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DIVISIBILITY BY 2 OF PARTIAL STIRLING NUMBERS

Donald M. Davis

Abstract: The partial Stirling numbers Tn(k) used here are defined as
∑

i odd
(n
i

)
ik. Their

2-exponents ν(Tn(k)) are important in algebraic topology. We provide many specific results,
applying to all values of n, stating that, for all k in a certain congruence class mod 2t, ν(Tn(k)) =
ν(k−k0)+c0, where k0 is a 2-adic integer and c0 a positive integer. Our analysis involves several
new general results for ν(

∑( n
2i+1

)
ij), the proofs of which involve a new family of polynomials.

Following Clarke ([3]), we interpret Tn as a function on the 2-adic integers, and the 2-adic integers
k0 described above as the zeros of these functions.

Keywords: Stirling number, divisibility, Hensel’s Lemma.

1. Main results

The partial Stirling numbers Tn(k) used here are defined, for integers n and k with
n positive, by

Tn(k) =
∑
i odd

(
n
i

)
ik.

Other versions can be defined localized at other primes and summed over restricted
congruences. Let ν(−) denote the exponent of 2 in an integer. The numbers
ν(Tn(k)) are important in algebraic topology ([1], [4], [6], [8], [9], [12]), and work
on evaluating these numbers has appeared in the above papers as well as [3],
[5], [11], [14], and [15]. In this paper, we give complete results for n 6 36 and
also for n = 2e + 1 and 2e + 2, and we give two families of results applying to
all values of n but with k restricted to certain congruence classes. In [7], some
of these results will be applied to obtain new results for v1-periodic homotopy
groups of the special unitary groups. We also present in Section 2 some new
results about ν(

∑
i

(
n

2i+1

)
ik). The proofs of these, in Section 3, introduce a new

family of polynomials qm(x), which might be of independent interest. Finally, in
Section 4 we discuss our results in the context of analytic functions on the 2-adic
integers, and Hensel’s Lemma.
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We begin with the result which is easiest to state, and hence best illustrates
the nature of our results.

Theorem 1.1. Let e > 2, n = 2e + 1 or 2e + 2, and 1 6 i 6 2e−1.

1. There is a 2-adic integer xi,n such that for all integers x

ν(Tn(2
e−1x+ i)) = ν(x− xi,n) + n− 2.

Moreover

xi,2e+1 ≡

{
1 + 2i (mod 2i+1), if i = 2e−2 or 2e−1

1 (mod 2i+1), otherwise

and

xi,2e+2 ≡


1 + 2i−1 (mod 2i), if 1 6 i 6 2e−2

1 + 2i (mod 2i+1), if 2e−2 < i < 2e−1

1 (mod 2i+1), if i = 2e−1.

2. Let g(x) = ν(Tn(2
e−1x + i)) − (n − 2). Then xi,n = 2t0 + 2t1 + · · · , where

t0 = g(0) and tj+1 = g(2t0 + · · ·+ 2tj ).

If e = 1, the result is different. See Table 1.3.
For example, the last 24 digits of the binary expansion of x4,9 are

100000000001101010110001,

and so we can make the following more explicit statement.

ν(T9(4x+ 4)) =


7, x ≡ 0 (2)

8, x ≡ 3 (4)

9, x ≡ 5 (8)

10, x ≡ 9 (16)

and continue indefinitely, just noting the last position in which the binary expan-
sions of x and x4,9 differ.

Our next result utilizes Maple calculations in its proof. Although each case
applies to infinitely many values of x, we will explain in the proof how each case
can be reduced to a small number of verifications.

Theorem 1.2. For each n 6 36, there is a partition of Z into finitely many
congruence classes C = [i mod 2m] such that, for each, either (a) there exists a



Divisibility by 2 of partial Stirling numbers 3

2-adic integer x0 and a positive integer c0 such that ν(Tn(2mx+i)) = ν(x−x0)+c0
for all integers x, or (b) there exists a positive integer y0 such that ν(Tn(k)) = y0
for all k in C. The congruence classes C and integers c0 and y0 are as in Tables
1.3 and 1.4.

Let g(x) = ν(Tn(2
mx+ i))− c0. Then x0 = 2t0 + 2t1 + · · · , with t0 = g(0) and

tj+1 = g(2t0 + · · ·+ 2tj ).

We conjecture that the general form of the theorem can be extended to all in-
tegers n; i.e., that for each n there is a partition of Z into finitely many congruence
classes on each of which either ν(Tn(k)) = ν(k − k0) + c0 for some k0 and c0 or
else ν(Tn(k)) is constant on C. In the tables, the letter i refers to any integer.

Table 1.3: Values of C, c0, and y0 in Theorem 1.2

n C c0 y0 n C c0 y0
3 0 (2) 2 4 0 (2) 3

1 (2) 1 1 (2) 4
5 0, 1 (2) 3 6 0, 1 (2) 4
7 0 (2) 6 8 0 (2) 7

1 (2) 4 1 (2) 9
9 i (4) 7 10 i (4) 8
11 0, 2 (4) 9 12 0, 2 (4) 10

1, 3 (4) 8 1, 3 (4) 11
13 1, 2 (4) 10 14 2, 3 (4) 11

0, 4 (8) 12 0, 1 (8) 13
7 (8) 11 4, 5 (8) 13
3 (16) 13
11 (16) 15

15 3 (4) 11 16 0 (4) 15
0 (4) 14 1 (4) 18
1, 5 (8) 13 2, 6 (8) 17
2, 6 (8) 16 3, 7 (8) 20

17 i (8) 15 18 i (8) 16
19 0, 2, 4, 6 (8) 17 20 0, 2, 4, 6 (8) 18

1, 3, 5, 7 (8) 16 1, 3, 5, 7 (8) 19
21 1, 2, 5, 6 (8) 18 22 0, 1 (8) 20

0, 3 (8) 19 2, 3, 6, 7 (8) 19
7, 15 (16) 21 4, 12 (16) 22
12 (16) 20 5, 21 (32) 24
4 (32) 22 13 (16) 21
52 (64) 24
84 (128) 26
20 (256) 28
148 (256) 29
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Table 1.4: More values of C, c0, and y0 in Theorem 1.2

n C c0 y0 n C c0 y0
23 0, 4 (8) 21 24 0, 4 (8) 22

3, 7 (8) 19 1, 5 (8) 24
1 (8) 20 2 (8) 23
2 (8) 22 3 (8) 25

6, 22 (32) 26 6, 22 (32) 27
5, 21 (32) 24 7, 23 (32) 29
13 (16) 21 14 (16) 24
14 (16) 23 15 (16) 26

25 1, 2, 3, 4 (8) 22 26 2, 3, 4, 5 (8) 23
5, 6, 7, 8 (16) 24 0, 1, 7, 8, 9, 15 (16) 25

0, 13, 14, 15 (16) 24 6, 22 (32) 27
14 (16) 24

27 3, 5 (8) 23 28 4, 6 (8) 25
4, 6 (8) 24 5, 7 (8) 26

1, 7, 9, 15 (16) 25 0, 2, 8, 10 (16) 27
0, 2, 8, 10 (16) 26 1, 3, 9, 11 (16) 28

29 5, 6 (8) 25 30 6, 7 (8) 26
7 (8) 26 2, 3, 10, 11 (16) 28

1, 2, 9, 10 (16) 27 0, 1, 8, 9 (16) 29
0, 4, 8, 12 (16) 28 4, 5, 12, 13 (16) 29

11 (16) 29
3 (32) 30
19 (32) 31

31 7 (8) 26 32 0 (8) 31
0 (8) 30 1 (8) 35

3, 11 (16) 28 4, 12 (16) 33
1, 5, 9, 13 (16) 29 2, 6, 10, 14 (16) 34
4, 12 (16) 32 5, 13 (16) 37

2, 6, 10, 14 (16) 33 3, 7, 11, 15 (16) 38
33 i (16) 31 34 i (16) 32
35 2i (16) 33 36 2i (16) 34

2i+ 1 (16) 32 2i+ 1 (16) 35

One can notice a lot of nice patterns in these tables, and formulate (and some-
times prove) conjectures about their extension to all values of n. One interesting
idea, following Clarke ([3]), is to note that since Tn(k) mod 2m only depends on
k mod 2m−1, Tn(−) extends to a function Tn : Z2 → Z2, where Z2 denotes the
2-adic integers. Here the metric on Z2 is given, as usual, by d(x, y) = |x − y|,
where |z| := 1/2ν(z). The 2-adic integers 2mx0+ i which occur in Theorem 1.2 are
just the zeros of the function Tn. We can count the number of zeros to be given
as in Table 1.5, and might try to formulate a guess about the general formula for
this number of zeros.



Divisibility by 2 of partial Stirling numbers 5

Table 1.5: Number of zeros of Tn

n Number of 0’s of Tn
1-4 0
5-8 2
9-13 4
14-16 6
17-21 8
22-24 10
25-29 12
30-32 14
33-36 16

Our second general result establishes for all n, except those 1 less than
a 2-power, the values of ν(Tn(k)) for k in the congruence class containing 0. We
could almost certainly include n = 2e − 1 into this theorem, but the details of
proving that case are so detailed as to be perhaps not worthwhile here.

Theorem 1.6. Let n > 5 and

(a, b) =


(−2, 1) if n = 2e

(−1, 2) if 2e < n 6 3 · 2e−1

(0, 1) if 3 · 2e−1 < n 6 2e+1 − 2.

Then there exists a 2-adic integer xn such that for all integers x

ν(Tn(2
e+ax)) = ν(x− xn) + n− b.

The cases n = 2e + 1 and 2e + 2 of this theorem overlap with Theorem 1.1. For
these n, we have xn = 1+x2e−1,n. For all n in Theorem 1.6, there is an algorithm
for xn totally analogous to that of Theorem 1.1.

Our next result is of a similar nature, but applies to many more congruence
classes. The cases to which it applies are those in which the 2-exponent of a certain
sum (see (2.34) and (2.35)) is determined by exactly one of its summands, and for
which the mod 4 result 2.6 suffices to prove it. The algorithm for computing x0 is
like that of Theorem 1.2. Here and throughout, α(n) denotes the number of 1’s in
the binary expansion of n.

Theorem 1.7. Suppose 2e + 2t 6 n < 2e + 2t+1 with 0 6 t 6 e− 1. Let

Sn = {p : max(0, n− 2e − 2e−1) 6 p < 2e−1 and
(
n−1−p

p

)
≡ 1 (2)}.

If p ∈ Sn, say that an integer q < 2e−1 is associated to p if q = p or q = p + 2w

with w = ν(n) − 1 or w > t. If q is associated to an integer p of Sn, then there
exists a 2-adic integer x0 such that for all integers x

ν(Tn(2
e−1x+ q)) = ν(x− x0) + n− 2− α(p0),

where p0 is the residue of p mod 2t.
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A bit of work is required to get any sort of feel for the complicated condition
in this theorem. In Table 1.8, we list for n from 17 to 31, the values of p in Sn,
then the additional values of q covered by the theorem, and finally the values of
i for which Theorem 1.2, as depicted in Tables 1.3 and 1.4, gives a value for the
congruence i mod 8 which is not covered by Theorem 1.7. The strength of the
theorem is, of course, that it applies to all values of n (except 2-powers).

Table 1.8: Comparison of Theorems 1.7 and 1.2

n p ∈ Sn additional q mod 8 results missed
17 0, 1, 2, 4 3, 5, 6 7
18 0, 2, 4 1, 3, 5, 6 7
19 0, 1, 3, 4, 5 7 2, 6
20 0, 4 2, 6 1, 3, 5, 7
21 0, 1, 2, 5, 6 3
22 0, 2, 6 1, 3, 7
23 0, 1, 3, 7 2, 4
24 0 4 1, 2, 3, 5
25 1, 2, 4 3
26 2, 4 3, 5
27 3, 4, 5 6
28 4 6 5, 7
29 5, 6 7
30 6 7
31 7 0

2. Proofs of main theorems

In this section, we prove the four main theorems listed in Section 1. A central
ingredient in the proofs is results about ν

(∑
i

(
n

2i+1

)
ik
)
. We begin by providing

six results about this, of which all but the first are new. The proofs of most of
these appear in Section 3.

The first result was proved in [9, 3.4].

Proposition 2.1 ([9, 3.4]). For any nonnegative integers n and k,

ν
(∑

i

(
n

2i+1

)
ik
)
> ν([n/2]!).

In using this, and many times throughout the paper, we use

ν(n!) = n− α(n). (2.2)

The next result is a refinement of Proposition 2.1. Here and throughout, S(n, k)
denote Stirling numbers of the second kind.
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Proposition 2.3. Mod 4

1
n!

∑
i

(
2n+ϵ
2i+b

)
ik ≡


S(k, n) + 2nS(k, n− 1) ϵ = 0, b = 0

(2n+ 1)S(k, n) + 2(n+ 1)S(k, n− 1) ϵ = 1, b = 0

2S(k, n− 1) ϵ = 0, b = 1

S(k, n) + 2(n+ 1)S(k, n− 1) ϵ = 1, b = 1.

The proofs of the last three propositions all involve new polynomials qm(x),
which might be of independent interest. See Definition 3.1 for the definition, which
pervades Section 3.

Proposition 2.4. For any nonnegative integers n and k,

ν
(∑

i

(
n

2i+1

)
ik
)
> n− k − α(n).

Proposition 2.5. For any nonnegative integers n and k with n > k,

ν
(∑

i

(
n

2i+1

)
ik
)
> n− 1− k − α(k)

with equality iff
(
n−1−k

k

)
is odd.

The final proposition is a refinement of Proposition 2.5.

Proposition 2.6. If n and k are nonnegative integers with n > k, then, mod 4,

∑
i

(
n

2i+1

)
ik/(2n−1−2kk!) ≡

(
n−1−k

k

)
+

{
2
(
n−1−k
k−2

)
if n− 1 and k are even

0 otherwise.

The following corollary will also be useful.

Corollary 2.7. For n > 3, j > 0, and p ∈ Z,

ν
(∑(

n
2i+1

)
(2i+ 1)pij

)
> max(ν([n2 ]!), n− α(n)− j)

with equality if n ∈ {2e + 1, 2e + 2} and j = 2e−1.

Proof. The sum equals
∑

k>0 Tk, where

Tk = 2k
(
p
k

)∑
i

(
n

2i+1

)
ij+k.

By Proposition 2.1, ν(Tk) > ν([n2 ]!), while by Proposition 2.4, ν(Tk) > n−α(n)−j,
implying the desired inequality. If n = 2e+1 and j = 2e−1, then ν(T0) = 2e−1− 1
by Proposition 2.5, while for k > 0, ν(Tk) > 2e−1 by 2.1. If n = 2e + 2 and
j = 2e−1, ν(T0) = 2e−1 by 2.5, ν(T1) > 2e−1 by 2.3, and ν(Tk) > 2e−1 for k > 1
by 2.1. �
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Our proofs of the theorems of Section 1 will make essential use of the following
result of [5]. Here and throughout, we will employ the useful notation

min′(m,n) =

{
min(m,n) if m ̸= n

a number > m if m = n.

Note that min′(m,m) is not a well-defined number, and that

ν(m+ n) = min′(ν(m), ν(n)).

Lemma 2.8 ([5]). Let N denote the set of nonnegative integers. A function
f : Z → N ∪ {∞} is of the form f(n) = ν(n− E) for some 2-adic integer E iff it
satisfies

f(n+ 2d) = min′(f(n), d)

for all d ∈ N and all n ∈ Z. In this case, E =
∑

i>0 2
ei , where e0 = f(0) and

ek+1 = f(2e0 + · · ·+ 2ek).

We begin the proofs of the theorems of Section 1 by discussing the proof of
Theorem 1.2. The way that the cases of Theorem 1.2 are discovered is by having
Maple compute values of ν(Tn(k)) for ranges of values of k. For example, seeing
that ν

(∑
i odd

(
19
i

)
ik
)

takes on the values 17, 25, 17, 18, 17, 19, 17, 18, 17, 20, 17,
18 as k goes 10, 18, 26,. . . , 98 makes one pretty sure that for all integers x we have
ν(T19(8x + 2)) = ν(x − x0) + 17 for some 2-adic integer x0, and you could even
guess that the last 9 digits in the binary expansion of x0 are 100000010. But to
prove it, more is required. This is a case not covered by any of our three general
theorems, but the proofs of all four of our theorems have similar structure.

Let f(x) = ν(T19(8x+ 2))− 17. Then

f(x+ 2d) = −17 + ν
(∑(

19
2i+1

)
(2i+ 1)8x+2

+
∑(

19
2i+1

)
(2i+ 1)8x+2((2i+ 1)2

3+d

− 1)
)

(2.9)

= min′
(
f(x), ν

(∑(
19

2i+1

)
(2i+ 1)8x+2((2i+ 1)2

3+d

− 1)
)
− 17

)
.

Thus the claim that ν(T19(8x + 2)) = ν(x − x0) + 17 for some 2-adic integer x0
will follow from Lemma 2.8 once we show that

ν
(∑(

19
2i+1

)
(2i+ 1)8x+2((2i+ 1)2

3+d

− 1)
)
= d+ 17 (2.10)

for all x and d > 0. We expand the two powers of (2i + 1), obtaining terms, for
k > 0 and j > 0, with 2-exponent

ν
(
8x+2

k

)
+ ν
(
23+d

j

)
+ k + j + ν

(∑(
19

2i+1

)
ik+j

)
. (2.11)

Let ψ(s) = s+ ν(
∑(

19
2i+1

)
is). Since ν

(
23+d

j

)
= 3 + d− ν(j), it will suffice to show

that the minimum value of ψ(k + j) − ν(j) + ν
(
8x+2

k

)
is 14, and that this value
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occurs for an odd number of pairs (k, j). Maple computes that the minimum value
of ψ(s) is 16, which occurs when s = 3, 5, 7, or 9, and that ψ(s) = 17 for s = 1, 4,
6, 8, and 10. For s > 11, ψ(s) > 7 + s by 2.1. This information makes it easy to
check that the minimum value of ψ(k + j)− ν(j) + ν

(
8x+2

k

)
is indeed 14, and this

value occurs exactly when (k, j) = (0, 8), (2, 8), or (1, 8). This completes the proof
that for all integers x we have ν(T19(8x + 2)) = ν(x − x0) + 17 for some 2-adic
integer x0. Each of the cases of Theorem 1.2 can be established in this manner,
although many of the cases are covered by our general theorems 1.1, 1.6, and 1.7.

The cases in which Tn(k) is constant on a congruence class are proved similarly,
although Lemma 2.8 need not be used. For example, to show ν(T13(8x+7)) = 11
for all x, we first define

θ(k) = 2k
∑(

13
2i+1

)
ik.

Maple and 2.1 show

ν(θ(k))


= 10, k = 5, 6

= 11, k = 1, 2, 7

> 11, other k.

Since T13(8x + 7) =
∑(

8x+7
k

)
θ(k), and

(
8x+7

k

)
is odd for k ∈ {5, 6, 1, 2, 7}, we

obtain, mod 212,

T13(8x+ 7) ≡
(
8x+7

5

)
θ(5) +

(
8x+7

6

)
θ(6) + 211.

Maple shows θ(5) ≡ θ(6) ≡ 3 · 210 mod 212. Since(
8x+7

5

)
+
(
8x+7

6

)
=
(
8x+7

5

)
(1 + 8x+2

6 ) ≡ 0 (mod 4),

we obtain
(
8x+7

5

)
θ(5)+

(
8x+7

6

)
θ(6) ≡ 0 mod 212, from which our desired conclusion

follows. This concludes our comments regarding the proof of Theorem 1.2.
Now we work toward proofs of the more general results, Theorems 1.1, 1.6, and

1.7. First we recall some background information. We will often use that

(−1)jj!S(k, j) =
∑(

j
2i

)
(2i)k − Tj(k). (2.12)

Sometimes we have k < j, in which case S(k, j) = 0, and so Tj(k) =
∑(

j
2i

)
(2i)k

when k < j. Other times we use (2.12) to say that Tj(k) ≡ ±j!S(k, j) mod 2k.
Many times we will use without comment the fact, related to (2.2), that

ν
((

m
n

))
= α(n) + α(m− n)− α(m).

Closely related is the fact that
(
m
n

)
is odd iff each digit in the binary expansion of

m is at least as large as the corresponding digit of n. We will sometimes say that(
m
n

)
is even due to the 2t-position, meaning that in this position m has a 0 and n

has a 1. Other basic formulas that we use without comment are

α(n− 1) = α(n)− 1 + ν(n)
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and, if 0 < ∆ < 2t, then

α(2t+1A+ 2t +∆) = α(A) + t− α(∆− 1).

We also use the well-known formula

S(k + i, k) ≡
(
k+2i−1
k−1

)
mod 2. (2.13)

A generalization to mod 4 values was given in [2] and will be used several times.
We will not bother to state all eight cases of that theorem—just those that we
need.

The proof of Theorem 1.1 utilizes the following two lemmas.

Lemma 2.14. Let 1 6 i 6 2e−1 with e > 2. Then

ν(T2e+1(2
e−1 + i))

{
= 2e − 1 + i, i ∈ {2e−2, 2e−1}
> 2e + i, otherwise,

while

ν(T2e+2(2
e−1 + i))


= 2e − 1 + i, 1 6 i 6 2e−2

= 2e + i, 2e−2 < i < 2e−1

> 2e + i, i = 2e−1,

Proof. For the first part, by the remarks following (2.12), we must show

ν(
∑(

2e+1
2j

)
j2

e−1+i)

{
= 2e−1 − 1, i ∈ {2e−2, 2e−1}
> 2e−1, otherwise,

or equivalently

1
(2e−1)!

∑(
2e+1
2j

)
j2

e−1+i ≡

{
1 mod 2, i ∈ {2e−2, 2e−1}
0 mod 2, otherwise.

By Proposition 2.3, the LHS is congruent mod 2 to S(2e−1+i, 2e−1), and by (2.13)
this is

(
2e−1−1+2i
2e−1−1

)
, which is as required.

The second part of the lemma reduces similarly to showing

1
(2e−1+1)!

∑
j

(
2e+2
2j

)
j2

e−1+i ≡


1 mod 2, 1 6 i 6 2e−2

2 mod 4, 2e−2 < i < 2e−1

0 mod 4, i = 2e−1.

(2.15)

By 2.3, the LHS is congruent mod 4 to

S(2e−1 + i, 2e−1 + 1) + 2S(2e−1 + i, 2e−1). (2.16)

Mod 2, this is
(
2e−1+2i−2

2e−1

)
which is odd if 1 6 i 6 2e−2. Now assume 2e−2 < i <

2e−1. The second term of (2.16) is easily seen to be 0 mod 4 using (2.13). For
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the first term of (2.16), we use part of [2, Thm 3.3], which relates mod 4 values
of S(n, k) to binomial coefficients. It implies that, if e > 3, the mod 4 value of
the first term is

(
2e−2+k
2e−3

)
, where 0 6 k < 2e−3. The 2-exponent in this number is

1 + α(2e−3 + k) − α(2e−2 + k) = 1, as desired. If i = 2e−1, both terms of (2.16)
are 2 mod 4, by a similar analysis. �

Lemma 2.17. If p ∈ Z, δ = 1 or 2, and ν(n) = e+∆ with ∆ > −1, then

ν

(∑
i

(
2e+δ
2i+1

)
(2i+ 1)p((2i+ 1)n − 1)

)
= 2e +∆+ δ − 1.

Proof. The sum equals
∑
j>0

Tj , where

Tj := 2j
(
n
j

)∑
i

(
2e+δ
2i+1

)
(2i+ 1)pij .

For evaluation of the 2-exponent of the i-sum here, we use Corollary 2.7. We
obtain that if j 6 2e+∆, then

ν(Tj) > j + e+∆− ν(j) +

{
2e + δ − 2− j, 1 6 j 6 2e−1

2e−1 − 1, j > 2e−1,

with equality if j = 2e−1. This is > 2e +∆+ δ − 1 with equality iff j = 2e−1. If
j > 2e+∆, then ν(Tj) > 2e +∆ since 2e+∆ + 2e−1 > 2e +∆ for ∆ > −1. �

Now we easily prove Theorem 1.1.

Proof of Theorem 1.1. Let δ ∈ {1, 2}, 1 6 i 6 2e−1, and let

g(x) = ν(T2e+δ(2
e−1x+ 2e−1 + i))− 2e + 2− δ.

Note that the expression that we wish to evaluate for Theorem 1.1 is g(x − 1) +
2e − 2 + δ.

For d > 0, writing Tn(−) as a sum of two parts as we did in (2.9),

g(x+ 2d) = min′
(
g(x),−2e + 2− δ + ν(

∑(
2e+δ
2j+1

)
(2j + 1)p((2j + 1)2

d+e−1

− 1))
)
,

where p = 2e−1x + 2e−1 + i. By Lemma 2.17, the RHS equals min′(g(x), d), and
so g(x) = ν(x− Eδ) for some Eδ by Lemma 2.8. By Lemma 2.14

ν(Eδ) = g(0)



= i, δ = 1, i ∈ {2e−2, 2e−1}
> i, δ = 1, i ̸∈ {2e−2, 2e−1}
= i− 1, δ = 2, 1 6 i 6 2e−2

= i, δ = 2, 2e−2 < i < 2e−1

> i, δ = 2, i = 2e−1.

Our desired g(x−1)+2e−2+δ equals ν(x−1−Eδ)+2e−2+δ, and xi,2e+δ := 1+Eδ

is as claimed. �
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The proof of Theorem 1.6 is similar in nature, but longer.

Proof of Theorem 1.6. Using Lemma 2.8 and arguing as in (2.10), it suffices to
prove that for d > 0 and any integer x

ν

(∑
i

(
n

2i+1

)
(2i+ 1)2

e+ax((2i+ 1)2
e+a+d

− 1)

)
= n− b+ d. (2.18)

Indeed, if

g(x) = ν

(∑
i

(
n

2i+1

)
(2i+ 1)2

e+ax

)
− n+ b,

then (2.18) implies g(x + 2d) = min′(g(x), d) and Theorem 1.6 then follows from
Lemma 2.8.

We write the sum in (2.18) as
∑
Tj with

ν(Tj) = j + e+ a+ d− ν(j) + ν

(∑
i

(
n

2i+1

)
(2i+ 1)2

e+axij

)
. (2.19)

We will show that in all cases ν(Tj) is minimized for a unique value of j.
The second case of the theorem will follow from proving that if 2e < n 6 3·2e−1

and ν(p) > e− 1, then

j + e− 1− ν(j) + ν
(∑(

n
2i+1

)
(2i+ 1)pij

)
> n− 2

with equality iff j = 2e−1. Expanding (2i+1)p as
∑

k>0 2
k
(
p
k

)
ik leads us to needing

that for j > 0

j + e− ν(j) + ν
(∑(

n
2i+1

)
ij
)
> n− 1 (2.20)

with equality iff j = 2e−1, and

j + k + 2e− ν(j)− ν(k) + ν
(∑(

n
2i+1

)
ij+k

)
> n (2.21)

for j, k > 0.
The equality in (2.20) when j = 2e−1 follows easily from Proposition 2.5. Also

by 2.5, the difference in (2.20) becomes

j+ e+1− ν(j)+ ν
(∑(

n
2i+1

)
ij
)
−n > e−α(j)− ν(j) = e− 1−α(j− 1). (2.22)

This is > 0 if j ̸= 2e−1 and j < 3 · 2e−2, while if j = 3 · 2e−2, then
(
n−1−j

j

)
= 0

and so (2.22) is > 0 by 2.5.
Now suppose j > 3 · 2e−2. Then j − ν(j) > 3 · 2e−2, and since n 6 3 · 2e−1,

n− ν([n2 ]!) 6 3 · 2e−2 + e− 1. (2.23)
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Thus, using Proposition 2.1, we obtain

j + e− 1 + ν(j) + ν
(∑(

n
2i+1

)
ij
)
> 3 · 2e−2 + e+ 1 + ν([n2 ]!) > n,

establishing strict inequality in (2.20).
Now we verify (2.21). By 2.5, (2.21) is satisfied if

ν(j) + ν(k) + α(j + k) 6 2e− 2 (2.24)

or if

ν(j) + ν(k) + α(j + k) = 2e− 1 and
(
n−1−j−k

j+k

)
≡ 0 (mod 2). (2.25)

By 2.1 and (2.23), (2.21) is also satisfied if

j + k − ν(j)− ν(k) > 3 · 2e−2 − e. (2.26)

If j + k > 3 · 2e−2, then (2.26) is satisfied. If {j, k} = {2e−1, 2e−2}, then
(2.25) is satisfied. Assume WLOG that ν(j) > ν(k). Then (2.24) is implied by
ν(j) + 1+α(j + k− 1) 6 2e− 2 and this is satisfied whenever j + k 6 3 · 2e−2 and
(j, k) ̸= (2e−1, 2e−2).

The third case of the theorem will follow from proving that, referring to (2.19),
if 2e+1 − 2t+1 < n 6 2e+1 − 2t with 1 6 t < e− 1 and ν(p) > e, then

j + e+ d− ν(j) + ν
(∑(

n
2i+1

)
(2i+ 1)pij

)
> n− 1 + d

with equality iff j = 2e − 2t. Expanding (2i+1)p, this reduces to showing if j > 0
then

j + e+ 1− ν(j) + ν
(∑(

n
2i+1

)
ij
)
> n (2.27)

with equality iff j = 2e − 2t, and if j, k > 0, then

j + k + 2e− ν(j)− ν(k) + ν
(∑(

n
2i+1

)
ij+k

)
> n. (2.28)

If j > 2e, since n 6 2e+1 − 2,

j + e+ 1− ν(j) > 2e + e+ 1 > n− ν([n2 ]!),

and so strict inequality holds in (2.27) by 2.1.
By Theorem 2.5, (2.27) is satisfied if

e > ν(j) + α(j) = α(j − 1) + 1, (2.29)

and equality holds in (2.27) iff equality holds in (2.29) and
(
n−1−j

j

)
is odd. If

j < 2e, then α(j − 1) 6 e− 1 with equality iff j = 2e − 2r for some r. Thus (2.29)
holds with equality iff j = 2e − 2t by Lemma 2.32.
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If j = 2e, by Proposition 2.6 the LHS of (2.27) is > n+1. Thus (2.27), including
consideration of equality, has been established for all j.

By 2.1, (2.28) is satisfied if

j + k + 2e− ν(j)− ν(k) > n− ν([n2 ]!),

and hence, since n 6 2e − 2, it is satisfied if

j + k + 2e− ν(j)− ν(k) > 2e + e− 1.

This is satisfied if j + k > 2e.
By 2.5, (2.28) is also satisfied if

ν(j) + ν(k) + α(j + k) 6 2e− 1.

This is satisfied if j = k = 2e−1 and if ν(j) + α(j + k − 1) 6 2e− 2, which is true
for all other (j, k) with j + k 6 2e.

The first case, n = 2e, will follow similarly from

j + e− 1− ν(j) + ν
(∑(

2e

2i+1

)
ij
)
> 2e (2.30)

for j > 0 with equality iff j = 2e−2, while if j, k > 0, then

j + k + 2e− 2− ν(j)− ν(k) + ν
(∑(

2e

2i+1

)
ij+k

)
> 2e + 2. (2.31)

Equality in (2.30) with j = 2e−2 follows from Proposition 2.6 since(
2e−1−2e−2

2e−2

)
≡ 2 mod 4. If j > 2e−1, then strict inequality in (2.30) is implied

by 2.1. If j = 2e−1, it is implied by Proposition 2.3. It is implied by Theorem 2.4
if ν(j) 6 e− 3, which is true for j < 2e−1 provided j ̸= 2e−2.

Similarly, (2.31) is implied by 2.1 if j+k > 2e−1 unless j = k = 2e−2, in which
case it is implied by 2.3. If j + k < 2e−1, then ν(j) + ν(k) 6 2e − 5, and so the
claim follows from Proposition 2.4. �

The following lemma was used in the above proof.

Lemma 2.32. If 2e+1 − 2t+1 6 m < 2e+1 − 2t with 0 6 t < e and j = 2e − 2r

with 0 6 r < e, then
(
m−j
j

)
is odd iff r = t.

Proof. If r < t, then 0 6 m − j < j, so
(
m−j
j

)
= 0. If r = t, then

(
m−j
j

)
=(

2e−2t+d
2e−2t

)
with 0 6 d < 2t and hence is odd. If r > t, then the binary expansion

of m− j has a 0 in the 2r position, while j has a 1 there. �

The following lemma will be useful in the proof of Theorem 1.7.

Lemma 2.33. In the notation of Theorem 1.7, if p ∈ Sn, then α(p− p0) 6 1 and(
n−p0−1

p0

)
and

(
n−2e−1−p0−1

2e−1+p0

)
are odd.
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Proof. Let p = A2t + p0 and n = 2e + 2t + ∆ with both p0 and ∆ nonnegative
and less than 2t. If ∆ − p0 − 1 < 0, then

(
2e−A2t

A2t

)
is odd, which easily implies

α(A) 6 1, while if ∆− p0 − 1 > 0, then
(
2e+2t−A2t

A2t

)
is odd. This implies that A is

0 or an even 2-power.
Now, if p ̸= p0, we can write p = p0 + 2t+r with r > 0. If r = 0, then(

2e+∆−1−p0

2t+p0

)
odd implies ∆ − 1 − p0 < 0 and

(
2t+∆−1−p0

p0

)
odd, which implies(

n−p0−1
p0

)
odd. If r > 0, then the odd binomial coefficient can be considered mod

2 as
(
2e−2t+r

2t+r

)(
2t+∆−1−p0

p0

)
, which implies

(
n−p0−1

p0

)
is odd.

Now we may assume
(
n−p0−1

p0

)
is odd. Thus

(
2t+∆−1−p0

p0

)
is odd and hence so

is
(
2e−1+2t+∆−1−p0

2e−1+p0

)
. �

The proof of Theorem 1.7 is similar to the others, but longer yet.

Proof of Theorem 1.7. Similarly to the proofs of the other three theorems, it
suffices to prove for d > 0 and any integer x

ν
(∑(

n
2i+1

)
(2i+ 1)2

e−1x+q((2i+ 1)2
e−1+d

− 1)
)
= d+ n− 2− α(p0). (2.34)

Here, and for the remainder of this section, n, e, t, q, p, and p0 are as in Theorem
1.7. To prove (2.34), it suffices to show for k > 0 and j > 0

ν
(
2e−1x+q

k

)
+ e− 1− ν(j) + j + k + ν

(∑(
n

2i+1

)
ij+k

)
> n− 2− α(p0) (2.35)

with equality iff j = 2e−1 and k = p0.
We first prove the equality. Note that if q is associated to p ∈ Sn, then

(
2e−1x+q

p0

)
is odd. We must show that

ν
(∑(

n
2i+1

)
i2

e−1+p0

)
= n− 2− p0 − 2e−1 − α(p0).

This follows from Proposition 2.5 since
(
n−2e−1−1−p0

2e−1+p0

)
is odd by Lemma 2.33.

Strict inequality in (2.35) when j = 2e−1 and k ̸= p0 follows from Lemma 2.36
using Propositions 2.1 and 2.6. Here we also use that if p ∈ Sn and k satisfies
(2.37) then k < 2e−1 and hence the x in

(
2e−1x+q

k

)
does not play an essential role.

Lemma 2.36. If n, e, t, q, p, and p0 are as in Theorem 1.7 and

0 6 k 6 n− ν([n2 ]!)− 2− 2e−1 − α(p0), (2.37)

then
α(q − k) + α(p0)− α(q) > −1. (2.38)

If the LHS of (2.38) equals −1, then either n is even and
(
n−1−2e−1−k

2e−1+k

)
≡ 0 mod 4

or
(
n−1−2e−1−k

2e−1+k

)
= 0 =

(
n−1−2e−1−k
2e−1+k−2

)
. If the LHS of (2.38) equals 0, then either(

n−1−2e−1−k
2e−1+k

)
≡ 0 mod 2 or k = p0.
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Proof. We begin by proving (2.38). Using Lemma 2.33 and that q is associated
to p, we have

q = p0 + δ2t+r + ϵ2w (2.39)

with δ and ϵ equal to 0 or 1, r > 0, and w = ν(n)− 1 or w > t. The only way that
(2.38) could fail is if k = q = p0 + 2t+r + 2w. But (2.37) implies k 6 2t + t − 2,
which is inconsistent with w > t and with r > 0. Thus n is even and w = ν(n)− 1
and r = 0. Let n = 2e +2t + c2t−1 +2b with c ∈ {0, 1} and b 6 2t−2 − 1. If c = 0,
then (2.37) reduces to p0 + α(p0) + 2t−2 + 2w 6 t − 3, which is false. If, on the
other hand, c = 1, the assumption that

(
n−p−1

p

)
is odd and p > 2t implies that

p0 > 2t−1 + 2b, so k > 2t + 2t−1 contradicts k 6 2t + t− 2.
There are three conceivable ways in which equality could hold in (2.38). One

is ϵ = 0, δ = 1, and k = q; i.e., k = q = p > 2t. But k > 2t implies 2e−1 + k >

n−1−2e−1−k and hence
(
n−1−2e−1−k

2e−1+k

)
= 0. We also have

(
n−1−2e−1−k
2e−1+k−2

)
= 0; the

only way this could fail is if n = 2e +2t+1 − 1 and k = p = 2t, but then
(
n−p−1

p

)
is

not odd. Another is ϵ = δ = 1 and α(q−k) = 1. In this case, the only way to have
k < 2t is if w = ν(n) − 1 and k = q − 2t+r, where r is as in (2.39). In this case,(
n−1−2e−1−k

2e−1+k

)
≡ 0 mod 4, using the result that

(
a+b
b

)
is divisible by 2t if there are

at least t carries in the binary addition of a and b. In this case, either the binomial
coefficient equals 0, or else, if v = ν(n), there will be carries in the 2v−1 and 2v

positions in the relevant binary addition. The third possibility, ϵ = 1, δ = 0, and
k = q, implies that n is even and ν(q) = ν(n) − 1 and leads to

(
n−1−2e−1−k

2e−1+k

)
≡ 0

mod 4, exactly as above.
Finally we show that if

(
n−1−2e−1−k

2e−1+k

)
is odd and the LHS of (2.38) equals 0,

then k = p0. It is not difficult to see that if 0 6 k < n− 2e−1 and
(
n−1−2e−1−k

2e−1+k

)
is

odd, then k < 2t and
(
n−1−k

k

)
is odd.

First suppose α(q − k) = 2 and α(q)− α(p0) = 2. If q = p0 + 2t+r + 2t+s with
0 6 r < s, then to keep k < 2t, we must have k = p0. If q = p0 + 2t+r + 2ν(n)−1

with r > 0, then we must have k = p0 + 2ν(n)−1 − 2u for some u. If u ̸= ν(n)− 1,
then

(
n−1−2e−1−k

2e−1+k

)
is even due to the 2min(u,ν(n)−1)-position.

Now suppose α(q − k) = 1 and α(q)− α(p0) = 1. If q = p0 + 2t+r with r > 0,
then k = p0 is the only way to have k < 2t. If q = p0+2ν(n)−1, then the argument
at the end of the preceding paragraph applies. This completes the proof of Lemma
2.36, and hence the proof that when j = 2e−1, (2.35) holds with equality exactly
as claimed there. �

We continue the proof of Theorem 1.7 by establishing strict inequality in (2.35)
when 0 < j < 2e−1 and 0 6 k < 2e−1. The following elementary lemma will be
useful.

Lemma 2.40. Suppose 0 < j < 2e−1 and 0 6 k < 2e−1. Let ϕ(j, k) = α(j + k) +
ν(j)− α(k). Then

1. ϕ(j, k) 6 e− 1;
2. ϕ(j, k) = e− 1 iff j = 2e−1 − 2h and 0 6 k < 2h for some 0 6 h < e− 1;
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3. ϕ(j, k) = e − 2 iff either j = 2e−1 − 2h and 2e−2 6 k < 2e−2 + 2h for some
0 6 h < e− 1, or j = 2e−1 − 2ℓ − 2h, 0 6 h 6 ℓ < e− 1, and 0 6 k < 2h or
2ℓ 6 k < 2ℓ + 2h.

Proof. Let h = ν(j), and let k0 = k − (k mod 2h). Then ϕ(j, k) = h + α(j +
k0)−α(k0). The only way to get α(j+k0)−α(k0) = e−h−1 is if j+k0 = 2e−2h

and α(k0) = 1, or j + k0 = 2e−1 − 2h and k0 = 0. But the first is impossible
since k0 < 2e−1. Similarly the only ways to get α(j + k0)− α(k0) = e− h− 2 is if
(α(j+k0), α(k0)) = (e−h−1, 1) or (e−h, 2), and these can only be accomplished
in the ways listed in part (3). �

Let (
m−s
s

)′
=
(
m−s
s

)
+

{
2
(
m−s
s−2

)
, if m and s are even

0, otherwise

and
ν̃2
(
m−s
s

)
= min(2, ν(

(
m−s
s

)′
)). (2.41)

Let ϕ(j, k) be as in Lemma 2.40. The desired strict inequality in (2.35) when 0 <
j < 2e−1 and 0 6 k < 2e−1 follows from the following result using Proposition 2.6.

Theorem 2.42. If n, e, t, q, p, and p0 are as in Theorem 1.7, 0 < j < 2e−1, and
0 6 k < 2e−1, then

α(q − k) + e− 1 + ν̃2
(
n−1−j−k

j+k

)
> α(q)− α(p0) + ϕ(j, k). (2.43)

Proof. By Lemma 2.33, p = p0 or p0 + 2t+s with s > 0. Hence α(q)− α(p0) 6 2.
Also ν(p) > ν(n), a consequence of the oddness of

(
n−1−p

p

)
, will be used often

without comment. The theorem will follow from showing:

• if ϕ(j, k) = e− 1, then

ν̃2
(
n−1−j−k

j+k

)
>


2, if α(q)− α(p0) = 2 and k = q

1, if α(q)− α(p0) = 2 and α(q − k) = 1

1, if α(q)− α(p0) = 1 and k = q,

• and if ϕ(j, k) = e− 2, then

ν
(
n−1−j−k

j+k

)
> 1 if α(q)− α(p0) = 2 and k = q.

We call these cases 1 through 4. Let n = 2e + 2t + ∆ with 0 6 ∆ < 2t. Our
hypothesis is that

(
2e+2t−ϵ2t+s+∆−p0−1

ϵ2t+s+p0

)
is odd.

Case 3: We have q = p0+2r with r > t or r = ν(n)−1, in which latter case ∆

and p0 are divisible by 2r+1. We must show that
(
2e−1+2t+2h+∆−1−p0−2r

2e−1−2h+p0+2r

)
is even.

Here 2h > p0 + 2r. If r > t, then the binomial coefficient is even due to the 2r- or
2h-position, while if r = ν(n)− 1, it is even due to the 2ν(n)−1-position.
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Case 2: Here q = p0 + 2s + 2r with s > t and r = ν(n) − 1 or r > s. Also
k = q − 2v and 2h > k. The binomial coefficient which we must show is even is

C :=

(
2e−1 + 2h + 2t +∆− 1− p0 − 2s − 2r + 2v

2e−1 − 2h + p0 + 2s + 2r − 2v

)
.

If v = r or s, it reduces to Case 3, just considered. If r = ν(n)− 1, then C is even
due to the 2min(v,ν(n)−1)-position. Otherwise C is even due to the 2h-position,
since 2t +∆− 1− p0 − 2s − 2r + 2v is negative.

Case 1: Now q is as in Case 2, but k = q. We must show that there are at
least two carries in the binary addition of 2e−1− 2h+ p0+2s+2r and 2h+1+2t+
∆− 1− 2p0 − 2s+1 − 2r+1. If r = ν(n)− 1, carries occur in positions 2r and 2r+1.
If r > s, carries occur in 2r and 2h. The second term in the definition of

(
m−s
s

)′
is

easily seen to be inconsequential here.
Case 4: Again q is as in Case 2, k = q, and (j, k) is one of the two types in

Theorem 2.42. For the first type of (j, k), if r > s, then j + k > n− 1− j − k, so(
n−1−j−k

j+k

)
= 0, while if r = ν(n) − 1, the binomial coefficient is even due to the

2ν(n)−1-position. If (j, k) is of the second type and k = p0 + 2s + 2ν(n)−1, then(
n−1−j−k

j+k

)
is even due to the 2ν(n)−1-position, since p0, n, and j are all divisible

by 2ν(n).
If j = 2e−1 − 2ℓ − 2h and 2ℓ 6 k < 2ℓ + 2h with k = p0 + 2s + 2r with r > s,

we claim that
(
n−1−j−k

j+k

)
is even due to the 2e−2-position. Indeed, 2e−1 − 2h 6

j + k < 2e−1, so j + k has a 1 in the 2e−2-position, while

2e−1 6 n− j − k − 1 < 2e−1 + 2t+1 − 2h < 2e−1 + 2e−2

since t < e− 3. If j = 2e−1 − 2e−2 − 2h and 2t+1 < k < 2h, one easily verifies that(
n−1−j−k

j+k

)
is even due to the 2e−3-position. Finally, if j = 2e−1 − 2ℓ − 2h with

h < ℓ < e−2 and 2t+1 < k < 2h, then
(
n−1−j−k

j+k

)
is even due to the 2e−2-position,

as is easily proved. �

Our final step in the proof of Theorem 1.7 is to prove strict inequality in (2.35)
when j > 2e−1. Proposition 2.1 implies the result if k > 2t or if j > 2e. Thus, by
Proposition 2.6, it suffices to prove (2.43) when 2e−1 < j 6 2e and 0 6 k < 2t.
Recall that q is as in (2.39). Because k < 2t, it must be the case that if δ = 1, then
2t+r appears in q−k, and similarly 2w if ϵ = 1 and w > t. These will contribute to
α(q− k). Thus the only ways to have Dk := α(q− k)− (α(q)−α(p0)) 6 0 are (a)
k = p0 andDk = 0; (b) k = p0+2ν(n)−1 andDk = −1; and (c) k = p0+2ν(n)−1−2v

and Dk = 0.
Similarly to Lemma 2.40, we have for 2e−1 6 j 6 2e and 0 6 k < 2e−1,

ϕ(j, k) 6 e with equality iff j = 2e − 2h and 0 6 k < 2h for some 0 6 h < e, or
j = 2e. We will be done once we prove the following lemma. �

Lemma 2.44. If p ∈ Sn and 2e−1 < j 6 2e and 0 6 k < 2t, then
1. if k = p0 or p0 +2ν(n)−1 − 2v for some v, and ϕ(j, k) = e, then

(
n−1−j−k

j+k

)
is

even.
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2. if k = p0 + 2ν(n)−1 and ϕ(j, k) = e, then ν̃2
(
n−1−j−k

j+k

)
= 2.

3. if ϕ(j, k) = e− 1 and k = p0 + 2ν(n)−1, then
(
n−1−j−k

j+k

)
is even.

Proof. If j = 2e, then ν̃
(
n−1−j−k

j+k

)
= 0 = ν

(
n−1−j−k

j+k

)
, so now we may assume

j < 2e. If k = p0 or p0 + 2ν(n)−1 and ϕ(j, k) = e, then j + k > n− 1− j − k (and
hence

(
n−1−j−k

j+k

)
= 0) unless h = e − 2 and t = e − 1. But part of the definition

of Sn said that if t = e− 1, then p0 > ∆, and hence j + k > n− 1− j − k in this
case, too. For part (2), we also need that

(
n−1−j−k
j+k−2

)
is even, but it will also be 0,

using that 2ν(n) − 2 > 0.
If k = p0 + 2ν(n)−1 − 2v, then

(
n−1−j−k

j+k

)
is even due to the 2min(v,ν(n)−1)-

position if v ̸= ν(n) − 1, while if v = ν(n) − 1, we are in the case k = p0 already
handled. A similar argument works for part (3), using the 2min(ν(j),ν(k))-position,
provided ν(j) ̸= ν(k). However, equality of ν(j) and ν(k) will not occur, because
one can easily prove by induction on j that if 2e−1 6 j < 2e and 0 6 k < 2e−1

and ν(j) = ν(k), then α(j + k) + ν(j)− α(k) < e− 1. �

3. Proofs of results about ν
(∑ ( n

2i+1

)
ik
)

In this section, we prove four propositions about ν
(∑(

n
2i+1

)
ik
)

which were stated
and used in the previous section. The polynomials qm(x) which we introduce in
Definition 3.1 might be of independent interest.

Our first proof utilizes an argument of Sun ([13]).

Proof of Proposition 2.3. We mimic the argument in the proof of [13, Thm 1.3].
Let Cm,ℓ,b =

∑
i

(
m

2i+b

)(
i
ℓ

)
. Using an identity which relates ik to Stirling numbers,

we obtain ∑
i

(
2n+ϵ
2i+b

)
ik =

∑
i

(
2n+ϵ
2i+b

)∑
ℓ

(
i
ℓ

)
ℓ!S(k, ℓ)

=
∑
ℓ

C2n+ϵ,ℓ,bℓ!S(k, ℓ).

Since C2n+1,n,0 = 2n+1, C2n+1,n−1,0 = 2
3 (2n+1)(n+1)n, C2n,n,0 = 1, C2n,n−1,0 =

2n2, C2n,n,1 = 0, C2n,n−1,1 = 2n, C2n+1,n,1 = 1, and C2n+1,n−1,1 = 2n(n+1), our
result follows from

ν(ℓ!C2n+ϵ,ℓ,b) > ν((2n+ ϵ)!)− ℓ = ν(n!) + n− ℓ,

where we have used [14, Thm 1.1] at the first step. �
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The remaining proofs utilize a new family of polynomials qm(x).

Definition 3.1. For m > 1, we define polynomials qm(x) inductively by q1(x) =
x− 1, and if

(x+ 1)x(x− 1) · · · (x−m+ 2) =

m∑
j=1

bj,mx
j , (3.2)

then

(x+ 1)x(x− 1) · · · (x−m+ 2) =
m∑
j=1

2m−jbj,mqj(x). (3.3)

For example, q2(x) = x2 − x + 2. The relevance of these polynomials is given by
the following result.

Theorem 3.4. For all integers x > m,∑
i

im
(
x+1
2i+1

)
= 2x−2mqm(x).

Proof. The proof is by induction on m. Validity when m = 1 follows from

2
∑

i
(
x+1
2i+1

)
+ 2x =

∑
(2i+ 1)

(
x+1
2i+1

)
= (x+ 1)

∑(
x
2i

)
= (x+ 1)2x−1.

We show that 22m−x
∑
im
(
x+1
2i+1

)
satisfies the equation (3.3) which defines

qm(x). We insert this expression for qj(x) into the RHS of (3.3) and obtain

2m−x
∑
i

(
x+1
2i+1

)∑
j

(2i)jbj,m = 2m−x
∑(

x+1
2i+1

)
(2i+ 1) · · · (2i−m+ 2)

= 2m−x(x+ 1) · · · (x−m+ 2)
∑(

x−m+1
x−2i

)
,

but
∑(

x−m+1
x−2i

)
= 2x−m, since it is the sum of all

(
x−m+1

j

)
with j in a fixed parity.

Thus we obtain (x + 1) · · · (x −m + 2), as desired. At the second step above, we
have used (3.2) with x = 2i. �

Proposition 2.4 is an immediate consequence of Theorems 3.4 and 3.5.

Theorem 3.5. For all integers x > m,

ν(qm(x)) > m− x+ ν((x+ 1)!) = m+ 1− α(x+ 1).

Proof. The proof is by induction on m. When m = 1, it reduces to α(x + 1) +
ν(x− 1) > 2.

For the LHS of (3.3), note that

ν((x+ 1) · · · (x−m+ 2)) > ν((x+ 1)!)− (x−m),

using (2.2). For the j-term (j < m) in the sum in (3.3), by induction on m we
have 2-exponent

> m− j + ν(bj,m) + j − x+ ν((x+ 1)!) > m− x+ ν((x+ 1)!).

Thus the inequality for ν(qm(x)) follows by induction. �
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The proof of Proposition 2.5 requires the following two lemmas, and the result
follows easily from the second and Theorem 3.4.

Lemma 3.6. If bj,m is as in Definition 3.1, then

ν(bj,m) > ν(m!)− ν(j!)− (m− j)

with equality iff
(

j
m−j

)
is odd.

Proof. We have

∑
j>0

xj
∑
m>j

bj,m
zm

m! =
∑
m>0

zm

m!

m∑
j=0

bj,mx
j

=
∑
m>0

1
m! (x+ 1)mz

m =
∑
m>0

(
x+1
m

)
zm

= (1 + z)x+1 = e(x+1) log(1+z)

=
∑
k>0

1
k! (log(1 + z))k(1 + x)k

=
∑
k>0

1
k! (log(1 + z))k

k∑
i=0

(
k
i

)
xi.

Here we have introduced the notation (x+1)m = (x+1)x · · · (x−m+2). Equate
coefficients of xjzm, and get

1
m!bj,m = 1

j!

∑
k

1
(k−j)! ([z

m](log(1 + z))k).

Here [zm]p(z) denotes the coefficient of zm in p(z). Let ℓ(z) = log(1 + z)/z. The
claim of the lemma reduces to

ν

(∑
k

1
(k−j)! ([z

m−k]ℓ(z)k)

)
> −(m− j),

or equivalently

ν

(∑
k

2k

(k−j)! ([z
m−k]ℓ(2z)k)

)
> j with equality iff

(
j

m−j

)
is odd.

Since ℓ(2z) ≡ 1 + z mod 2, and ν((k − j)!) 6 k − j with equality iff k = j, all
terms in the sum have ν(−) > j with equality iff k = j and

(
j

m−j

)
is odd. �

Lemma 3.7. Let qm(−) be as in Definition 3.1, and let x be any integer. Then
ν(qm(x)) > ν(m!) with equality iff

(
x−m
m

)
is odd.
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Proof. We have

qm(x) = (x+ 1)m −
m−1∑
j=1

2m−jbj,mqj(x).

Note that ν((x + 1)m) > ν(m!) with equality iff
(
x+1
m

)
is odd. By induction, the

j-term Tj in the sum satisfies

ν(Tj) > m− j + ν(m!)− ν(j!)− (m− j) + ν(j!) = ν(m!)

with equality iff
(

j
m−j

)
is odd and

(
x−j
j

)
is odd. This implies the inequality.

Equality occurs iff (
x+1
m

)
+

m−1∑
j=0

(
j

m−j

)(
x−j
j

)
(3.8)

is odd. By Lemma 3.10,
m∑
j=0

(
j

m−j

)(
x−j
j

)
≡
(
x+1
m

)
mod 2. Thus the expression in

(3.8) is congruent to
(
x−m
m

)
, establishing the claim. �

Proposition 2.6 follows immediately from Theorem 3.4 and the following result,
which is a refinement of Lemma 3.7.

Theorem 3.9. If m is a positive integer and x is any integer, then, mod 4,

qm(x)/m! ≡
(
x−m
m

)
+

{
2
(
x−m
m−2

)
if x and m are even

0 otherwise.

The proof of Theorem 3.9 requires several subsidiary results.

Lemma 3.10. If m and x are integers with m > 0, then

m∑
j=0

(
j

m−j

)(
x−j
j

)
≡
(
x+1
m

)
+ 2
(
x+1
m−1

)
(mod 4).

Proof. This follows easily from Jensen’s Formula (see e.g., [10]), which says that
if A, B, and D are integers with D > 0, then

D∑
j=0

(
j+B
D−j

)(
A−j
j

)
=

D∑
j=0

(−1)j
(
A+B−j
D−j

)
.

This implies that the sum in our lemma equals
∑m

j=0(−1)j
(
x−j
m−j

)
. We prove that

this is congruent, mod 4, to the RHS of our lemma when x > 0 by induction on x.
The formula is easily seen to be true if x = 0 (note that when x = 0 and m = 1
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the LHS equals −1 while the RHS equals 3), and the induction step is by Pascal’s
formula. For x < 0, let y = −x with y > 0. The equation to be proved becomes

m∑
j=0

(
m+y−1
m−j

)
≡
(
y+m−2

m

)
− 2
(
y+m−3
m−1

)
(mod 4).

When y = 1, both sides equal δm,0 + 2δm,1 and the result follows by induction on
y using Pascal’s formula. �

The next result refines Lemma 3.6.

Lemma 3.11. If bj,m is as in Theorem 3.1, then, mod 4,

2m−jj!bj,m/m! ≡
(

j
m−j

)
+ 2cj,m, where cj,m =

{(
j

m−j−1

)
if j is even(

j
m−j−2

)
if j is odd.

Proof. As in the proof of 3.6, we have

2m−jj!bj,m/m! =
∑
k>j

2k−j

(k−j)! ([z
m−k]ℓ(2z)k). (3.12)

Since, mod 4, ℓ(2z) ≡ 1− z − 2z3, and 2k−j/(k − j)! ≡ 0 unless k − j equals 0 or
a 2-power, (3.12) equals

[zm−j ](1− z − 2z3)j + 2
∑
e>0

[zm−j−2e ](1− z − 2z3)j+2e

≡ [zm−j ](1− z − 2z3)j + 2
∑
e>0

(
j + 2e

m− j − 2e

)
.

Replace m− j by ℓ. We must prove, mod 4,

Aj,ℓ + 2Bj,ℓ ≡ Cj,ℓ + 2Dj,ℓ, (3.13)

where

Aj,ℓ =
(
j
ℓ

)
, Cj,ℓ = [zℓ](1− z − 2z3)j , Dj,ℓ =

∑
e>0

(
j+2e

ℓ−2e

)
,

and

Bj,ℓ =

{(
j

ℓ−1

)
j even(

j
ℓ−2

)
j odd.

If j = 0, both sides of (3.13) are congruent to δℓ,0 + 2δℓ,1. For the RHS, note
that if ℓ = 2f with f > 1, then 2D0,ℓ ≡ 0 as it obtains a 2 from e = f and from
e = f − 1.
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Having proved the validity of (3.13) when j = 0, we proceed by induction on
j. If j is even, then, mod 4,

Aj+1,ℓ + 2Bj+1,ℓ − Cj+1,ℓ − 2Dj+1,ℓ

= Aj,ℓ +Aj,ℓ−1 + 2(Bj,ℓ−1 +Bj,ℓ−2)− (Cj,ℓ − Cj,ℓ−1 − 2Cj,ℓ−3)

− 2(Dj,ℓ +Dj,ℓ−1)

≡ (Aj,ℓ + 2Bj,ℓ − Cj,ℓ − 2Dj,ℓ) + (Aj,ℓ−1 + 2Bj,ℓ−1 − Cj,ℓ−1 − 2Dj−1,ℓ)

− 2Bj,ℓ + 2Bj,ℓ−2 + 2Cj,ℓ−1 + 2Cj,ℓ−3

≡ −2
(

j
ℓ−1

)
+ 2
(

j
ℓ−3

)
+ 2
(

j
ℓ−1

)
+ 2
(

j
ℓ−3

)
≡ 0,

and a similar argument works when j is odd. �

The following result relates the even parts in 3.9 and 3.11.

Lemma 3.14. Let

pj(x) =

{(
x−j
j−2

)
, x and j even

0, otherwise
and cj,m =

{(
j

m−j−1

)
, j even(

j
m−j−2

)
, j odd.

Then, mod 2, if x and m are integers with m > 0,

(
x+1
m−1

)
≡

m∑
j=1

((
j

m−j

)
pj(x) + cj,m

(
x−j
j

))
. (3.15)

Proof. First let x be odd. By Lemma 3.10, mod 2,(
x+1
m−1

)
≡
∑
j

(
j

m−j−1

)(
x−j
j

)
.

Since pj(x) = 0 and
(
x−j
j

)
≡ 0 for odd j, this is equivalent to (3.15) in this case.

Now suppose x is even and m odd. We must prove, mod 2,(
x+1
m−1

)
≡
∑
j odd

(
j

m−j−2

)(
x−j
j

)
+
∑

j even

((
j

m−j

)(
x−j
j−2

)
+
(

j
m−j−1

)(
x−j
j

))
.

By 3.10, the LHS is congruent to
∑(

j
m−j−1

)(
x−j
j

)
. If j is odd,

(
j

m−j−1

)
≡
(

j
m−j−2

)
,

and if j is even,
(

j
m−j

)
≡ 0. The desired result is now immediate.

Finally suppose x and m are both even. Again using 3.10, we must show∑
j odd

(
j

m−j−1

)(
x−j
j

)
≡
∑

j even

(
j

m−j

)(
x−j
j−2

)
+
∑
j odd

(
j

m−j−2

)(
x−j
j

)
since

(
j

m−j−1

)
≡ 0 if j is even. The terms on the LHS combine with the j-odd

terms on the RHS to yield
∑

j odd

(
j+1

m−j−1

)(
x−j
j

)
. Letting k = j + 1, this becomes∑

k even

(
k

m−k

)(
x−k+1
k−1

)
. Since x and k are even,

(
x−k+1
k−1

)
≡
(
x−k
k−2

)
, and so all terms

cancel. �
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Now we easily prove Theorem 3.9.

Proof of Theorem 3.9. The proof is by induction on m, with the case m = 1
immediate. Using notation of 3.14, equation (3.3) yields, mod 4,

qm(x)/m! =
(
x+1
m

)
−

m−1∑
j=1

j!2m−jbj,m
m!

qj(x)

j!

≡ −2
(
x+1
m−1

)
+

m∑
j=0

(
j

m−j

)(
x−j
j

)
−

m−1∑
j=1

((
j

m−j

)
+ 2cj,m

)((
x−j
j

)
+ 2pj(x)

)
≡
(
x−m
m

)
− 2
((

x+1
m−1

)
−

m−1∑
j=1

((
j

m−j

)
pj(x) + cj,m

(
x−j
j

))
≡
(
x−m
m

)
+ 2pm(x),

as desired. Here we have used 3.10 and 3.11 at the second step and 3.14 at the
last step. �

4. Relationship with Hensel’s Lemma

In [5], the author introduced Lemma 2.8 and applied it to study ν(T5(−)) and
ν(T6(−)) similarly to what we do here for all Tn(−). Clarke was quick to observe
in [3] that if Tn(−) is considered as a function on Z2, then our conclusion that
ν(Tn(x)) = ν(x − x0) + c0 when x is restricted to a congruence class C can
be interpreted as saying that Tn(x0) = 0. He showed that if Tn(x0) = 0 and
|T ′

n(x0)| ̸= 0, then
|Tn(x)| = |x− x0||T ′

n(x0)|

on a neighborhood of x0, which corresponds to our congruence class C. Here again
|x| = 1/2ν(x) on Z2, and d(x, y) = |x− y| defines the metric. Also, T ′

n denotes the
derivative. Moreover, Clarke noted that the iteration toward the root x0 in our
theorems is a disguised form of Hensel’s Lemma for convergence toward a root of
the function Tn.

We illustrate by considering the root of T13 of the form 4x0 + 1. See Theorem
1.2 and Table 1.3. For our iteration toward x0, let

g(x) = ν(T13(4x+ 1))− 10. (4.1)

Then g(0) = 1, g(21) = 5, g(21 + 25) = 6, etc. Thus our early approximation to
4x0 + 1 is

1 + 4(21 + 25 + 26), (4.2)

and, continuing, we obtain that the last 18 digits in the binary expansion of 4x0+1
are

111001001110001001. (4.3)

Note that each 1 in the binary expansion requires a separate calculation.
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Now we describe the Hensel point of view, following Clarke ([3]). He showed
that

T ′
n(k) =

∑(
n

2i+1

)
(2i+ 1)kL(2i+ 1),

where

L(2i+ 1) =

∞∑
j=1

(−1)j−1(2i)j/j

is the 2-adic logarithm. Hensel’s Lemma applied to an analytic function f involves
the iteration kn+1 = kn − f(kn)

f ′(kn)
, which, under favorable hypotheses, converges to

a root of f . We have f = T13. Using Maple, we find

ν(T ′
13(k)) =


8, k ≡ 1, 2 (4)

9, k ≡ 0 (4)

> 11, k ≡ 3 (4).

(4.4)

To prove this, which involves an infinite sum (for L) and infinitely many values
of k, first note that our only claim is about the mod 211 value of T ′

13, and so the
sum for L may be stopped after j = 12. Since L(2i + 1) ≡ 0 mod 4, we are only
concerned with (2i + 1)k mod 29. Since (2i + 1)k mod 29 has period 28 in k,
performing the computation for 256 values of k would suffice.

Let k0 = 1. Then Maple computes that k1 = 1 − T13(1)
T ′
13(1)

has binary expansion

ending 1001001, and so agrees with (4.3) mod 64. Next k2 = k1 − T13(k1)
T ′
13(k1)

has
binary expansion ending 0001110001001, agreeing with (4.3) mod 212. Finally
k3 = k2 − T13(k2)

T ′
13(k2)

agrees with (4.3), and hence is correct at least mod 218. This is
much faster convergence than ours.

Let θ(x) = T13(4x + 1). Our algorithm essentially applies Hensel’s Lemma to
θ(x), but just takes the leading term each time. For all x, ν(θ′(x))
= ν(4T ′

13(4x + 1)) = 10, and so our g(x) equals ν(θ(x)/θ′(x)). Thus when we
let xi+1 = xi + 2g(xi), we are adding the leading term of θ(xi)/θ′(xi). Once the
limiting value, which we denote by x0, is found, the root of T13 is 4x0 + 1.

In [3], Clarke defines, for an analytic function f ,

g(x, h) =
f(x+ h)− f(x)− hf ′(x)

h2

and shows that if f(x0) = 0 and |g(x, h)| 6 2r for all relevant x and h, then the
desired formula

|f(x)| = |x− x0||f ′(x0)|

holds for all x satisfying
|x− x0| < |f ′(x0)|/2r. (4.5)

He also notes that our Tn(−) are analytic when restricted to all 2-adic integers of
either parity.
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For f = T13, Maple suggests that ν(g(x, h)) > 7 for h even, with equality iff
x+ h ≡ 0, 3 mod 4. This can be easily proved using Maple calculations and some
elementary arguments. Hence r = −7. Using (4.4), we obtain the results of Table
1.3 for n = 13 which are listed there as C = [1, 2 (4)] and [0, 4 (8)], since

|T ′
13(x0)|
2−7

=

{
2−1, x0 ≡ 1, 2 (4)

2−2, x0 ≡ 0 (4).

Being less than this requires |x− x0| 6 2−2 or 2−3 in (4.5), whose reciprocals are
the moduli of the congruence classes in Table 1.3.

Another result of [3] gives a condition,

|f(x)| < min
( |f ′(x)|

2k−1 ,
|f ′(x)|2

2r

)
(4.6)

(where |g(x, h)| 6 2r and f is analytic on c+2kZ2), which guarantees that iteration
of Hensel from x converges to a root of f . For f = T13 and x ≡ 3 (4), |T ′

13(x)|2/2r 6
(2−11)2/2−7 = 2−15 by (4.4), while by Table 1.3 |T13(x)| takes on values 2−11, 2−13,
and 2−15. Thus the condition (4.6) does not hold, consistent with our finding in
Table 1.3 that |T13(x)| is constant on balls about 7, 3, and 11, so there is no root
in these neighborhoods.

Clarke’s approach is a very attractive alternative to ours. It converges faster,
and it is more closely associated with analytic methods, such as the Hensel/Newton
convergence algorithm. On the other hand, there is a certain combinatorial sim-
plicity to our approach, especially Lemma 2.8 and its reduction to consideration of
expressions such as (2.11) and (2.35), and subsequently to (2.38). We find it very
attractive that for each f = Tn, it seems likely that Z2 can be partitioned into
finitely many balls B(x0, ϵ) on each of which |f(x)| is linear in |x− x0| (including
the possibility that it is constant). It is not clear which approach will be the better
way to establish this.
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