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ABSTRACT. We present an exposition of Gauss’s fifth proof of the Law of Quadratic

Reciprocity.

Gauss first proved the Law of Quadratic Reciprocity in [1]. He developed Gauss’s

Lemma in [2], in his third proof. He gave his fifth proof in [3]. These works are all

available in German translation in [4]. We present Gauss’s fifth proof here. Except for

minor changes of notation, this is almost verbatim from this translation of his fifth proof

(further translated into English).

Lemma 1. (Gauss’s Lemma) Let p be an odd prime and k an arbitrary integer not divisible

by p. Consider the smallest positive remainders when k,2k, . . . ,((p− 1)/2)k are divided

by p and suppose that s of them are greater than p/2. Then k is a quadratic residue or a

quadratic nonresidue (mod p) according as s is even or odd.

Proof. Let a,b,c,d, . . . be those remainders than are less than p/2 and a′,b′,c′,d′, . . . be

the others. Then p− a′, p− b′, p− c′, p− d′, . . . are all less than p/2, and are all distinct

from a,b,c,d, . . ., so that all of these, taken together, are equal to 1,2,3,4, . . . ,(p− 1)/2,

up to reordering. Setting 1 ·2 ·3 ·4 · · ·(p−1)/2 = R,

R = abcd · · ·(p−a′)(p−b′)(p− c′)(p−d′) · · · ,

and hence

(−1)sR = abcd · · ·(a′− p)(b′− p)(c′− p)(d′− p) · · · .

Furthermore

Rk(p−1)/2 ≡ abcd · · ·a′b′c′d′ · · · ≡ abcd · · ·(a′− p)(b′− p)(c′− p)(d′− p) · · · (mod p),

and hence

Rk(p−1)/2 ≡ R(−1)s (mod p).

Thus k(p−1)/2 ≡ ±1 (mod p), where the positive or negative sign is taken as s is even or

odd, and hence by [1, Article 106] the proof of the lemma is complete.1 �

Theorem 2. Let p and q be distinct odd integers that are relatively prime to each other. Let

n be the number of integers such that the least positive remainder when p,2p,3p, . . . ,((q−
1)/2)p is divided by q is greater than q/2, and let m be the number of integers such that

the least positive remainder when q,2q,3q, . . . ,((p−1)/2)q is divided by p is greater than

p/2. Then either the three integers n, m, and ((p−1)(q−1)/4) are all even or else one of

them is even and the other two are odd.
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Proof. Let r = ((p− 1)/2)((q− 1)/2). For integers k and y, let yk be the smallest non-

negative remainder when y is divided by k. For a set S, let |S| denote the cardinality of

S.

Let

Flow = {1, . . . ,(p−1)/2}, Fhigh = {(p+1)/2, . . . , p−1)},

Glow = {1, . . . ,(q−1)/2}, Ghigh = {(q+1)/2, . . . ,q−1)}.

Then

|{x ∈ Flow | qxp ∈ Fhigh}|= m,

|{x ∈ Glow | pxq ∈ Ghigh}|= n.

Let

Hlow = {1, . . . ,(pq−1)/2}, Hhigh = {(pq+1)/2, . . . , pq−1)}.

Divide Hlow into 8 subsets:

Ilow = {x ∈ Hlow | xp ∈ Flow,xq ∈ Glow},

IIlow = {x ∈ Hlow | xp ∈ Flow,xq ∈ Ghigh},

IIIlow = {x ∈ Hlow | xp ∈ Fhigh,xq ∈ Glow},

IVlow = {x ∈ Hlow | xp ∈ Fhigh,xq ∈ Ghigh},

Vlow = {x ∈ Hlow | xp = 0,xq ∈ Glow},

V Ilow = {x ∈ Hlow | xp = 0,xq ∈ Ghigh},

V IIlow = {x ∈ Hlow | xp ∈ Flow,xq = 0},

V IIIlow = {x ∈ Hlow | xp ∈ Fhigh,xq = 0}.

Denote the cardinalities of Ilow, . . . ,V IIIlow by αlow,βlow,γlow,δlow,εlow,ζlow,ηlow,θlow.

Note that

V Ilow = {x ∈ {p,2p, . . . ,((q−1)/2)p} | xq > q/2}, so ζlow = n,

V IIIlow = {x ∈ {q,2q, . . . ,((p−1)/2)q} | xp > p/2}, so θlow = m.

In a similar fashion we may divide Hhigh into 8 subsets Ihigh, . . . ,V IIIhigh with cardinal-

ities αhigh, . . . ,θhigh.

Since Flow has (p− 1)/2 elements and Since Glow has (q− 1)/2 elements, we see2

that Ilow ∪ Ihigh has ((p− 1)/2)((q− 1)/2) = r elements, i.e., αlow +αhigh = r. Similarly

βlow +βhigh = γlow + γhigh = δlow +δhigh = r.

Now if x ∈ Ilow, then xpq < pq/2,xp < p/2,xq < q/2. Then pq− xpq > pq/2, pq− xp >

p/2, pq− xq > q/2, and hence pq− x ∈ IVhigh, and vice versa. Thus we have a 1-to-1

correspondence between the elements of Ilow and IVhigh, so αlow = δhigh. Similarly βlow =
γhigh,γlow = βhigh,δlow = αhigh.

Combining these two observations gives the equations

(1) αlow +δlow = r

(2) βlow + γlow = r.

Now IIlow ∪ IVlow ∪V Ilow = {x ∈ Hlow | xq ∈ Ghigh}. But this is just the set of integers

{yq+ z | y = 0, . . . ,(p−3)/2,z ∈ Ghigh}. There are (p−1)/2 choices for y and (q−1)/2

choices for z, so we see that βlow + δlow + ζlow = ((p− 1)/2)((q− 1)/2) = r. Similarly

2by the Chinese Remainder Theorem
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IIIlow∪ IVlow∪V IIIlow = {x ∈Hlow | xp ∈ Fhigh} gives γlow+δlow+θlow = r. Since ζlow = n

and θlow = m, this gives the equations

(3) βlow +δlow +n = r

(4) γlow +δlow +m = r.

Taking 2(1) + (2)− (3)− (4) gives the first of the four equations (the others follow

similarly)

2αlow = r+m+n

2βlow = r+m−n

2γlow = r−m+n

2δlow = r−m−n

and the theorem immediately follows. �

Corollary 3. (The Law of Quadratic Reciprocity3) Let p and q be distinct odd primes.

(1) If at least one of p and q is congruent to 1 (mod 4), then either both p and q are

quadratic residues modulo each other, or neither of them is.

(2) If p and q are both congruent to 3 (mod 4), then exactly one of p and q is a quadratic

residue modulo the other.

Proof. If at least one of p and q is congruent to 1 (mod 4), then ((p− 1)(q− 1)/4) is

even, so n and m are either both even or both odd, and hence either both p and q are

quadratic residues modulo each other, or neither of them is. If both p and q are congruent

to 3 (mod 4), then ((p−1)(q−1)/4) is odd, so one of n and m must be even and the other

odd, and hence exactly one of p and q is a quadratic residue modulo the other. �
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3Throughout his work Gauss simply calls this the Fundamental Theorem (in the Theory of Quadratic

Residues).
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