ODE vol. 1
 Chapter 8
 Corrections

Dr. L. Płociniczak, a coauthor of [1], pointed out that eq. (8.1) is incorrectly stated as

$$
\begin{equation*}
-T \frac{d^{2} h / d x^{2}}{\sqrt{1+(d h / d x)^{2}}}+k h=\frac{P}{\sqrt{1+(d h / d x)^{2}}} \tag{8.1a}
\end{equation*}
$$

The corrected equation is

$$
\begin{equation*}
-T \frac{d^{2} h / d x^{2}}{\left(\sqrt{1+(d h / d x)^{2}}\right)^{3}}+k h=\frac{P}{\sqrt{1+(d h / d x)^{2}}} \tag{8.1b}
\end{equation*}
$$

or

$$
\begin{equation*}
-T \frac{d^{2} h / d x^{2}}{\left(1+(d h / d x)^{2}\right)^{3 / 2}}+k h=\frac{P}{\sqrt{1+(d h / d x)^{2}}} \tag{8.1c}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{d^{2} h / d x^{2}}{\left(1+(d h / d x)^{2}\right)^{3 / 2}}-a h+\frac{b}{\sqrt{1+(d h / d x)^{2}}}=0 \tag{8.1d}
\end{equation*}
$$

with $a=k / T, b=P / T$.
The coding in corneal_1.R, corneal_2.R has been changed from

```
sr[i]=sqrt(1+ux[i] 2);
if(ncase==1){ut[i]=uxx[i]/sr[i]-a*u[i]+b/sr[i];}
```

to

```
sr[i]=sqrt(1+ux[i]^2);sr3=sr[i]^3;
if(ncase==1) {ut[i]=uxx[i]/sr3-a*u[i]+b/sr[i];}
```

With this correction, the numerical output changes from $u(x=0.75 x l, t=1)=0.15864$ (original) to $\mathrm{u}(\mathrm{x}=0.75 \mathrm{xl}, \mathrm{t}=1)=0.17698$ (corrected) or a (maximum relative) change of

$$
(0.17698-0.15864) / 0.17698 * 100=10.36 \%
$$

Similarly, a comparison of the ncase $=1$ output (corrected), $u(x=0.75 x l, t=1)=0.17698$, and the ncase $=2$ output, $u(x=0.75 x l, t=1)=0.15167$, gives

$$
(0.17698-0.15167) / 0.17698 * 100=14.30 \%
$$

These changes are small on an absolute basis so that the associated plots of the solution appear to change very little.

References

[1] Okrasiński, W., and L. Płociniczak (2012), A nonlinear mathematical model of the corneal shape, Nonlinear Analysis: Real World Applications, 13 1498-1505

