} \end{pmatrix} \begin{pmatrix} c \\ c - d \end{pmatrix} & c < 0 \le c - d \\ 0 & otherwise. \end{cases}$$

Here, of course, $\binom{ap^{\infty}}{bp^{\infty}}$ is as in Corollary 1.4, and we use the standard definition that if $c \in \mathbb{Z}$ and $d \geq 0$, then

$$\binom{c}{d} = c(c-1)\cdots(c-d+1)/d!.$$

These ideas arose in extensions of the work in [1] and [2].

2. Proofs

In this section, we prove the three theorems stated in Section 1. The main ingredient in the proof of Theorem 1.1 is the following lemma.

Lemma 2.1. Let α be a positive integer which is not divisible by p, and let e be a positive integer. Let $I_{\alpha,e} = \{i : \alpha p^{e-1} < i \leq \alpha p^e\}$, and let S denote the multiset consisting of the least nonnegative residues mod p^e of U(i) for all $i \in I_{\alpha,e}$. Then every positive p-adic unit less than p^e occurs exactly α times in S.

Proof. Let $W_{\alpha,e}$ denote the set of positive integers prime to p which are less than αp^e . Then our unit function $U: I_{\alpha,e} \to W_{\alpha,e}$ has an inverse function $\phi: W_{\alpha,e} \to I_{\alpha,e}$ defined by $\phi(u) = p^t u$, where

$$t = \max\{i : p^i u \le \alpha p^e\}.$$

Note that $p^t u \in I_{\alpha,e}$ since $p^{t+1}u > \alpha p^e$ which implies $p^t u > \alpha p^{e-1}$. One easily checks that U and ϕ are inverse and hence bijective. Since reduction mod p^e from $W_{\alpha,e}$ to $W_{1,e}$ is an α -to-1 function, preceding it by the bijection U implies the result. \Box

Proof of Theorem 1.1. If $p^e > 4$, the product of all *p*-adic units less than p^e is congruent to $(-1)^p \mod p^e$. (See, e.g., [4, Lemma 1], where the argument is attributed to Gauss.) The theorem follows immediately from this and Lemma 2.1, since, mod

DONALD M. DAVIS

 p^{e} , U((αp^{e})!)/U((αp^{e-1})!) is the product of the elements of the multiset S described in the lemma.

Proof of Theorem 1.3. Suppose $\nu(b) = 0$ and $a = \alpha p^k$ with $k \ge 0$ and $\alpha = U(a)$. Then, mod p^e ,

$$\begin{split} \mathrm{U}\!\left(\binom{\alpha p^{e+k}}{bp^{e}}\right) &= \frac{\mathrm{U}((\alpha p^{e+k})!)}{\mathrm{U}((bp^{e})!) \cdot \mathrm{U}(((a-b)p^{e})!)} \\ &\equiv \frac{(-1)^{p\alpha(e+k)}z_{a}}{(-1)^{pbe}z_{b} \cdot (-1)^{p(a-b)e}z_{a-b}} \\ &= (-1)^{pak} \frac{z_{a}}{z_{b}z_{a-b}}, \end{split}$$

as claimed. Here we have used Theorem 1.1 and the notation introduced in Corollary 1.2. Also we have used that either p = 2 or $a \equiv \alpha \mod 2$. A similar argument works if $\nu(b) = k > 0$ (and $\nu(a) = 0$), or if $\nu(a - b) = k > 0$ (and $\nu(a) = \nu(b) = 0$).

Our proof of Theorem 1.5 uses the following lemma.

Lemma 2.2. Suppose f is a function with domain $\mathbb{Z} \times \mathbb{Z}$ which satisfies Pascal's relation

(2.3)
$$f(n,k) = f(n-1,k) + f(n-1,k-1)$$

for all n and k. If $f(0,d) = A\delta_{0,d}$ for all $d \in \mathbb{Z}$ and f(c,0) = Ar for all c < 0, then

$$f(c,d) = \begin{cases} A\binom{c}{d} & c, d \ge 0, \\ A\binom{c}{d}r & c < 0 \le d, \\ A\binom{c}{c-d}(1-r) & c < 0 \le c-d, \\ 0 & otherwise. \end{cases}$$

The proof of this lemma is straightforward and omitted. It is closely related to work in [5] and [6], in which binomial coefficients are extended to negative arguments in a similar way. However, in that case (2.3) does not hold if n = k = 0.

Proof of Theorem 1.5. Fix $a \ge b > 0$. If $f_e(c, d) := \binom{ap^e+c}{bp^e+d}$, where e is large enough that $ap^e + c > 0$ and $bp^e + d > 0$, then (2.3) holds for f_e . If, as $e \to \infty$, the limit exists for two terms of this version of (2.3), then it also does for the third, and (2.3) holds for the limiting values, for all $c, d \in \mathbb{Z}$. The theorem then follows from Lemma 2.2 and (2.4) and (2.5) below, using also that if d < 0, then $\binom{ap^e}{bp^e+d} = \binom{ap^e}{(a-b)p^e+|d|}$, to which (2.4) can be applied.

4

If
$$d > 0$$
, then

$$(2.4) \qquad \begin{pmatrix} ap^e \\ bp^e + d \end{pmatrix} = \begin{pmatrix} ap^e \\ bp^e \end{pmatrix} \frac{((a-b)p^e)\cdots((a-b)p^e - d + 1)}{(bp^e + 1)\cdots(bp^e + d)} \to 0$$

in \mathbb{Z}_p as $e \to \infty$, since it is p^e times a factor whose *p*-exponent does not change as *e* increases through large values.

Let c = -m with m > 0. Then

$$\binom{(2.5)}{ap^e - m} = \binom{ap^e}{bp^e} \frac{((a - b)p^e) \cdots ((a - b)p^e - m + 1)}{ap^e \cdots (ap^e - m + 1)} \to \binom{ap^{\infty}}{bp^{\infty}} \frac{a - b}{a}$$

in \mathbb{Z}_p as $e \to \infty$, since

$$\frac{((a-b)p^e-1)\cdots((a-b)p^e-m+1)}{(ap^e-1)\cdots(ap^e-m+1)} \equiv 1 \mod p^{e-[\log_2(m)]}.$$

Here we have used that if t < e and v is not divisible by p, then $\frac{(a-b)p^e - vp^t}{ap^e - vp^t} \equiv 1 \mod p^{e-t}$.

References

[1] D. M. Davis, For which *p*-adic integers $x \, \operatorname{can} \sum_{k} {\binom{x}{k}}^{-1}$ be defined?,

J. Comb. Number Theory (forthcoming). Available at http://arxiv.org/ 1208.0250.

- [2] —, Divisibility by 2 of partial Stirling numbers, Funct. Approx. Comment. Math. (forthcoming). Available at http://arxiv.org/1109.4879.
- [3] F. Q. Gouvea, *p-adic Numbers: an Introduction*, Springer-Verlag, Berlin, Heidelberg, 1993.
- [4] A. Granville, Binomial coefficients modulo prime powers, CMS Conf. Proc 20 (1997) 253–275.
- [5] P. J. Hilton, J. Pederson, Extending the binomial coefficients to preserve symmetry and pattern, *Comput. Math. Appl.* 17 (1989) 89–102.
- [6] R. Sprugnoli, Negation of binomial coefficients, *Discrete Math.* 308 (2008) 5070–5077.

Department of Mathematics, Lehigh University, Bethlehem, PA 18015 dmd1@lehigh.edu