GAUSS'S FIFTH PROOF OF THE LAW OF QUADRATIC RECIPROCITY

STEVEN H. WEINTRAUB

Abstract

We present an exposition of Gauss's fifth proof of the Law of Quadratic

 ReciprocityGauss first proved the Law of Quadratic Reciprocity in [1]. He developed Gauss's Lemma in [2], in his third proof. He gave his fifth proof in [3]. These works are all available in German translation in [4]. We present Gauss's fifth proof here. Except for minor changes of notation, this is almost verbatim from this translation of his fifth proof (further translated into English).

Lemma 1. (Gauss's Lemma) Let p be an odd prime and k an arbitrary integer not divisible by p. Consider the smallest positive remainders when $k, 2 k, \ldots,((p-1) / 2) k$ are divided by p and suppose that s of them are greater than $p / 2$. Then k is a quadratic residue or a quadratic nonresidue $(\bmod p)$ according as s is even or odd.

Proof. Let a, b, c, d, \ldots be those remainders than are less than $p / 2$ and $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, \ldots$ be the others. Then $p-a^{\prime}, p-b^{\prime}, p-c^{\prime}, p-d^{\prime}, \ldots$ are all less than $p / 2$, and are all distinct from a, b, c, d, \ldots, so that all of these, taken together, are equal to $1,2,3,4, \ldots,(p-1) / 2$, up to reordering. Setting $1 \cdot 2 \cdot 3 \cdot 4 \cdots(p-1) / 2=R$,

$$
R=a b c d \cdots\left(p-a^{\prime}\right)\left(p-b^{\prime}\right)\left(p-c^{\prime}\right)\left(p-d^{\prime}\right) \cdots,
$$

and hence

$$
(-1)^{s} R=a b c d \cdots\left(a^{\prime}-p\right)\left(b^{\prime}-p\right)\left(c^{\prime}-p\right)\left(d^{\prime}-p\right) \cdots .
$$

Furthermore

$$
R k^{(p-1) / 2} \equiv a b c d \cdots a^{\prime} b^{\prime} c^{\prime} d^{\prime} \cdots \equiv a b c d \cdots\left(a^{\prime}-p\right)\left(b^{\prime}-p\right)\left(c^{\prime}-p\right)\left(d^{\prime}-p\right) \cdots(\bmod p),
$$

and hence

$$
R k^{(p-1) / 2} \equiv R(-1)^{s}(\bmod p)
$$

Thus $k^{(p-1) / 2} \equiv \pm 1(\bmod p)$, where the positive or negative sign is taken as s is even or odd, and hence by [1, Article 106] the proof of the lemma is complete]

Theorem 2. Let p and q be distinct odd integers that are relatively prime to each other. Let n be the number of integers such that the least positive remainder when $p, 2 p, 3 p, \ldots,((q-$ 1)/2) p is divided by q is greater than $q / 2$, and let m be the number of integers such that the least positive remainder when $q, 2 q, 3 q, \ldots,((p-1) / 2) q$ is divided by p is greater than $p / 2$. Then either the three integers n, m, and $((p-1)(q-1) / 4)$ are all even or else one of them is even and the other two are odd.

[^0]Proof. Let $r=((p-1) / 2)((q-1) / 2)$. For integers k and y, let \bar{y}_{k} be the smallest nonnegative remainder when y is divided by k. For a set S, let $|S|$ denote the cardinality of S.

Let

$$
\begin{array}{ll}
F_{\text {low }}=\{1, \ldots,(p-1) / 2\}, & \left.F_{\text {high }}=\{(p+1) / 2, \ldots, p-1)\right\}, \\
G_{\text {low }}=\{1, \ldots,(q-1) / 2\}, & \left.G_{\text {high }}=\{(q+1) / 2, \ldots, q-1)\right\}
\end{array}
$$

Then

$$
\begin{aligned}
& \left|\left\{x \in F_{\text {low }} \mid \overline{q x}_{p} \in F_{\text {high }}\right\}\right|=m, \\
& \left|\left\{x \in G_{\text {low }} \mid \overline{p x}_{q} \in G_{\text {high }}\right\}\right|=n .
\end{aligned}
$$

Let

$$
\left.H_{\text {low }}=\{1, \ldots,(p q-1) / 2\}, \quad H_{\text {high }}=\{(p q+1) / 2, \ldots, p q-1)\right\} .
$$

Divide $H_{\text {low }}$ into 8 subsets:

$$
\begin{aligned}
I_{\text {low }} & =\left\{x \in H_{\text {low }} \mid \bar{x}_{p} \in F_{\text {low }}, \bar{x}_{q} \in G_{\text {low }}\right\}, \\
I I_{\text {low }} & =\left\{x \in H_{\text {low }} \mid \bar{x}_{p} \in F_{\text {low }}, \bar{x}_{q} \in G_{\text {high }}\right\}, \\
I I I_{\text {low }} & =\left\{x \in H_{\text {low }} \mid \bar{x}_{p} \in F_{\text {high }}, \bar{x}_{q} \in G_{\text {low }}\right\}, \\
I V_{\text {low }} & =\left\{x \in H_{\text {low }} \mid \bar{x}_{p} \in F_{\text {high }}, \bar{x}_{q} \in G_{\text {high }}\right\}, \\
V_{\text {low }} & =\left\{x \in H_{\text {low }} \mid \bar{x}_{p}=0, \bar{x}_{q} \in G_{\text {low }}\right\}, \\
V I_{\text {low }} & =\left\{x \in H_{\text {low }} \mid \bar{x}_{p}=0, \bar{x}_{q} \in G_{\text {high }}\right\}, \\
V I I_{\text {low }} & =\left\{x \in H_{\text {low }} \mid \bar{x}_{p} \in F_{\text {low }}, \bar{x}_{q}=0\right\}, \\
V I I I_{\text {low }} & =\left\{x \in H_{\text {low }} \mid \bar{x}_{p} \in F_{\text {high }}, \bar{x}_{q}=0\right\} .
\end{aligned}
$$

Denote the cardinalities of $I_{\text {low }}, \ldots, V I I I_{\text {low }}$ by $\alpha_{\text {low }}, \beta_{\text {low }}, \gamma_{\text {low }}, \delta_{\text {low }}, \varepsilon_{\text {low }}, \zeta_{\text {low }}, \eta_{\text {low }}, \theta_{\text {low }}$.
Note that

$$
\begin{aligned}
V I_{\mathrm{low}} & =\left\{x \in\{p, 2 p, \ldots,((q-1) / 2) p\} \mid \bar{x}_{q}>q / 2\right\}, \text { so } \zeta_{\text {low }}=n, \\
V I I I_{\mathrm{low}} & =\left\{x \in\{q, 2 q, \ldots,((p-1) / 2) q\} \mid \bar{x}_{p}>p / 2\right\}, \text { so } \theta_{\mathrm{low}}=m .
\end{aligned}
$$

In a similar fashion we may divide $H_{\text {high }}$ into 8 subsets $I_{\text {high }}, \ldots, V I I I_{\text {high }}$ with cardinalities $\alpha_{\text {high }}, \ldots, \theta_{\text {high }}$.

Since $F_{\text {low }}$ has $(p-1) / 2$ elements and Since $G_{\text {low }}$ has $(q-1) / 2$ elements, we sec ${ }^{2}$ that $I_{\text {low }} \cup I_{\text {high }}$ has $((p-1) / 2)((q-1) / 2)=r$ elements, i.e., $\alpha_{\text {low }}+\alpha_{\text {high }}=r$. Similarly $\beta_{\text {low }}+\beta_{\text {high }}=\gamma_{\text {low }}+\gamma_{\text {high }}=\delta_{\text {low }}+\delta_{\text {high }}=r$.

Now if $x \in I_{\text {low }}$, then $\bar{x}_{p q}<p q / 2, \bar{x}_{p}<p / 2, \bar{x}_{q}<q / 2$. Then $\overline{p q-x}_{p q}>p q / 2, \overline{p q-x}_{p}>$ $p / 2, \overline{p q-x}_{q}>q / 2$, and hence $p q-x \in I V_{\text {high }}$, and vice versa. Thus we have a 1-to-1 correspondence between the elements of $I_{\text {low }}$ and $I V_{\text {high }}$, so $\alpha_{\text {low }}=\delta_{\text {high }}$. Similarly $\beta_{\text {low }}=$ $\gamma_{\text {high }}, \gamma_{\text {low }}=\beta_{\text {high }}, \delta_{\text {low }}=\alpha_{\text {high }}$.

Combining these two observations gives the equations

$$
\begin{align*}
& \alpha_{\text {low }}+\delta_{\text {low }}=r \tag{1}\\
& \beta_{\text {low }}+\gamma_{\text {low }}=r . \tag{2}
\end{align*}
$$

Now $I I_{\text {low }} \cup I V_{\text {low }} \cup V I_{\text {low }}=\left\{x \in H_{\text {low }} \mid \bar{x}_{q} \in G_{\text {high }}\right\}$. But this is just the set of integers $\left\{y q+z \mid y=0, \ldots,(p-3) / 2, z \in G_{\text {high }}\right\}$. There are $(p-1) / 2$ choices for y and $(q-1) / 2$ choices for z, so we see that $\beta_{\text {low }}+\delta_{\text {low }}+\zeta_{\text {low }}=((p-1) / 2)((q-1) / 2)=r$. Similarly

[^1]$I I I_{\text {low }} \cup I V_{\text {low }} \cup V I I I_{\text {low }}=\left\{x \in H_{\text {low }} \mid \bar{x}_{p} \in F_{\text {high }}\right\}$ gives $\gamma_{\text {low }}+\delta_{\text {low }}+\theta_{\text {low }}=r$. Since $\zeta_{\text {low }}=n$ and $\theta_{\text {low }}=m$, this gives the equations
\[

$$
\begin{align*}
& \beta_{\text {low }}+\delta_{\text {low }}+n=r \tag{3}\\
& \gamma_{\text {low }}+\delta_{\text {low }}+m=r . \tag{4}
\end{align*}
$$
\]

Taking $2(1)+(2)-(3)-(4)$ gives the first of the four equations (the others follow similarly)

$$
\begin{aligned}
2 \alpha_{\text {low }} & =r+m+n \\
2 \beta_{\text {low }} & =r+m-n \\
2 \gamma_{\text {low }} & =r-m+n \\
2 \delta_{\text {low }} & =r-m-n
\end{aligned}
$$

and the theorem immediately follows.
Corollary 3. (The Law of Quadratic Reciprocit) ${ }^{3}$) Let p and q be distinct odd primes. (1) If at least one of p and q is congruent to $1(\bmod 4)$, then either both p and q are quadratic residues modulo each other, or neither of them is.
(2) If p and q are both congruent to $3(\bmod 4)$, then exactly one of p and q is a quadratic residue modulo the other.

Proof. If at least one of p and q is congruent to $1(\bmod 4)$, then $((p-1)(q-1) / 4)$ is even, so n and m are either both even or both odd, and hence either both p and q are quadratic residues modulo each other, or neither of them is. If both p and q are congruent to $3(\bmod 4)$, then $((p-1)(q-1) / 4)$ is odd, so one of n and m must be even and the other odd, and hence exactly one of p and q is a quadratic residue modulo the other.

REFERENCES

[1] C.-F. Gauss, Disquisitiones Arithmeticae, Leipzig, 1801.
[2] C.-F. Gauss, Theorematis arithmetici demonstratio nova, Commentationes soc. reg. sc. Gottingensis XVI, 1808.
[3] C.-F. Gauss, Theorematis fundamentalis in doctrina de residuis quadraticis demonstrationes et ampliationes novae, Commentationes soc. reg. sc. Gottingensis recentiores IV, 1818.
[4] C.-F. Gauss, Untersuchungen über höhere Arithmetik (trans. H. Maser), American Mathematical Society/Chelsea, Providence 2006.

Department of Mathematics, Lehigh University, Bethlehem, PA 18015-3174, USA
Email address: shw2@lehigh.edu

[^2]
[^0]: 2000 Mathematics Subject Classification. 11A15, Secondary 01A55.
 Key words and phrases. Quadratic reciprocity, Gauss.
 ${ }^{1}$ This is Euler's theorem that k is a quadratic residue $(\bmod p)$ if $k^{(p-1) / 2} \equiv 1(\bmod p)$, and k is a quadratic nonresidue $(\bmod p)$ if $k^{(p-1) / 2} \equiv-1(\bmod p)$. Gauss credits Euler and gives his own proof, which, as he notes, is a slightly simplified version of Euler's proof.

[^1]: ${ }^{2}$ by the Chinese Remainder Theorem

[^2]: ${ }^{3}$ Throughout his work Gauss simply calls this the Fundamental Theorem (in the Theory of Quadratic Residues).

