BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES

DONALD M. DAVIS

Abstract

If p is a prime (implicit in notation) and n a positive integer, let $\nu(n)$ denote the exponent of p in n, and $\mathrm{U}(n)=n / p^{\nu(n)}$, the unit part of n. If α is a positive integer not divisible by p, we show that the p-adic limit of $(-1)^{p \alpha e} \mathrm{U}\left(\left(\alpha p^{e}\right)!\right)$ as $e \rightarrow \infty$ is a welldefined p-adic integer, which we call z_{α}. Note that if $p=2$ or α is even, this can be thought of as $\mathrm{U}\left(\left(\alpha p^{\infty}\right)!\right)$. In terms of these, we then give a formula for the p-adic limit of $\binom{a p^{e}+c}{b p^{e}+d}$ as $e \rightarrow \infty$, which we call $\binom{a p^{\infty}+c}{b p^{\infty}+d}$. Here $a \geq b$ are positive integers, and c and d are integers.

1. Statement of results.

Let p be a prime number, fixed throughout. The set \mathbb{Z}_{p} of p-adic integers consists of expressions of the form $x=\sum_{i=0}^{\infty} c_{i} p^{i}$ with $0 \leq c_{i} \leq p-1$. The nonnegative integers are those x for which the sum is finite. The metric on \mathbb{Z}_{p} is defined by $d(x, y)=1 / p^{\nu(x-y)}$, where $\nu(x)=\min \left\{i: c_{i} \neq 0\right\}$. (See, e.g., [3].) The prime p will be implicit in most of our notation.

If n is a positive integer, let $\mathrm{U}(n)=n / p^{\nu(n)}$ denote the unit factor of n (with respect to p). Our first result is as follows.

Theorem 1.1. Let α be a positive integer which is not divisible by p. If $p^{e}>4$, then

$$
\mathrm{U}\left(\left(\alpha p^{e-1}\right)!\right) \equiv(-1)^{p \alpha} \mathrm{U}\left(\left(\alpha p^{e}\right)!\right) \quad \bmod p^{e} .
$$

This theorem implies that

$$
d\left((-1)^{p \alpha(e-1)} \mathrm{U}\left(\left(\alpha p^{e-1}\right)!\right),(-1)^{p \alpha e} \mathrm{U}\left(\left(\alpha p^{e}\right)!\right)\right) \leq 1 / p^{e}
$$

from which the following corollary is immediate.
Corollary 1.2. If α is as in Theorem 1.1, then $\lim _{e \rightarrow \infty}(-1)^{p \alpha e} \mathrm{U}\left(\left(\alpha p^{e}\right)\right.$!) exists in \mathbb{Z}_{p}. We denote this limiting p-adic integer by z_{α}.

If $p=2$ or α is even, then z_{α} could be thought of as $\mathrm{U}\left(\left(\alpha p^{\infty}\right)!\right)$. It is easy for Maple to compute $z_{\alpha} \bmod p^{m}$ for m fairly large. For example, if $p=2$, then $z_{1} \equiv$ $1+2+2^{3}+2^{7}+2^{9}+2^{10}+2^{12} \bmod 2^{15}$. This is obtained by letting C_{n} denote the \bmod 2^{n+1} reduction of $U\left(2^{n!}\right)$ and computing $C_{1}=1, C_{2}=3, C_{3}=C_{4}=C_{5}=C_{6}=11$, $C_{7}=C_{8}=139, C_{9}=651, C_{10}=C_{11}=1675$, and $C_{12}=C_{13}=C_{14}=5771$. Similarly, if $p=3$, then $z_{1} \equiv 1+2 \cdot 3+2 \cdot 3^{2}+2 \cdot 3^{4}+3^{6}+2 \cdot 3^{7}+2 \cdot 3^{8} \bmod 3^{11}$. It would be interesting to know, as a future investigation, if there are algebraic relationships among the various z_{α} for a fixed prime p.

There are two well-known formulas for the power of p dividing a binomial coefficient $\binom{a}{b}$. (See, e.g., [4].) One is that

$$
\nu\binom{a}{b}=\frac{1}{p-1}\left(d_{p}(b)+d_{p}(a-b)-d_{p}(a)\right),
$$

where $d_{p}(n)$ denotes sum of the coefficients when n is written in p-adic form as above. Another is that $\nu\binom{a}{b}$ equals the number of carries in the base- p addition of b and $a-b$. Clearly $\nu\binom{a p^{e}}{b p^{e}}=\nu\binom{a}{b}$.

Our next result involves the unit factor of $\binom{a p^{e}}{b p^{e}}$. Here one of a or b might be divisible by p. For a positive integer n, let $z_{n}=z_{\mathrm{U}(n)}$, where $z_{\mathrm{U}(n)} \in \mathbb{Z}_{p}$ is as defined in Corollary 1.2.

Theorem 1.3. Suppose $1 \leq b \leq a$ and $\{\nu(a), \nu(b), \nu(a-b)\}=\{0, k\}$ with $k \geq 0$. Then

$$
\mathrm{U}\left(\binom{a p^{e}}{b p^{e}}\right) \equiv(-1)^{p c k} \frac{z_{a}}{z_{b} z_{a-b}} \quad \bmod p^{e},
$$

where $c= \begin{cases}a & \text { if } \nu(a)=k, \\ b & \text { if } \nu(b)=k, \\ a-b & \text { if } \nu(a-b)=k .\end{cases}$
Note that since one of $\nu(a), \nu(b)$, and $\nu(a-b)$ equals 0 , at most one of them can be positive.

Since $\nu\binom{a p^{e}}{b p^{e}}$ is independent of e, we obtain the following immediate corollary.
Corollary 1.4. In the notation and hypotheses of Theorem 1.3, in \mathbb{Z}_{p}

$$
\binom{a p^{\infty}}{b p^{\infty}}:=\lim _{e \rightarrow \infty}\binom{a p^{e}}{b p^{e}}=p^{\nu\binom{a}{b}}(-1)^{p c k} \frac{z_{a}}{z_{b} z_{a-b}} .
$$

Our final result analyzes $\binom{a p^{\infty}+c}{b p^{\infty}+d}$, where c and d are integers, possibly negative.
Theorem 1.5. If a and b are as in Theorem 1.3, and c and d are integers, then in \mathbb{Z}_{p}

$$
\binom{a p^{\infty}+c}{b p^{\infty}+d}:=\lim _{e \rightarrow \infty}\binom{a p^{e}+c}{b p^{e}+d}= \begin{cases}\binom{a p^{\infty}}{b p^{\infty}}\binom{c}{d} & c, d \geq 0, \\ \binom{a p^{\infty}}{b p^{\infty}}\binom{c}{d} \frac{a-b}{a} & c<0 \leq d, \\ \binom{a p^{\infty}}{b p^{\infty}}\binom{c}{c-d} \frac{b}{a} & c<0 \leq c-d, \\ 0 & \text { otherwise }\end{cases}
$$

Here, of course, $\binom{a p^{\infty}}{b p^{\infty}}$ is as in Corollary 1.4, and we use the standard definition that if $c \in \mathbb{Z}$ and $d \geq 0$, then

$$
\binom{c}{d}=c(c-1) \cdots(c-d+1) / d!.
$$

These ideas arose in extensions of the work in [1] and [2].

2. Proofs

In this section, we prove the three theorems stated in Section 1. The main ingredient in the proof of Theorem 1.1 is the following lemma.

Lemma 2.1. Let α be a positive integer which is not divisible by p, and let e be a positive integer. Let $I_{\alpha, e}=\left\{i: \alpha p^{e-1}<i \leq \alpha p^{e}\right\}$, and let S denote the multiset consisting of the least nonnegative residues mod p^{e} of $\mathrm{U}(i)$ for all $i \in I_{\alpha, e}$. Then every positive p-adic unit less than p^{e} occurs exactly α times in S.

Proof. Let $W_{\alpha, e}$ denote the set of positive integers prime to p which are less than αp^{e}. Then our unit function $\mathrm{U}: I_{\alpha, e} \rightarrow W_{\alpha, e}$ has an inverse function $\phi: W_{\alpha, e} \rightarrow I_{\alpha, e}$ defined by $\phi(u)=p^{t} u$, where

$$
t=\max \left\{i: p^{i} u \leq \alpha p^{e}\right\} .
$$

Note that $p^{t} u \in I_{\alpha, e}$ since $p^{t+1} u>\alpha p^{e}$ which implies $p^{t} u>\alpha p^{e-1}$. One easily checks that U and ϕ are inverse and hence bijective. Since reduction $\bmod p^{e}$ from $W_{\alpha, e}$ to $W_{1, e}$ is an α-to- 1 function, preceding it by the bijection U implies the result.

Proof of Theorem 1.1. If $p^{e}>4$, the product of all p-adic units less than p^{e} is congruent to $(-1)^{p} \bmod p^{e}$. (See, e.g., [4, Lemma 1], where the argument is attributed to Gauss.) The theorem follows immediately from this and Lemma 2.1, since, mod
$p^{e}, \mathrm{U}\left(\left(\alpha p^{e}\right)!\right) / \mathrm{U}\left(\left(\alpha p^{e-1}\right)!\right)$ is the product of the elements of the multiset S described in the lemma.

Proof of Theorem 1.3. Suppose $\nu(b)=0$ and $a=\alpha p^{k}$ with $k \geq 0$ and $\alpha=\mathrm{U}(a)$. Then, $\bmod p^{e}$,

$$
\begin{aligned}
\mathrm{U}\left(\binom{\alpha p^{e+k}}{b p^{e}}\right) & =\frac{\mathrm{U}\left(\left(\alpha p^{e+k}\right)!\right)}{\mathrm{U}\left(\left(b p^{e}\right)!\right) \cdot \mathrm{U}\left(\left((a-b) p^{e}\right)!\right)} \\
& \equiv \frac{(-1)^{p \alpha(e+k)} z_{a}}{(-1)^{p b e} z_{b} \cdot(-1)^{p(a-b) e} z_{a-b}} \\
& =(-1)^{p a k} \frac{z_{a}}{z_{b} z_{a-b}},
\end{aligned}
$$

as claimed. Here we have used Theorem 1.1 and the notation introduced in Corollary 1.2. Also we have used that either $p=2$ or $a \equiv \alpha \bmod 2$. A similar argument works if $\nu(b)=k>0($ and $\nu(a)=0)$, or if $\nu(a-b)=k>0($ and $\nu(a)=\nu(b)=0)$.

Our proof of Theorem 1.5 uses the following lemma.
Lemma 2.2. Suppose f is a function with domain $\mathbb{Z} \times \mathbb{Z}$ which satisfies Pascal's relation

$$
\begin{equation*}
f(n, k)=f(n-1, k)+f(n-1, k-1) \tag{2.3}
\end{equation*}
$$

for all n and k. If $f(0, d)=A \delta_{0, d}$ for all $d \in \mathbb{Z}$ and $f(c, 0)=A r$ for all $c<0$, then

$$
f(c, d)= \begin{cases}A\binom{c}{d} & c, d \geq 0 \\ A\binom{c}{d} & c<0 \leq d \\ A\binom{c}{c-d}(1-r) & c<0 \leq c-d \\ 0 & \text { otherwise }\end{cases}
$$

The proof of this lemma is straightforward and omitted. It is closely related to work in [5] and [6], in which binomial coefficients are extended to negative arguments in a similar way. However, in that case (2.3) does not hold if $n=k=0$.

Proof of Theorem 1.5. Fix $a \geq b>0$. If $f_{e}(c, d):=\binom{a p^{e}+c}{b p^{e}+d}$, where e is large enough that $a p^{e}+c>0$ and $b p^{e}+d>0$, then (2.3) holds for f_{e}. If, as $e \rightarrow \infty$, the limit exists for two terms of this version of (2.3), then it also does for the third, and (2.3) holds for the limiting values, for all $c, d \in \mathbb{Z}$. The theorem then follows from Lemma 2.2 and (2.4) and (2.5) below, using also that if $d<0$, then $\binom{a p^{e}}{b p^{e}+d}=\binom{a p^{e}}{(a-b) p^{e}+|d|}$, to which (2.4) can be applied.

If $d>0$, then

$$
\begin{equation*}
\binom{a p^{e}}{b p^{e}+d}=\binom{a p^{e}}{b p^{e}} \frac{\left((a-b) p^{e}\right) \cdots\left((a-b) p^{e}-d+1\right)}{\left(b p^{e}+1\right) \cdots\left(b p^{e}+d\right)} \rightarrow 0 \tag{2.4}
\end{equation*}
$$

in \mathbb{Z}_{p} as $e \rightarrow \infty$, since it is p^{e} times a factor whose p-exponent does not change as e increases through large values.

Let $c=-m$ with $m>0$. Then
$\binom{a p^{e}-m}{b p^{e}}=\binom{a p^{e}}{b p^{e}} \frac{\left((a-b) p^{e}\right) \cdots\left((a-b) p^{e}-m+1\right)}{a p^{e} \cdots\left(a p^{e}-m+1\right)} \rightarrow\binom{a p^{\infty}}{b p^{\infty}} \frac{a-b}{a}$,
in \mathbb{Z}_{p} as $e \rightarrow \infty$, since

$$
\frac{\left((a-b) p^{e}-1\right) \cdots\left((a-b) p^{e}-m+1\right)}{\left(a p^{e}-1\right) \cdots\left(a p^{e}-m+1\right)} \equiv 1 \quad \bmod p^{e-\left[\log _{2}(m)\right]} .
$$

Here we have used that if $t<e$ and v is not divisible by p, then $\frac{(a-b) p^{e}-v p^{t}}{a p^{e}-v p^{t}} \equiv 1 \bmod$ p^{e-t}.

References

[1] D. M. Davis, For which p-adic integers x can $\sum_{k}\binom{x}{k}^{-1}$ be defined?, J. Comb. Number Theory (forthcoming). Available at http://arxiv.org/ 1208.0250.
[2] -, Divisibility by 2 of partial Stirling numbers, Funct. Approx. Comment. Math. (forthcoming). Available at http://arxiv.org/1109.4879.
[3] F. Q. Gouvea, p-adic Numbers: an Introduction, Springer-Verlag, Berlin, Heidelberg, 1993.
[4] A. Granville, Binomial coefficients modulo prime powers, CMS Conf. Proc 20 (1997) 253-275.
[5] P. J. Hilton, J. Pederson, Extending the binomial coefficients to preserve symmetry and pattern, Comput. Math. Appl. 17 (1989) 89-102.
[6] R. Sprugnoli, Negation of binomial coefficients, Discrete Math. 308 (2008) 5070-5077.

Department of Mathematics, Lehigh University, Bethlehem, PA 18015 dmd1@lehigh.edu

