DYWIDAG-SYSTEMS INTERNATIONAL

Electrically Isolated Tendons Post-Tension Supplier's Experience

FHWA Workshop at Lehigh University October 24, 2018

Shahid Islam | Christian Aumann

Introduction EIT

Technical Guidelines, Recommendations

EIT-specific Features and References

DSI Experience on Coplay-Northampton Bridge Project

Monitoring

Summary

Technical Guidelines, Recommendations

EIT-specific Features and References

DSI Experience on Coplay-Northampton Bridge Project

Monitoring

Summary

Introduction of Electrically Isolated Tendons (EIT)

What is EIT?

 Fully leak-proof encapsulated tendons and anchors are electrically isolated from surrounding concrete and ordinary reinforcement

Why specifying EIT?

 Leak-proof encapsulation of tendon provides highest level of protection against ingress of moisture and corrosion

What are the main advantages?

- Offers long-term monitoring
- Considerable longer expected service life
- More economical in a long-term prospect

Introduction EIT

Technical Guidelines, Recommendations

EIT-specific Features and References

DSI Experience on Coplay-Northampton Bridge Project

Monitoring

Summary

Technical Guidelines & Recommendations

ASTRA 12 010:

- Guideline to ensure durability of post-tensioning tendons
- Flowchart for selection of required protection level
- Design principles for electrical layout on tendons
- Requirements on protection against "stray current"
- Table for minimum required values of resistances for measuring criteria monitoring, fatigue and stray current

tensioning tendons

fib Bulletin 33: Durability of post-tensioning tendons

- Specification of measures to enhance durability
- General recommendation for detailing PT-systems
- Definition of three protection levels (PL)

Protection Levels:

- PL1: duct with corrosion protection
- PL2: PL1 + leak-tight encapsulation
- PL3: PL2 + Monitoring

Recommended Monitoring Values

fib Bulletin 33: Durability of post-tensioning tendons

Type of duct	Limiting values	Control values		
	specific resistance ρ *	specific capacitance C _s **	loss factor D***	
Ø 59 mm	$> 500 \text{ k}\Omega\text{m}$	< 2.35 nF/m	< 0.1	
Ø 76 mm	$>400 \ k\Omega m$	< 3.05 nF/m	< 0.1	
Ø 100 mm	$> 300 \text{ k}\Omega m$	< 3.35 nF/m	< 0.1	
Ø 130 mm	$> 250 \text{ k}\Omega\text{m}$	< 4.30 nF/m	< 0.1	

The Guideline [35] is currently under revision. The revised document should be available in late 2006. Based on recent field experience and laboratory tests, the values in Table 3.2 are verified and may be changed.

ASTRA 12 010

		Limit values				
Main Criteria	Monitoring	Fatigue	Stray Current ⁶⁾			
Duct	Inimum value of the length normalised electrical resistance ⁵⁾ R₁(=R.I₀)	electrical resistance R	electrical resistance ⁵⁾			
φ 60 mm	50 kΩm	20 Ω	250 kΩm			
φ 75 mm	50 kΩm	20 Ω	200 kΩm			
φ 100 mm	50 kΩm	20 Ω	150 kΩm			
φ 130 mm	50 kΩm	20 Ω	125 kΩm			
Maximum allowed failure rate	10%	0 ′)	20%			
Fig. 5.1: Limit Values (28 days after injection)						

Limit Values 4)

Requirements for System according to new fib Bulletin 75

- Leak tightness of anchorage-duct assembly
- EIT performance of duct system
- EIT performance of anchorage duct assembly
- Full scale duct system assembly
- Leak tightness of assembled duct system

Tightness and EIT-Performance Test

Test Setup acc. to Fib Bulletin 75 for NEW MA-EIT Anchorage Assembly

- Tank with Ca(OH)₂ solution required
- On finished assembly no visible water leaking permitted
- 30 days ≥ 15 kOhm -> Test successfully passed
- External control by Technical University of Munich

Introduction EIT

Technical Guidelines, Recommendations

EIT-specific Features and References

DSI Experience on Coplay-Northampton Bridge Project

Monitoring

Summary

10 Electrically Isolated Tendons for a Durable Bridge Structure | FHWA Workshop at Lehigh University

EIT-specific Features

DSI First Generation EIT Plate-Anchorage (ca. 2005)

- Isolation plate providing load transfer from wedge plate to anchor plate and not conducting electricity
- Protection cap made from non-metallic material

EIT-specific Features

Isolated Duct System

- Duct, transition tube and connector made from plastic with low dielectric coefficient (PP, PE)
- Connections to be sealed with heat shrink sleeves
- Tight fitting of grout/vent tubes and closing-off by plastic caps or plugs
- Block-out at top of slab to trim vent tubes, fit them with a plug and fill the block-out with cement grout

EIT-specific Features

Electrical Fittings for Monitoring

- Measuring cable: connection from anchor to measuring box
- Connection cable: connection from reinforcement to measuring box
- Measuring box: terminals for connection to LCR-meter

Reference Project: Steinsvik Bridge, Bergen/Norway (2014)

Structural Properties

- Alternating current run tram bridge => EIT specified
- Two-span continuous bridge with spans of 25m and 30m
- Deck width: 8.8m; deck thickness: 0.4m along edges and 1.0m in the center

16 No. of continuous tendons with

lengths ranging from 54m to 59m
DSI tendons acc. to ETA-06/0025: 2 No. of 12 strand tendons and 14 No. of 19 stand tendons

Section E

DSI

Post-Tensioning Properties

Reference Project: Sandsli Bridge, Bergen/Norway (2015)

Post-Tensioning Properties

- 19 No. of continuous tendons of 19 strand tendons with lengths of 100m
- DSI tendons acc. to ETA-06/0025

Structural Properties

- Alternating current run tram bridge => EIT and protection against Stray Current specified
- Four-span continuous bridge with a total length of 100m
- Deck width: 13.5m; deck thickness: varies between 0.5m and 1.3m

Reference Project: Birkeland Bridge, Bergen/Norway (2015)

Post-Tensioning Properties

- 10 No. of continuous tendons of 22 strand tendon with a length of 54m
- DSI tendons acc. to ETA-06/0025

Structural Properties

- Alternating current run tram bridge => EIT and protection against Stray Current specified
- Single-span bridge with a length of 54m
- Tendons accommodated within parapet girders
- Deck width: 16.4m; deck thickness: 0.27m

DSI Experience

- DSI successfully completed several projects providing all electrically isolated components
- Liaising with planners at planning stage with regard to EIT-specific requirements
- All tendons successfully passed initial acceptance measurements and are qualified electrically isolated tendons

Introduction EIT

Technical Guidelines, Recommendations

EIT-specific Features and References

DSI Experience on Coplay-Northampton Bridge Project

Monitoring

Summary

Advanced EIT System based on MA-Anchorage

19 Electrically Isolated Tendons for a Durable Bridge Structure | FHWA Workshop at Lehigh University

Coplay-Northampton Bridge: Project Layout

Properties

- Owner: Lehigh County (Contract No. (ECMS): 11614)
- Stewardship and Oversight: Pennsylvania DOT

Structural Properties

- Multispan bridge with five lines of precast tee beams
- Four tendons per girder
- Main spans of 3 x 185ft average length
- Only at top of each girder one electrically isolated tendon

Special Features

- First EIT Project in USA
- First DSI Project using EIT together with Precast Girders
- First EIT Project using MA-Anchorage

Coplay-Northampton Bridge: Works at Precast Yard

Mounting of Anchorage Assembly

before shrinking

after shrinking

Finished Girder in the Precast Yard

Protection Shell

Duct Coupler

with Heat Shrink Sleeve

21 Electrically Isolated Tendons for a Durable Bridge Structure | FHWA Workshop at Lehigh University

Coplay-Northampton Bridge: Site Works

Installed Girders before **CIP** Closure

 Duct Coupler at **CIP** Closure

 Overlapping reinforcement at **CIP** Closure

Coplay-Northampton Bridge: Site Works

Installation of isolation plate

Measuring cable to wedge plate

Stressing of tendon

Measuring cable through cap

Stressed tendon

Measuring of Electrical Resistance

23 Electrically Isolated Tendons for a Durable Bridge Structure | FHWA Workshop at Lehigh University

Coplay-Northampton Bridge: Measured values

Readings after stressing and prior to grouting and after grouting on October 24th @ 2pm

Reading on Pier 3		Pre-Grout R		Post-Grout R _I		
	Length [m]	min $R^{*)}$	Measured	min R _{I, 28d} *)	Measured ^{**)}	Reading taken after
		[Ω]	[Ω]	[kΩm]	[kΩm]	grouting [hrs]
Beam B16	166.83	20	172,000	50	53.4	52
Beam B17	166.00		71,000	50	61.4	50
Beam B18	165.31		44,500	50	33.4	48
Beam B19	164.62		166,500	50	42.4	45
Beam B20	163.92		113,400	50	32.3	27

A set of readings will be taken after 28 days from grouting.

^{*)} Minimum values taken from ASTRA 12 010 (for electrical resistance before grouting of 20 Ω and length normalized electrical resistance of 50 k Ω m).

^{**)} Measured reading in $k\Omega$ is multiplied by the length of the tendon and compared against the normalized threshold value of ASTRA 12 010.

Introduction EIT

Technical Guidelines, Recommendations

EIT-specific Features and References

DSI Experience on Coplay-Northampton Bridge Project

Monitoring

Summary

Monitoring – Measurement Values

Impedance Value R

- Ohmic resistance between tendon and reinforcement
- Measured with alternating current at a frequency of 1 kHz
- Compliance with minimum values as to ASTRA 12 010
- Usually rising with increasing age of the structure (dehydration)

Capacitance Value C

- Depending on duct cross-sectional geometry and dielectric coefficient of duct
- Constant for same duct type, if equal in size, material and manufacturer

Loss Factor D

- Ratio of Ohmic and capacitive resistance
- Non-dimensional value
- Typical acceptance limit is factor 0.1

Monitoring – Preliminaries

Inspection Plan

- Specification of limit values
- Sequence in accordance to agreed inspection plan and recorded on inspection sheets

LCR-Meter

- High resolution performance for measurement of impedance, capacitance and loss factor
- Measurement frequency of 1 kHz
- min. voltage of 0.5 V

Monitoring – Inspection Procedure – Assessment

Construction stage

Measurements

- Measured straight from connection to strand and reinforcement bar
- Only impedance measured and recorded

Assessment

- Required minimum value is 20 Ω
- Ruling out any short circuits

Service stage

Measurements at service stage

 Measured from dedicated labelled terminals in the measuring box

Assessment

- R and C values related to 1m length for comparison with normalized acceptance values
- C value indicates degree of filling with grout within the duct
- R value steadily rising with increasing age due to dehydration
- Significant drop of R value indicates leakage → ingress of moisture

Introduction EIT

Technical Guidelines, Recommendations

EIT-specific Features and References

DSI Experience on Coplay-Northampton Bridge Project

Monitoring

Summary

Summary

Electrically Isolated Tendons for a Durable Bridge Structure

Characteristics

Durable post-tensioning system due to leak-proof encapsulation of tendon

Safety

Convenient long-term monitoring

Highest level of protection against ingress of moisture and corrosion

Economic Benefit

Amortisation due to longer expected service life

DYWIDAG-SYSTEMS INTERNATIONAL

Local Presence – Global Competence