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Abstract

This paper proposes an approach to analyze demand scenarios in technology-driven

markets where product demands are volatile, but follow a few identifiable life-cycle patterns.

After analyzing a large amount of semiconductor data, we found that not only can products be

clustered by life-cycle patterns, but in each cluster there exists leading indicator products that

provide advanced indication of changes in demand trends.  Motivated by this finding we propose

a scenario analysis structure in the context of stochastic programming.  Using the Bass growth

model and a Baysian update structure, the proposed method streamlines scenario analysis by

focusing on parametric changes of the demand growth model overtime.  The Baysian structure

allows expert judgement to be incorporated in scenario generation while the Bass growth model

allows an efficient representation of time varying demands.  Further, by adjusting a likelihood

threshold, the method could generate scenario trees of different sizes and accuracy.  The

structure provides a practical scenario-analysis method for manufacturing demand in a

technology market.  We demonstrate the applicability of this method using real semiconductor

data.

Keywords: Semiconductor Manufacturing; Scenario Analysis; Growth Models; Leading
Indicators; Multistage Stochastic Programming; Bass Diffusion Model; Baysian Structure;
Manufacturing Demand Analysis; Planning and Decision Making; Manufacturing Logistics
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1. Introduction

In technology driven markets, demands are characterized by different drivers of

technological innovation and a relatively short product life-cycle.  Typical examples for such

market environment are the high-tech industries such as semiconductor and electronics. The

research is motivated by a yearlong study at Lucent Technologies.  After analyzing their demand

data for some 3,500 products, we found that these products follow a few (approximately six) life-

cycle patterns and the products can be grouped according to these patterns using statistical

cluster analysis.  More importantly, after correlation analysis on historic shipment data we found

that in each cluster there exists a subset of “leading indicator” products that give advanced

indication of changes in demand trends.  Based on these observations, we believe it is of

practical importance to develop a demand model making use of the following information: the

observed data points provided by the “leading indicator” product, and a pair of time-lagged

growth models that relate the demand pattern of the leading indicator and the actual product

demand. This demand model can be then embedded in a stochastic model for manufacturing

decision-making.  In this paper, we examine such demand model in the decision context of

multistage stochastic programming.

Multistage stochastic programming models often suffer from an exponentially growing

scenario tree, which causes major computational difficulties (Birge and Louveaux, 1997)(Kall

and Wallace, 1994).  Two basic approaches have been proposed for this problem: (1) algorithmic

approximation and sampling methods that provide bounds or confidence intervals that direct the

solution algorithm during optimization, and (2) model simplification schemes that control

scenario generation based on problem-specific a priori analysis.  Our proposed method belongs

to the latter category.  While the algorithmic approach involves structural and computational

analysis after a model is formed, the model simplification approach seeks problem specific

knowledge to reduce the model size before optimization is ever attempted. Clearly, the two

approaches can be combined and each applied at a different stage when solving a real-world

problem.  We will concentrate our effort on developing a streamlined approach to model demand

scenarios in a technological driven market.

A main thesis of this paper is that given the information provided by observing the

leading indicator products and a growth model characterizing the technology life-cycle, we will
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be able to analyze demand scenarios for a particular market segment. In essence, our approach

uses the leading indicators as an instrument which estimates the parameters in the demand

growth model.  We assume the existence of a nominal demand growth curve, which represents

the results of a demand forecast.  We then define demand scenarios by various deviations from

the nominal curve.  This is done such that the dimensionality of the resulting scenario tree is

significantly reduced when compared to a typical scenario tree, while most critical elements of

demand variation is captured nonetheless.

2. Generating Demand Scenarios

The central concept of our proposed approach is the use of a leading indicator to model

the process that drives demand over time.  We assume the existence of a nominal demand curve

for the leading indicator based on earlier forecasts; the curve is defined by specific parameter

settings in a growth model.  This nominal curve represents the analyst’s best assessment of the

product life cycle using historic information and other means of a priori analysis.  We then

devise a scenario tree structure based on possible parametric deviations from the nominal curve.

We start our analysis on a two-stage scenario tree. In stage one, a set of possible deviations from

the nominal curves is computed.  In stage two, the Bayes rule is used to compute the posterior

probability for each parametric change, condition on the stage-one demand realizations, and a

likelihood function characterizing past behavior of parameter changes. Importantly, at any point

in the defined scenario tree, the demand series associated with the cluster can be directly

computed from the leading indicator demand model.  The term “demand” is used throughout this

paper to represent anticipated sales for manufactured products. We assume that influence of

strictly binding capacity and competitive forces are outside of the scope of the demand model.

For the cases where it does not, a growth model that includes the appropriate competitive and

capacity factors will be needed and can be incorporated into a similar framework.

2.1 Use of a Growth Model

Growth models have been shown useful for describing demand for short-life-cycle, high-

technology products (Kurawarwala and Matsuo, 1996).  Traditional data-dependent time series

models are not appropriate in this environment since the data available is often insufficient for
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parameter estimations at an acceptable level of confidence. It has been shown that growth

models can be used to describe the behavior of stochastic demand, without the sizeable data

requirements typically associated with time-series models (Meade and Islam, 1998).  Let tR
~

be

the demand for the tth value in the series (t=1,2,…). (The item index is dropped for convenience.)

At time t, R1, R2, …, Rt have been observed and are known while Rt+1, Rt+2,… are unknown. Let

Θ~  be a set of parameters used to describe demand, tR
~

, whose values are also unknown.  We use

the Bass diffusion model (Bass, 1969) to define demand over a series of time periods, t, where

tR
~

 is defined as follows:
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This is a deterministic statement of the diffusion model, appropriate for a specific

realization of demand parameter values. The parameter m represents total life-cycle sales, and,

the parameters p and q are shape parameters. m is simply a scale parameter. The p parameter is

known as the coefficient of innovation and is intended to capture external growth effects – the

growth in the number of innovators or adopters that buy the new item. The q parameter is the

coefficient of imitation and is intended to capture internal growth effects- the growth in the

number of imitators who are influenced by the innovators to buy the item. εt  is the error term.

The Bass diffusion model is applicable in an environment such as the one we model here, where

competitive forces and capacity restrictions are treated independently of the model.

To compute the demand over an interval of time (t-1,t), we use a discrete version of the

Bass diffusion model as follows:
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where: S(u) is the demand in the time interval (tu-1,tu)

r is the start time for the demand series

T is the final period of demand
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A pair of models of this type is used in our framework to enhance the predictive

capability of the scenario structure. A primary model describes demand for a cluster of items of

interest, and has a set of parameters that we will designate as (m,p,q)CL. The second model

describes the demand for the cluster’s leading indicator with parameters (s,m,p,q) LI.

A location parameter, s, is added to the parameter set for the leading indicator to

represent the lag of the leading indicator series relative to the cluster series. When the lag

between the leading indicator and the cluster is greater than 0, information about the cluster

demand can be derived from the observed behavior of the leading indicator demand. Let LI
ot  be

the timing of the initial demand for the leading indicator, and CL
ot  be the timing of the initial

demand for the cluster of interest. Also, let the time of the peak sales be LI
mt  for the leading

indicator and CL
mt  for the cluster. The time periods of the final demands are LI

ft  and CL
ft  for the

leading indicator and cluster, respectively. The lag value is the difference between the start times

for the two series, CL
ot - LI

ot . We treat lag in this analysis as a stationary but unknown parameter.

Figure 1 illustrates these relationships.

It is to be expected that actual demand will shift from the nominal curve, as illustrated in

Figure 2 (a)-(c). For example, a demand series for a product may exhibit a “right-shift” in time

when demand for a product is delayed. Demand may change in total life cycle demand, and

exhibit an “upshift” or “downshift.” Or, demand may shift in its growth patterns, and follow a

“left-shift” or “right-shift” as illustrated. Furthermore, practitioners can often anticipate the form

and assign probabilities to these shifts as alternative scenarios to demand.
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S
al

es
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ot
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ft CL
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Figure 1.  Time Based Relationship between the Demand Models
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We incorporate the tendency for these shifts in demand to occur by treating the

parameters of the demand model as random variables. The states of these random variables form

the branch points on a scenario tree. We will denote the time shift in s as one of the possible

states {s- , s0 , s+}. The volume shift, m, also has three possible states { m- , m0 , m+}. And the

shape shift can be described as one of the possible states {pq- , pq0 , pq+}.  The two shape

parameters are grouped in this approach so that it is the pair, (pq) represented on the scenario

tree.  In working with this model, we found that appropriate skew changes can be modeled by

allowing one of these parametrs, p, to vary. Consequently, both parameters are estimated in this

approach, but the states in the scenario tree are specified based on the pair.

The parameter s is an integer-valued lag time between the leading indicator and cluster

demands. The state s0 is the nominal, expected lag time, s- represents lag times shorter than the

nominal, and state s+ represents longer lag times. It is important that the states for each of the

parameters are collectively exhaustive. So for the location parameter, s, we use the following

state definitions:

s- when s < s0

s0 nominal, expected value of the lead time

s+ when s > s0

The states m0, m- and m+, are the nominal, downshift and upshift in market size. We

define these states by discretizing the continuous distribution for the m parameter, and then using

a credibility interval to establish a range around the estimated nominal value, m0. A credibility

interval is a confidence set for a parameter and is analogous to the concept of confidence

intervals in classical statistical inference. The interval is centered at m' and when m is normally

distributed, 90% of the density is within 1.645* mσ̂  of the mean. The 90% credible set for m is

(m' – 1.645⋅ mσ̂ , m' + 1.645⋅ mσ̂ ), where m' is an estimate of the mean. mσ̂ can be approximated

using historic data on the distribution of demand for similar products. Figure 3 illustrates this

concept.

Setting limits on the parameter m in this way is similar to the use of control limits in

Statistical Process Control. Lin & Adams (1996), Roes, Does, & Schurink (1993), and Nelson
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(1982) discuss the use of this idea in practice. Here, we apply the concept to determine when the

observed value of m varies enough to claim that there has been a shift in the unknown m

parameter.

Note that interpreting the continuous distribution for m in this way ensures that the

scenarios are collectively exhaustive, as well as enabling a discrete representation of m on the

scenario tree. So for the parameter m, we have the following state definitions:

m- m < m0-1.645 mσ̂

m0 m0-1.645 mσ̂  ≤ m ≤ m0+1.645 mσ̂

m+ m > m0+1.645 mσ̂

Similarly, we define three possible states for the shape parameters – left-skewed, right-

skewed, and central - and the nominal state can be any one of them. So, we define (pq)0 as a

curve with central tendency, (pq)- as a left-skew, and (pq)+ as a right-skew.

pq- left skew

pq0 central tendency

pq+ right skew

         µ (mi)

 σ (mi) σ (mi)

m - m o m +

Figure 3. Credibility Limits around m
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The nominal parameter values for p and q can be estimated given a minimal amount of

demand data at time LIt0 . An efficient implementation of this step is to build over time a “catalog”

of possible functional forms for demand curves as product growth curves are observed for

individual products and their best-fit parameter values are estimated statistically. Product

demand traits can be associated with the individual curves, and the curves can be classified using

standard classification techniques. In this way, a set of relatively few and historically relevant

growth curves can be collected for use in demand analysis for future products.  Thus, identifying

a specific state of the shape parameters p and q in the nominal curve is to simply select the

parameter values of (pq) from a “catalog” of possible functional forms for demand curves.

Estimating the Parameters of the Growth Model

At various points of the scenario-tree generation procedure, the parameters of the growth

model need to be estimated based on observed demand data. Specifically, the parameters must be

estimated for the leading indicator model initially to provide the values for the nominal demand

model. After demand through period LI
mt  is observed, the parameters must be estimated again to

determine which state best describes the demand observed up-to-date. Moreover, the parameters

of the cluster demand model are estimated to determine the parameter values for use in

computing the demand series built into each scenario.

When enough data exists, the nominal lag time s0 can be computed by analyzing the

correlation between the leading indicator and the cluster. Oftentimes, a strong correlation exists

at several different lag points for a specific leading indicator. In order to provide sufficient

advanced warning via the leading indicator, it is best to choose from the correlation analysis the

largest acceptable lag time. On the other hand, it is desirable that the chosen lag time provides a

robust estimation of the demand curve over the entire life-cycle.

Throughout our analysis we assume that only limited demand data is available, (a

minimum of 6 to 8 data points), and we use a standard estimation technique for the Bass

diffusion model as the nominal prior state for the leading indicator. Standard approaches for

parameter estimation include ordinary least squares estimation as in Bass (1969), maximum

likelihood estimation as in Schmittlein and Mahajan (1982), and nonlinear least squares
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estimation as in Srinivasan and Mason (1986).  When only partial data is available, or when the

estimation procedure yields unacceptable parameter values, an algebraic estimation technique as

described in Mahajan & Sharma (1986) can be used.

When historical or forecast data does not exist, the nominal states for the leading

indicator  parameters may be based on independent market research and judgment alone.

Methods for estimating m0 are described in texts such as Kress and Snyder (1994) and Boyd,

Westfall, and Stasch (1981). The parameters p0 and q0 can be selected based on an analogue

concept that allows for choosing these parameters based on an qualitative evaluation of market

and product features. Kalish and Lilien and (1986) present examples of the use of analogue

products to select growth curve parameters in cases where no demand history has yet occurred.

2.2 The Scenario Tree and the Scenario Generation Procedure

The central concept in demand scenario generation is to use a leading indicator growth

curve to model the demand in a broader market segment (cluster demand), and to analyze

possible deviations of actual demand from a prespecified nominal model. We construct a two-

stage scenario tree assuming that a nominal product life-cycle model is in place with state

defined by the triplet (s,m,pq)LI. Considering k possible deviations for each parameter, Stage 1 of

the scenario tree represents 3k possible deviations from the nominal state during period one. At

the end of period one, an observation is made on the leading indicator demand up-to-date.  Given

this demand realization, Stage 2 of the tree considers 3k possible parametric deviations from each

Stage 1 state for the remainder of the product life cycle. While the Stage 1 probabilities are given

by prior probability distributions associated with the parameter set, the Stage 2 probabilities are

given by the posterior probabilities for each specified parameter state based on a Baysian update.

Specifically, the Stage 2 probabilities are computed using the prior probabilities from Stage 1, an

observation of leading indicator demand realization up to the end of period 1, and a likelihood

function which describes the conditional dependence between the observation and the parametric

state. Each leave node of the scenario tree represents a unique scenario, which characterizes two

parametric changes of the growth model during the planning period. Assuming a stationary

relationship between the leading indicator and the cluster demands, then at any point in the

scenario tree the demand series associated with the entire cluster can be derived from the

parameterized leading indicator demand model.  Notice that the number of stages considered



11

depends on the number of demand observations.  The scenario tree can be generalized to

multiple stage by allowing multiple demand observations.  The tree, however, grows

exponentially as the number of stages increases.

We now summarize the main steps involved in constructing a two-stage scenario tree

using the leading indicator growth model, where k deviations are considered for each parameter.

1. Based on a demand time-series associate with each product, group items within

the problem scope into clusters such that the cluster members are more similar within the

cluster than between the clusters.

2. Identify a leading indicator product for each cluster of interest.

3. Initialize the scenario tree structure. Compute the stage-one probabilities for each

scenario as the prior probability associated with each the parameter set for the leading

indicator demand.

4. Compute the stage-two probabilities for each scenario as the posterior probability

result from a Bayesian update, using the prior probabilities and the likelihood function.

5. Compute the scenario probabilities.

6. Compute the cluster demand series given the 2-stage leading indicator demand

model.

In the following, each steps of the above procedure are described in detail.

Clustering the Items

Clustering is the grouping of individual items into clusters such that the items within the

clusters are more similar than across the clusters. In our application, the items within a cluster

must be sufficiently similar such that their demands can be characterized by a certain leading

indicator. There are three steps in establishing clusters: selecting a variable or set of variables

that can be used to quantify similarity, selecting a method for clustering, and assessing the

results. Gnanadesikan (1997) provides a discussion on clustering analysis. We assume that a

partial demand time-series is available for each product and we characterize each time series by

three types of similarity measures: First, consider a characterization of the demand time series.

Specific measures in this category may include CV of sales, skewness, and the slope of the
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change in the sales quantities over a certain period. Another type of similarity measure relates

item demands to a specific leading indicator. Items would be grouped in this case according to

their correspondence to a pre-selected demand model. For example, items that can be

successfully predicted by the same growth pattern would be grouped together.  The third type of

similarity measure groups items according to their demands on resources. Items grouped by

facility, equipment or by technology tend to create clusters that use the same resources during

manufacturing. This is particularly relevant in modeling production planning problems, where

there is typically a set of capacity related constraints that link usage of that facility (or

equipment) to the available capacity. Modeling issues influence clustering because it is desirable

to avoid cross-facility clusters.

Clustering represents an effort in the procedure to reduce the overall dimension of

demand analysis.  By clustering, we elevate the point of forecast to a higher level of aggregation,

and so fewer individual models need to be calibrated.  In some technology markets, the content

of the clusters can be identified manually from insights of the technology dependency.

Identify leading indicators

Leading indicators are measures that are readily observable and that are related in some

way to another variable of interest. In this application, the leading indicator is a product whose

demand pattern predicts the overall cluster demand. Importantly, a leading indicator has a non-

zero lag time relative to the cluster demand. We assume the lag time to be unknown but

stationary over the product life cycle.  Ideally, some historic demand data (e.g., shipment record)

exists for the cluster and the leading indicator products, allowing a correlation analysis to

identify leading indicators. Pairs of time series, for the leading indicator and the cluster demand,

can be analyzed to measure how closely the series have tracked over history, and give a basis for

selection of the leading indicator.  In many industrial applications, the existence of leading

indicator products is well known to the practitioners and they are often driven by technological

dependency among products.  For instance, in our analysis of Lucent’s shipment data, it is clear

that the sales of a certain modem chip provides excellent indication for an entire product family

which make use of the .35 technology. The time series between the indicator and the whole

cluster show a correlation of 0.98 at the lag of three to five weeks.  Techniques that could be

used to identify leading indicators vary depending on the amount of historic data available.
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However, once a credible leading indicator is identified, it is possible to reduce significantly the

efforts in modeling demand scenarios.  The rest of the procedure describes how this is

accomplished.

Computing the Stage 1 Probabilities

The first stage probabilities associated with each scenario are the prior probability

distributions for the parameter set of the leading indicator demand model. Since the scenarios are

constructed on the leading indicator, we only need the state and the probability information for s,

m, and (pq) for the leading indicator demand model. Figure 4 illustrates the states associated

with the first stage scenarios. The states are defined as all possible combinations of deviations for

each of the three parameters with prior probabilities, P(s, m, (pq)). In practice, the prior

probabilities can be established based on statistical data analysis, market research and expert

knowledge. The Bayesian framework allows both quantitative and qualitative information to be

incorporated here.  It is important that the prior distribution reflects all of the relevant

information available to the decision-maker prior to observing a particular demand sample.

Historical data for previous product lines could be useful for assessing the prior

probabilities for the pq parameters, for example. By referring to a possible set of demand curve

1

2

27

P(s0, m0, (pq)0)

P(s0, m0, (pq)+)

P(s-, m-, (pq)-)

Figure 4.  Stage 1 states and probabilities

3k
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patterns, and noting the percentage of relevant products that tended to have central, left, or right

skew, a simple estimate of the prior probabilities for each state is provided. In the absence of

meaningful historical data, expert opinion on the probabilities associated with each deviation

state can be used as the prior. The use of a credibility interval provides the needed prior

probability for m. The area under the frequency distribution curve within the mo range represents

the prior probability for mo, and since the normal distribution is symmetric, the probability for

each of the m- and m+ states is half of the remaining area under the curve.

Since there are multiple uncertain parameters (s,m,pq) associated with this demand

model, the prior probability associated with each branch of the scenario tree is a joint probability.

To assess the joint priors, we assume that the distributions of the parameters are independent,

i.e., )()()(),,( pqPmPsPpqmsP ⋅⋅= where P(s), P(m), and P(pq) are the marginal prior

probabilities. The independence assumption is reasonable in cases where the total size of the

market is not related to the growth pattern of the life cycle, or the lag time between the leading

indicator and the cluster.

Computing the Stage 2 Probabilities

The probability associated with a Stage 2 node is the posterior probabilities for a

specified parameter state based on its Stage 1 (prior) probability, an observation of demand

realized up-to-date and a likelihood function.  In other word, the Stage 2 probability is computed

based on a standard Baysian update as illustrated in Figures 5 and 6. The likelihood function,

P(y/sj,mj,(pq)j), describes the conditional dependence between the observed demand realization,

y, and the parameter state Θj≡ (sj,mj,(pq)j). Formally stated, it is the likelihood that the parameter

for the obseved sample is y if the parameter for the demand model is Θj. In the scenario tree, y is

the up-to-date demand observed for the leading indicator at the end of period one. From this

stream of observed leading indicator demands, a set of parameter values can be estimated,

linking the observed demands to the states of the first stage on the scenario tree. Conceptually,

this corresponds to a calibration of the entire nominal growth curve using the realized demand

series.  The result is a probabilistic assessment of the Stage 2 parametric state Θj.  Conceivably,

after observing a particular demand realization, a certain Stage 2 states become highly unlikely

(with close to zero likelihood), thereby providing the scenario tree a basis to investigate more

likely events.  Specifically, the likelihood functions assigns a probability for each of the
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parameter states associated with the actual demand observations, conditional on the true value of

the parameter state being Θj,. Because we use discrete probability in the tree, it is imperative that

the prior states be relatively few in number, yet be collectively exhaustive in definition.

In actual implementation, the likelihoods can be assessed directly based on historical

information and expert judgement. These functions would be revised over time as demand

behavior is observed and rules can be derived that are in the form of likelihoods. These learned

functions can be than expressed as decision rules with relative likelihoods. A rule of this type

might specify that relative to other types of parameter value changes, the likelihood for a one-

parameter state change from Stage 1 to Stage 2 is K times more likely than for two-parameter

stage change.

With the prior probabilities and the likelihood functions for the leading indicator

parameter states, the Stage 2 posterior probabilibilities are computed as follows:

∑
=

⋅

⋅
=

J

k
kkkkkk

jjjjjj
jjj

pqmPpqmyP

pqmPpqmyP
ypqm

1

))(,,s())(,,s/(

))(,,s())(,,s/(
)/)(,,(s P

1
P(s0, m0, (pq)0)

P(s0, m0, (pq)+)

P(s-, m-, (pq)-)

P(s0, m0, (pq)0)

P(s0, m0, (pq)+)

P(s0, m-, (pq)-)

Scenario 1

Scenario 2

Scenario s

Figure 6. A two-stage scenario tree
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Computing the Scenario Probabilities

A scenario in the scenario tree is the sequence of two sets of parameter value states for

the leading indicator growth model. The scenario probability is, thus, the joint probability of the

events along the scenario path. The first set of parameters is the prior definition, followed by

each possible second stage set of parameters. Each prior state has a prior probability associated

with it, and the second stage probability is based on a Baysian update for that particular

combination of first and second stage states and the demand realization. Thus, the scenario

probabilities are computed as:

The scenario structure described above can be easily implemented using a mathematical

programming modeling language.  For instance, Gassman & Ireland, (1995) describe an

“arbitrary” scenario structure with fixed horizon using AMPL. This scenario structure carries

random variable distributions, which may vary by both the time-period and prior history – a

definition consistent with the demand scenario problem we consider here.

Computing the Cluster Demand Series

Since the ultimate goal of the scenario tree is to analyze demands of a broader market

segment (i.e., the cluster demand) using leading indicator as a driver, we need to establish further

the relationship between cluster demands and the states of the leading indicator model.  As a

premise of this study, we assume that a growth model exists for the demand cluster, and a

stationary relationship is known between the leading indicator and the cluster demand growth

curve (as depicted in Figure 1). Specifically, we need to determine the parametric state of the

cluster demand growth curve for each given parameter state of the leading indicator model in the

scenario tree. Given the derived parameters of cluster demand model, the demand series can be

directly computed.

As a first step, we try to associate each scenario in the scenario tree with a parameter state

for the cluster demand model. Specifically, the s parameter defines the time offset between the

cluster and the leading indicator as follows: LILI
o

CL stt +=0 . The shape parameter (pq) of the

cluster demand model is assumed to resemble that of the leading indicator demands. So, for

example, a left-skewed demand curve for the leading indicator implies a left-skewed demand

)],,/(),,[(),,())(( 111222 pmspmsPpmsPsScP ⋅=
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curve for the cluster. The volume parameter mLI  for the leading indicator has a somewhat more

complex relationship with the cluster volume parameter mCL.  This is the case because it is

possible to have a strong but negative correlation between the cluster and its leading indicator.

Using the coefficient of correlation ρ (between the leading indicator and the cluster demands),

we can summarize their relationship as follows:

If LI
tm = And ρρ Then CL

stm +
~ =

+ > 0 CL
m+µ

0 > 0 or < 0 CL
mµ

−− > 0 CL
m−µ

+ < 0 CL
m−µ

−− < 0 CL
m+µ

Where µCL is the mean cluster demand estimated from the leading indicator model. The

process for this statistical estimation is a separate research topic, which will not be discussed in

detail here. Essentially, if enough data exists to estimate the parameters µCL using standard

statistical estimation, generating the nominal values is not difficult. If not, other estimation

approaches must be used.  Examples of such approaches include selecting parameters based on

analogous products, conducting market research to gain insight on the m parameter, e.g.,

Mahajan and Sharma propose an algebraic estimation when the timing of peak sales and the

value of m can be estimated.  Another practical alternative is to construct overtime a catalog of

demand curve shape parameters.

Assuming a precise relationship can be correctly established between the leading

indicator and the cluster demand parameters, the parametric state associated with the leading

indicator model at any point in the scenario tree can be use to estimate the overall cluster

demand. The strength of this approach obviously depends on the relationship one is able to

establish between the leading indicator and the cluster demand.  Based on our analysis on actual

demand data at Lucent Technologies, it appears that a strong relationship can indeed be

established in practice.  In the following, we provide a numerical example of the scenario

generation procedure using real data.
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3. A Semiconductor Manufacturer Example

In this section we illustrate some of the finer points of demand scenario generation using

a real-world data set. Our data consists of 29 weeks of sales data for 3,824 individual

semiconductor items. Attributes identified for each item include the product family, business

entity, and strategic business unit within which each item is managed. The associated technology

and aggregate technology group is identified for each item.

Clustering Items and Identifying Leading Indicators

We first analyze the full set of 3,824 items to establish clusters that serve as the unit of

aggregation in this scenario analysis. The particular similarity measure used in this example is

resource-related based on technology category. The items are grouped according to their

demands on resources. This similarity measure results in 6 clusters where the largest cluster

consists of 1,543 items and the smallest one has 21 items.  For the illustration we choose a

medium size cluster with 915 items which are represented by relatively new technology

products.

To identify the leading indicator for the technology cluster we perform a correlation

analysis as follows: in each iteration we select a product in the cluster and its 29-week demand

series.  This time series is compared against the aggregate demand series for the entire cluster

and a correlation is computed for each time-lag (s) from 0 to 8.  This calculation is repeated for

each product in the cluster. Figure 7 shows the correlation and the actual time series for two

example products from the semiconductor test data. The data represents sales figures for the

example cluster and several of its composing products. Since sub-groups are used as potential

leading indicators, the total cluster sales quantities have been adjusted by removing from each

period’s sales figure of the sub-group’s quantity. In this way, bias that might be introduced from

a dominating sub-group is eliminated. We are in effect testing the products that comprise the

technology group to see how well each predicts the rest of the technology group demand. Figure

7 shows the strength of the correlation between the cluster product and each of four different

potential leading indicators. Note the varying strength of relationship among the different

indicators at the different time lags. It appears that the Product 2 has a strong, positively

correlated leading relationship with the technology cluster for all time lags from 4 through 8
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weeks. An 8-week lag is chosen (s=8) for the remainder of the example using Product 2 as the

leading indicator.

Initialize Parameter Values and Stage 1 Probabilities

Given the leading indicator product and the historic data associated with it, we compute

parameter values and the prior probabilities for the first stage states. To do this, a nominal

demand model is specified for Product 2 by estimating the nominal values of p,q, and m using

Mahajan and Sharma’s algebraic estimation technique. Details of parameter initialization and

some of the assumptions used are given in Meixell (1998).  Table 1 summaries the parameter

values for the leading indicator demand model.  With the parameter settings, the priori

probability for each state (s,m,pq) can be easily computed under the independence assumption.

Table 1. Parameter Values for the Leading Indicator Demand Model

State (−) Nominal State State (+)

Parameter s < 8
(0.2)

8
(0.4)

>8
(0.4)

Parameter m ≤ 7,015,000
(0.05)

7,335,000
(0.90)

≥ 7,655,000
(0.05)

Parameter p .00578
(0.2)

.00231
(0.6)

.00058
(0.2)

Parameter q .279
(0.2)

.279
(0.6)

.279
(0.2)

Computing the Stage-2 and the Scenario Probabilities

Using the prior probabilities, the demand realized up-to-date, and a likelihood function,

we compute the conditional probabilities for each second stage state in the scenario tree. The

likelihood function provides an entry for expert judgement in scenario tree construction.  To

illustrate this point, we use a set of simple rules for the likelihood calculation:

- The likelihood is set to 50 when the second stage state is the same as the first stage state, (i.e.
all three parameters are the same in the two stages), set to 10 when two parameter states in
the second stage equal the first stage, set to 1 when one parameter state in the second stage
equals the first stage, and 0 when no parameter states are equal in the two stages

- The likelihood is set to 0 for impossible sequences of parameter states.
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Using the above likelihood assumptions, when the observed data for the leading indicator

suggests a demand state that is the same as the first stage state (s0, m0, pq0), the posterior

probability increases greatly (.8643) relative to the prior (.216).  On the other hand, when the

observed data suggest a completely different second stage state, the likelihood is zero, thus the

posterior probability for that sequence is also zero. Some of the posterior probabilities are very

small (0.0003) and can be eliminated from the tree.  Carry through with this calculation results in

only 29 scenarios with non-zero probabilities.  The result calculated from the example is

summarized in Table 2.  The result is quite intuitive, given different possible demand

observations y, and the likelihood function, the posterior probability provides an updated

assessment of scenario probabilities.  If the insights given in the likelihood rules are correct, the

scenario tree has been successfully pared down to focus on a small fraction of more likely events

given the observation.

Computing cluster demand given the leading indicator demand

As a last step, the demand series for the entire product cluster are computed for the

leading indicator demand associated with each scenario.  We first show how the parameter

values may be established for each state of the cluster demand model. We illustrate the simple

rules for determining the state of the cluster demand model in each stage for each scenario based

on the state of the leading indicator demand model. With this information, the demand series can

be directly computed.

We first establish a nominal demand model for the entire cluster with parameter values p,

q, and m.  This is typically a result of forecasting.  To make sure the Bass diffusion model can

indeed describe the demand growth pattern for the given set of data, we performed an ordinary

least squares estimation. The P-value associated with the model is 0.0001, and so there appears

to be a statistically significant relationship between the variables at the 99% confidence level.

The R2 statistic for the analysis indicates that 80.6% of the variability can be explained by the

model. The standard errors are not reported here because this procedure underestimates the error.

Mahajan, Mason, and Srinivasan (1986) report on the standard error problems with the

estimation techniques for the Bass diffusion model.

The deviational values for the p and q were assessed as with the leading indicator by

testing various parameter settings until the desired shift was achieved. Note that, we vary the
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parameter p, but leave the parameter q as a constant, yet still achieve the desired skew results.

Figure 8 illustrates the three demand shape curves using the nominal value of m.

The deviational values for m were assessed using the 90% credibility limits as defined for

the leading indicator demand model. The limits for the 90% range are (36,200,000 < m <

49,400,000).  The down-shift and up-shift m values listed in the table are the approximate

centroids of the range to the left and the right of the established credibility limits.  The resulting

parameter values for the cluster are presented in Table 3.  These parameters can be used to

generate the entire demand series for the cluster. For instance, when the leading indicator state is

(s+,m−,pq+) the corresponding cluster state would be (10, 34,300,000, .00607/.131).

Table 3. Parameter Values for the Cluster Demand Model
State (-) Central State (+)

Parameter s 8 9 10
Parameter m 34,300,000 42,800,000 51,400,000
Parameter p .0243 .0005 .00607
Parameter q .131 .131 .131

4. Relating to Alternative Methods of Scenario Generation

The proposed procedure provides an approach for analyzing demand behavior via

scenarios. The scenarios are defined based on parameter deviation from a nominal growth model

across all stages. As with methods that simply enumerate all scenarios, this method too generates

a tree that tends to grow exponentially with the number of stages. However, the procedure differs

0
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1,000,000

1,500,000

2,000,000

2,500,000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71

right skew
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Figure 8. Estimated demand curves for the technology
cluster
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from other approaches in how it streamlines the computational effort based on aggregate

judgement on the parametric changes overtime.  Like any other Baysian estimation methods, a

different likelihood function will influence the relationship between prior probability, observed

demand and posterior probability and therefore the particular subset of scenarios to be examined

first.  A key aspect of this approach is the use of observed demands to weight the relative

criticality of remaining scenarios in the tree. This approach is especially beneficial for multistage

production planning problems where the number of planning periods easily leads to intractable

problem size, and a way of paring down the tree at every stage is essential. It is the likelihood

function that serves as a learning mechanism for the knowledge accumulated overtime for the

leading indicators.

Eppen, Martin, & Schrage (1989) present a straightforward approach for selecting

scenarios for their capacity planning problem based on three views of demand (standard,

optimistic, and pessimistic). They include these three states for each of five periods in the

planning horizon. Although seemingly small, this problem results in a total of 243 scenarios.

By comparison, in production planning for example, practitioners typically plan for up to

16 weeks into the future. Using the simple enumeration approach just described, with three states

for each of these 16 periods, a total of 316 (over 43 million) scenarios would result.   In our

proposed approach to scenario selection, the initial tree contains (3k )2or 729 scenarios for a 2-

stage k=3 model that comprehends the entire 16 week planning horizon. In the general case of n

stages, there are a maximum of (3k)n scenarios. In our example, the use of simple likelihood rules

trim the scenario tree by 96% from 729 to 29 scenarios.  If a confidence interval is to be

established for the likelihood function, then a similar trimming can be accomplished with a

specified confidence.  Obviously, the fewer scenarios used to model the stochastic demand

environment, the larger the resulting standard error of the approximation. To control the desired

level of model accuracy, the decision maker may simply introduce a threshold value for the

likelihood associated with each scenario and evaluate only ones that are above the threshold.  In

reality, the threshold would be set at a level corresponding to a satisfactory number of scenarios

for a specific problem. Table 4 illustrates the likelihood threshold for the semi-conductor

example and the corresponding number of scenarios to be evaluated.
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Table 4. Impact of the Threshold Value on the Number of Scenarios

Threshold Value Number of Scenarios

0 729

1 243

10 136

50 29

Without actually solving the stochastic problem, the impact of the selected threshold on

the error cannot be determined. So, in this strictly a priori approach to constructing a scenario

tree, we evaluate the likelihood histogram, treat the threshold as adjustable, and move the

threshold until an acceptable number of scenarios results.

5. Conclusions and future research directions

In this paper, we present a model of manufacturing demand for the purpose of generating

scenarios to be used in a stochastic program. This demand model is built upon relationships

between groups of time-lagged product demands. This is in contrast to earlier work (Wu and

Meixell, 1998) that describe a demand process model that mimics the decisions in order-based

supply chain systems. Each of these models is useful for analyzing demand behavior in the

context of the specific problems for which they are developed.

We use a time-series demand model to describe demand because it enables a full series of

demand quantities to be estimated based on a small set of parameter values. A Bass diffusion

model is an example of such a demand model, and this research shows that numerous demand

quantities can be estimated with three parameters. A full set of scenarios can be generated with

just three possible states for each of these three parameters. We treat the parameters of the

demand model in this paper as random variables. By doing so, the random event at each stage is

the observed demand, which translates into an estimated set of model parameters. In this way, it

is the demand model parameters that define the states and the structure of the scenario tree.

Leading indicators are used here to provide early-warning information about changes in

trends in cluster demand in upcoming periods. Leading indicators contain timely, useful

information that reduces the size of the scenario tree. The scenario tree is built on the parameters

of the leading indicator, although we ultimately want a demand series for the related cluster. The
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leading indicator information is timely when the lag time is sufficiently large between the

leading indicator and the cluster of interest.

The proposed approach uses expert judgement about historical demand behavior to

develop a scenario tree. The likelihood functions include information about observed sequences

of parameter changes in the past, and the Bayesian update incorporates this information into the

scenario tree probabilities. Because of these likelihood functions, a tree built with this approach

will be at least the same and most likely considerably smaller than a tree built with a randomly

sampled set of scenarios.

Future research in this area could include further work on the n-stage problem.

Developing these concepts to allow for more than one demand update is likely to be both

practical and challenging. In practice, information is typically acquired about actual demand

every planning period. This demand information often contains considerable noise, however, so

there may not be sufficiently more information to justify the computational implication of adding

another stage to the scenario tree. Additional research is also warranted in the use of growth

models to model uncertainty in demand in manufacturing planning problems. It is quite common

to see time series models used for projecting demand in production planning problems (see for

example, Silver & Peterson, (1985), Johnson & Montgomery (1974), Box, Jenkins & Reinsel

(1994)) but there are few applications of growth models in this context. Investigation into

modeling issues as well as application are both needed.

When the scenario tree is used in a stochastic production planning model, the issue of

integrating the solution stage with the generation stage needs to be further explored. In the

approach presented here, the scenarios are fully specified in advance of the solution stage for the

stochastic programming problem. This is in contrast the scenario aggregation approach that

iterates between the scenario generation and the solution stage (see Kall & Wallace (1994)). An

interesting area of research would be to investigate a hybrid of the two approaches, and

determine what could be gained by gathering information about the specific data by iterating

through the solution stage while building the scenario tree as described here in this paper.
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Observation y Posterior ΘΘ Posterior Stage1 Scenario

s m p,q s2 m2 (p,q)2 Probability Probability Probability
0 0 0 0 0 0 0.882 0.333 0.294
0 0 0 0 + 0 0.059 0.333 0.020
0 0 0 0 - 0 0.059 0.333 0.020
0 - 0 0 - 0 0.556 0.019 0.010
0 - 0 0 0 0 0.333 0.019 0.006
0 - 0 0 + 0 0.111 0.019 0.002
0 + 0 0 + 0 0.556 0.019 0.010
0 + 0 0 0 0 0.333 0.019 0.006
0 + 0 0 - 0 0.111 0.019 0.002
0 0 - 0 0 0 1.000 0.019 0.019
0 0 + 0 0 0 1.000 0.019 0.019
- 0 0 - 0 0 0.882 0.167 0.147
- 0 0 - + 0 0.059 0.167 0.010
- 0 0 - - 0 0.059 0.167 0.010
- - 0 - - 0 0.625 0.009 0.006
- - 0 - 0 0 0.375 0.009 0.003
- + 0 - + 0 0.625 0.009 0.006
- + 0 - 0 0 0.375 0.009 0.003
+ 0 0 + 0 0 0.882 0.333 0.294
+ 0 0 + + 0 0.059 0.333 0.020
+ 0 0 + - 0 0.059 0.333 0.020
+ - 0 + - 0 0.556 0.019 0.010
+ - 0 + 0 0 0.333 0.019 0.006
+ - 0 + + 0 0.111 0.019 0.002
+ + 0 + + 0 0.556 0.019 0.010
+ + 0 + 0 0 0.333 0.019 0.006
+ + 0 + - 0 0.111 0.019 0.002
+ 0 - + 0 0 1.000 0.019 0.019
+ 0 + + 0 0 1.000 0.019 0.019

Total= 1.000

Table 2. Computation of Scenario Probabilities
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Figure 7.  Correlation between product and the technology group
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