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ABSTRACT. We present an exposition of the basic properties of the Jacobi symbol, with a

method of calculating it due to Eisenstein.

Fix a prime p. For an integer a relatively prime to p the Legendre symbol is defined by

(a/p) = 1 if a is a quadratic residue (mod p) and (a/p) =−1 if a is a quadratic nonresidue

(mod p). We recall Euler’s theorem that (a/p)≡ a(p−1)/2 (mod p).
We have the famous Law of Quadratic Reciprocity:

Theorem 1. (The Law of Quadratic Reciprocity) Let p and q be distinct odd primes. Then

(

p

q

)(

q

p

)

= (−1)
p−1

2 ·
q−1

2 .

We also recall the following, where (a) follows directly from Euler’s theorem and (b)

follows directly from Gauss’s Lemma.

Theorem 2. (Supplement to the Law of Quadratic Reciprocity) Let p be an odd prime.

Then (1)

(

−1

p

)

= (−1)
p−1

2

= 1 if p ≡ 1(mod4) and =−1 if p ≡ −1(mod4),

(2)

(

2

p

)

= (−1)
p2−1

8

= 1 if p ≡ ±1(mod 8) and =−1 if p ≡ ±3(mod 8).

We often regard these results as providing a method for calculating Legendre symbols.
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Example 3. We wish to calculate (4661/9901). We have:
(

4661

9901

)

=

(

59 ·79

9901

)

=

(

59

9901

)(

79

9901

)

=

(

9901

59

)(

9901

79

)

=

(

48

59

)(

26

79

)

=

(

3

59

)(

2

79

)(

13

79

)

= (−1)

(

59

3

)

(+1)

(

79

13

)

= (−1)

(

2

3

)

(+1)

(

1

13

)

= (−1)(−1)(+1)(+1) = 1.

Note the first step in this example required us to factor 4661. In general, factorization

is difficult, so this is not an effective method for calculating Legendre symbols. We now

introduce Jacobi symbols, which generalize Legendre symbols. In addition to their own

intrinsic interest, they enable us to compute Legendre symbols without having to factor

integers.

Definition 4. Let b be a positive odd integer, and suppose that b = b1 · · ·bℓ, a product of

(not necessarily distinct) primes. For an integer a relatively prime to b, the Jacobi symbol

(a/b) is defined to be the product
(

a

b

)

=

(

a

b1

)

· · ·

(

a

bℓ

)

.

If b = 1, then (a/b) = 1.

We now derive basic properties of the Jacobi symbol. First, we need a lemma from

elementary number theory.

Lemma 5. Let u and v be odd integers. Then

uv−1

2
≡

u−1

2
+

v−1

2
(mod 2)

and
(uv)2 −1

8
≡

u2 −1

8
+

v2 −1

8
(mod 2).

Proof. We simply calculate

uv−1

2
−

[

u−1

2
+

v−1

2

]

=
uv−u− v+1

2
=

(u−1)(v−1)

2
,

which is always even, and similarly

(uv)2 −1

8
−

[

u2 −1

8
+

v2 −1

8

]

=
(uv)2 −u2 − v2 +1

8
=

(u2 −1)(v2 −1)

8
,

which is also always even. �
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Theorem 6. (Properties of the Jacobi symbol)

(1) If b is a prime, the Jacobi symbol (a/b) is the Legendre symbol (a/b).
(2) If (a/b) = −1, then a is not a quadratic residue (mod b). The converse need not

hold if b is not a prime.

(3) (aa′/bb′) = (a/b)(a/b′)(a′/b)(a′/b′) if aa′ and bb′ are relatively prime.

(4) (a2/b) = (a/b2) = 1 if a and b are relatively prime.

(5) (−1/b) = (−1)
b−1

2 = 1 if b ≡ 1(mod4) and =−1 if b ≡ −1(mod4).

(6) (2/b) = (−1)
b2−1

8 = 1 if b ≡ ±1(mod 8) and =−1 if b ≡ ±3(mod 8).
(7) If a and b are relatively prime odd positive integers, then

(

a

b

)(

b

a

)

= (−1)
a−1

2 · b−1
2 .

Proof. Parts (1) through (4) are straightforward.

We prove part (5) by induction on the number of prime factors ℓ of b. The critical case

is ℓ= 2. Thus let b = b1b2, with b1 and b2 each prime. In this case the left-hand side is
(

−1

b

)

=

(

−1

b1b2

)

=

(

−1

b1

)(

−1

b2

)

= (−1)
b1−1

2 (−1)
b2−1

2 = (−1)
b1−1

2 +
b2−1

2

while the right-hand side is

(−1)
b−1

2 = (−1)
b1b2−1

2

and these are equal.

We prove part (6) similarly. Again let b = b1b2, with b1 and b2 each prime. In this case

the left-hand side is
(

2

b

)

=

(

2

b1b2

)

=

(

2

b1

)(

2

b2

)

= (−1)
b2
1
−1

8 (−1)
b2
2
−1

8 = (−1)
b2
1
−1

8 +
b2
2
−1

8

while the right-hand side is

(−1)
b2−1

8 = (−1)
b2
1

b2
2
−1

8

and these are equal.

For part (7), let a = a1 · · ·ak and b = b1 · · ·bℓ, products of primes. Then, by the Law of

Quadratic Reciprocity,
(

a

b

)(

b

a

)

= ∏
i, j

(

ai

b j

)(

b j

ai

)

= ∏
i, j

(−1)
ai−1

2 ·
b j−1

2 = (−1)ε

with ε = ∑i, j
ai−1

2
·

b j−1

2
. But then

ε = ∑
i, j

ai −1

2
·

b j −1

2
= ∑

j

[

∑
i

ai −1

2

]

b j −1

2

≡ ∑
j

[

a−1

2

]

b j −1

2

=

[

a−1

2

]

∑
j

b j −1

2
≡

[

a−1

2

][

b−1

2

]

(mod 2).

�
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Theorem 7. Let a and b be relatively prime odd positive integers.

(1) If ε =±1, then
(

εa

b

)(

b

a

)

= (−1)
εa−1

2 · b−1
2 .

(2) If ε1 =±1 and ε2 =±1, then
(

ε1a

b

)(

ε2b

a

)

= (−1)
ε1a−1

2 ·
ε2b−1

2 +
ε1−1

2 ·
ε2−1

2 .

Proof. (1) If ε = 1 there is nothing more to prove. Let ε =−1. Then
(

εa

b

)(

b

a

)

=

(

−a

b

)(

b

a

)

=

(

−1

b

)(

a

b

)(

b

a

)

= (−1)
b−1

2 (−1)
a−1

2 · b−1
2 = (−1)x

where x = b−1
2

+ a−1
2

· b−1
2

= a+1
2

· b−1
2

.

On the other hand, in this case,

(−1)
εa−1

2 · b−1
2 = (−1)

−a−1
2 · b−1

2 = (−1)y

where y = −a−1
2

· b−1
2

=− a+1
2

· b−1
2

=−x, and y ≡ x(mod2).
(2) The only new case here is ε1 = ε2 = −1, so suppose that is the case. Then the

left-hand side is
(

−a

b

)(

−b

a

)

=

(

−1

a

)(

−1

b

)(

a

b

)(

b

a

)

= (−1)
a−1

2 (−1)
b−1

2 (−1)
a−1

2 · b−1
2 = (−1)x,

where, setting u = a−1
2

and v = b−1
2

, x = uv+u+ v.

In this case the right-hand side is

(−1)
−a−1

2 ·−b−1
2 +(−1)·(−1) = (−1)

a+1
2 · b+1

2 +1 = (−1)y,

where y = (u+1)(v+1)+1 = uv+u+ v+2, and y ≡ x(mod2). �

Remark 8. It is convenient to observe here that if ε =±1, then
(

ε

b

)

= (−1)
ε−1

2 · b−1
2 .

(If ε = 1 this is (1/b) = 1, which is trivial, and if ε =−1 this is (−1/b) = (−1)
b−1

2 , which

we know.)
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We now come to Eisenstein’s method of computing Jacobi symbols.

Theorem 9. (Eisenstein [1]) Let b be a positive odd integer and let a be an odd integer

that is relatively prime to b. Set a1 = a, a2 = b, and then

a1 = a2q1 + ε1a3

a2 = a3q2 + ε2a4

. . .

an = an+1qn + εnan+2

with a2 > a3 > .. . > an+2 = 1, all ai odd, and εi =±1 for each i.

For each i = 1, . . . ,n, let

si = 0 if at least one of ai+1 and εiai+2 ≡ 1(mod4),

= 1 if both of ai+1 and εiai+2 ≡ 3(mod4).

Let t = ∑
n
i=1 si. Then

(

a

b

)

= (−1)t .

Proof. We have (a/b) = (a1/a2). Now
(

a1

a2

)

=

(

ε1a3

a2

)

= (−1)
ε1a3−1

2 ·
a2−1

2

(

a2

a3

)

= (−1)s1

(

a2

a3

)

(

a2

a3

)

=

(

ε2a4

a3

)

= (−1)
ε2a4−1

2 ·
a3−1

2

(

a3

a4

)

= (−1)s2

(

a3

a4

)

. . .
(

an

an+1

)

=

(

εnan+2

an+1

)

= (−1)
εnan+2−1

2 ·
an+1−1

2 = (−1)sn

so
(

a

b

)

=
n

∏
i=1

(−1)si = (−1)∑
n
i=1 si = (−1)t .

�

Actually, it is not necessary to carry the computation all the way to the end.

Corollary 10. In the situation of the above theorem, let tk = ∑
k
i=1 si. Then for any k ≤ n

(

a

b

)

= (−1)tk

(

ak+1

ak+2

)

.

Proof. Exactly the same. �

Example 11. We present several typical computations. The first is Eisenstein’s illustration

of his method.

(1) We compute (773/343).

773 = 343 ·2+87 so s1 = 1

343 = 87 ·4−5 so s2 = 1

87 = 5 ·18−3 so s3 = 0

5 = 3 ·2−1 so s4 = 1

Hence
(

773

343

)

= (−1)3 =−1.
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(2) We compute (4661/9901).

4661 = 9901 ·0+4661 so s1 = 0

9901 = 4661 ·2+579 so s2 = 0

4661 = 579 ·8+29 so s3 = 0

579 = 29 ·20−1 so s4 = 0

Hence
(

4661

9901

)

= (−1)0 = 1.

(3) We compute (10399/2341).

10399 = 2341 ·4+1035 so s1 = 0

2341 = 1035 ·2+271 so s2 = 1

1035 = 271 ·4−49 so s3 = 1

Hence
(

10399

2341

)

= (−1)2

(

49

a6

)

= 1

as 49 = 72.

Remark 12. We may speed up Eisenstein’s algorithm. Suppose that we are using this

algorithm and at some stage we arrive at (ai/ai+1). Write ai = ai+1q′i + εi2
eia′i+2 where

εi = ±1, ei > 0, 2eia′i+2 < ai+1, and a′i+2 is a positive odd number. Then (ai/ai+1) =

(2ei/ai+1)(εia
′
i+2/ai+1), and the first factor is easy to compute. Note that ai+2 < 1

2
ai+1.

Hence we see that this modified algorithm reduces the “denominator” of the Jacobi symbol

by a factor of at least 2 every step, ensuring that it ends quickly.

It turns out that sometimes the choice of odd remainder leads to the smaller value of

ai+2, and sometimes the choice of even remainder does, so the most efficient way to pro-

ceed is to choose whichever one yields the smaller value.

We thus obtain the following modified algorithm:

Theorem 13. Let b be a positive odd integer and let a be an integer that is relatively prime

to b. Set a1 = a, a2 = b, and then, assuming that ai and ai+1 are defined, set

ai = ai+1q′i + ε ′i a
′
i+2,

ai = ai+1q′′i + ε ′′i 2ei a′′i+2

with a′i+2 and a′′i+2 positive odd integers, ei > 0, a′i+2 < ai+1, 2ei a′′i+2 < ai+1, ε ′i =±1, and

ε ′′i =±1.

If a′i+2 ≤ a′′i+2, set ai+2 = a′i+2, εi = ε ′i , and ri = 0.

If a′′i+2 < a′i+2, set ai+2 = a′′i+2, εi = ε ′′i , and set ri = 0 if ei is even or ai+1 ≡±1 (mod8)
and ri = 1 if ei is odd and ai+1 ≡±3 (mod8).

Set si = 0 if at least one of ai+1 and εiai+2 ≡ 1(mod4), and si = 1 if both of ai+1 and

εiai+2 ≡ 3(mod4).

Let uk = ∑
k
i=1(ri + si). Then

(

a1

a2

)

= (−1)uk

(

ak+1

ak+2

)

.
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In particular, if an+2 = 1,
(

a1

a2

)

= (−1)un .

Example 14. The computation of (32767/99989) by Eisenstein’s original algorithm takes

38 steps. We compute (32767/99989) using this faster algorithm.

32767 = 99989 ·0+32767 so r1 = 0, s1 = 0

99989 = 32767 ·3+23
·211 so r2 = 0, s2 = 1

32767 = 211 ·155+2 ·31 so r3 = 1, s3 = 1

211 = 31 ·7−2 ·3 so r4 = 0, s4 = 0

31 = 3 ·10+1 so r5 = 0, s5 = 0

Hence
(

32767

99989

)

= (−1)3 =−1.

Note that in the first step of this computation, we had the choice of using 32767 =
99989 · 0+ 32767 or 32767 = 99989 · 1− 2 · 33611 and we used the first of these. In the

second step, we had the choice of using 99989 = 32767 ·4−31079 or 99989 = 32767 ·3+
23 ·211 and we used the second of these.

Example 15. We compute (−12034/84331).

−12034 = 84331 ·0−2 ·6017 so r1 = 1, s1 = 1

84331 = 6017 ·14+93 so r2 = 0, s2 = 0

6017 = 93 ·65−22
·7 so r3 = 0, s3 = 0

93 = 7 ·13+2 ·1 so r4 = 0, s4 = 0

Hence
(

−12034

84331

)

= (−1)2 = 1.

Remark 16. Of course, any valid computation with Legendre symbols is also a valid

computation with Jacobi symbols.
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