Differential Forms: Theory and Practice-Errata

The vast majority of these typos were found by Michael Janou Glaser, Bruce Gould, and Richard Louis Rivero, all of whom the author sincerely thanks.

Page 10, lines -2 and -1 : Replace by
In particular, if n is odd, then $\left(\varphi^{*}\right)^{*}=\varphi$ for any k. If n is even, then $\left(\varphi^{*}\right)^{*}=\varphi$ for k even and $\left(\varphi^{*}\right)^{*}=-\varphi$ for k odd.

Page 15, line 6: $\varphi-x^{2} d x-z^{2} d y$ should be $\varphi=x^{2} d x-z^{2} d y$.

Page 16, lines 11 and 12: $d x_{1} d x_{2}$ should be $d x_{1} d x_{2} d x_{I}, d x_{1} d x_{3}$ should be $d x_{1} d x_{3} d x_{I}$, and $d x_{n-1} d x_{n}$ should be $d x_{n-1} d x_{n} d x_{I}$.

Page 19, line -1: $\psi=x^{5} y^{3} z^{2}$ should be $\psi=x^{5} y^{2} z^{3}$.

Page 20, line 2: $d \psi=0$ should be $d \varphi=0$.

Page 21, line 13: $\varphi_{1}=d f_{0}$ should be $\varphi^{1}=d f_{0}$.

Page 22: The labels on the axes of both graphs should be reversed.

Page 23, line 17: $d f_{0}=d \varphi^{1}$ should be $d f_{0}=\varphi^{1}$.

Page 23, line -6: $\theta_{2}(-1-1)$ should be $\theta_{2}(-1,-1)$.

Page 25 , line -7 : $f_{x_{1}}$ should be f^{1}.

Page 25 , line -5 : f_{1} should be f^{1}.

Page 26, lines 4 and 5: g_{2} should be g^{2}.

Page 27, line 15: $x^{2} z^{2}$ should be $x^{2} z^{3}$.

Page 27, line 16: x^{2} should be $2 x y$.

2
Page 38 , line 10: R should be \mathcal{R}.

Page 39, line -4: $\varphi=A d x+b d y+c d z$ should be $\varphi=A d x+B d y+C d z$.

Page 44, line -3: $d x_{n}$ should be $d x_{m}$.

Page 46, line 7: the second occurrence of $d x_{m} d x_{I_{1}}$ should be $d x_{m} d x_{I_{2}}$.

Page 47, line 5: $\tilde{\varphi}$ should be φ.

Page 57, lines 15 and 16: \mathbf{F}_{1} should be \mathbf{F}^{1}.

Page 64, lines 10 and 11: S_{n} should be S_{k}.

Page 64, line 11: $\sigma^{\prime}=\sigma \tau$ should be $\sigma^{\prime}=\tau \sigma$.

Page 64, line 13: \mathbf{v}_{2}^{p} should be \mathbf{v}_{p}^{2}.

Page 66, lines -6,-5: σ_{j} should be defined by $\sigma_{j}(1)=j+1, \sigma_{j}(i)=i-1$ for $2 \leq i \leq j+1, \sigma_{j}(i)=i$ for $j+1<i \leq m$.

Page 67, line -3: $\operatorname{sign}\left(\sigma_{1} \times \sigma_{2}\right)=\operatorname{sign}\left(\sigma_{1}\right)+\operatorname{sign}\left(\sigma_{2}\right)$ should be $\operatorname{sign}\left(\sigma_{1} \times \sigma_{2}\right)=$ $\operatorname{sign}\left(\sigma_{1}\right) \operatorname{sign}\left(\sigma_{2}\right)$.

Page 67, line -1: φ should be φ_{1}.

Page 68, line 2: σ should be σ_{1} and φ should be φ_{1}.

Page 68, line 4: σ should be σ_{2} and φ should be φ_{2}.

Page 68, line 6: Insert $\operatorname{sign}(\sigma)$ after the summation sign.

Page 69, line -3 and page 73 , line $-7: p=(2,5,3)$ should be $p=(2,5,-3)$.

Page 74, line -4: Insert $D_{\mathbf{v}_{p}^{m}}$ after $(-1)^{m-1}$.

Page 81 , line 13: \mathcal{B} gives the standard basis of \mathbf{R}^{n} should be \mathcal{B} gives the standard orientation of \mathbf{R}^{n}.

Page 89 , lines 20,25 : to verify $\left({ }_{2}\right)$ should be to verify $\left({ }_{1}\right)$.

Page 89, lines $-2,-1$: should read \ldots where $H=\left(h_{1}, \ldots, h_{k-1}\right)$ ranges over all multi-indices of degree $k-1$, up to permutation. Furthermore ...

Page 90, line 5: should read \ldots either H is a permutation of I_{m} for some m, in which case we may choose $H=I_{m}$, or else H has an entry that is not in I.

Page 90, line 9: product of terms should be sum of terms.

Page 93 , lines 8,9 : should read \ldots is determined by its values $\xi(d \varphi)\left(\mathbf{e}_{p}^{J}\right)$ on all k-tuples \mathbf{e}^{J} up to permutation. Thus ...

Page 93 line, 13 through Page 94, line 6: Replace by

$$
\begin{aligned}
d x_{j} d x_{I}\left(\mathbf{p}_{t p}, \mathbf{e}_{t p}^{J}\right) & =d x_{j}\left(\mathbf{p}_{t p}\right) d x_{I}\left(\mathbf{e}_{t p}^{J}\right) \\
& -d x_{j}\left(\mathbf{e}_{t p}^{j_{1}}\right) d x_{I}\left(\mathbf{p}_{t p}, \mathbf{e}_{t p}^{j_{2}}, \mathbf{e}_{t p}^{j_{3}}, \ldots, \mathbf{e}_{t p}^{j_{k}}\right) \\
& +d x_{j}\left(\mathbf{e}_{t p}^{j_{2}}\right) d x_{I}\left(\mathbf{p}_{t p}, \mathbf{e}_{t p}^{j_{1}}, \mathbf{e}_{t p}^{j_{3}}, \ldots, \mathbf{e}_{t p}^{j_{k}}\right) \\
& \ldots+(-1)^{k} d x_{j}\left(\mathbf{e}_{t p}^{j_{k}}\right) d x_{I}\left(\mathbf{p}_{t p}, \mathbf{e}_{t p}^{j_{1}}, \mathbf{e}_{t p}^{j_{2}}, \ldots, \mathbf{e}_{t p}^{j_{k-1}}\right) .
\end{aligned}
$$

Note that the first term is x_{j} if $J=I$ and is 0 if J is not a permutation of I.

As for the remaining terms in the summation, if there is no value of ℓ for which $j_{\ell}=j$, then all of them are equal to 0 , as $d x_{j}\left(\mathbf{e}_{t p}^{j_{\ell}}\right)=0$ for every j_{ℓ}.

If $j_{\ell}=j$ for some ℓ, then every term except for possibly that one is 0 , and that one has the value $(-1)^{\ell} d x_{I}\left(\mathbf{p}_{t p}, \mathbf{e}_{t p}^{j_{1}}, \ldots, \mathbf{e}_{t p}^{j_{\ell-1}}, \mathbf{e}_{t p}^{j_{\ell+1}}, \ldots, \mathbf{e}_{t p}^{j_{1}}\right)$. If J_{ℓ} is not a permutation of I_{m} for any m then this is equal to 0 , as when this is expanded out there will be a j-index not equal to an i-index in every term. Otherwise we may assume, after reordering J, that $J_{m}=I_{m}$, and then this term has the value $(-1)^{m} d x_{i_{m}}\left(\mathbf{p}_{t p}\right) d x_{I_{m}}\left(\mathbf{e}_{t p}^{J_{m}}\right)=(-1)^{m} x_{i_{m}}$.

Page 95, line 10 and page 97 , line 11: eliminate second occurrence of \mathcal{R}.

4
Page 95, line 14: $A(t p)$ should be $A^{I}(t p)$.

Page 95, line -3: from $\left({ }^{*}{ }_{3}\right)$ should be from $\left({ }_{4}\right)$.

Page 103, line 1: topmost entry of $\mathbf{r}^{\prime}(2)$ should be 1 .

Page 103, line 11: $r(1)$ should be $r(0)$.

Page 103, line 12: $\mathbf{r}^{\prime}(1)$ should be $\mathbf{r}^{\prime}(0)$.

Page 107, line 12: the point p should be the point t_{0}.

Page 110, line 6: function \mathcal{S} defined on N should be function f defined on \mathcal{S}.

Page 111, line 5: k-forms should be j-forms.

Page 111, lines 6 and 7: $\mathcal{F}(S)$ should be $\mathcal{F}(\mathcal{S})$ and $\mathcal{F}(R)$ should be $\mathcal{F}(\mathcal{R})$.

Page 113, line 14: $k^{*}(f \psi+g \rho)$ should be $k^{*}(a \psi+b \rho)$.

Page 114, line 1: M should be \mathcal{R}.

Page 114, line 7: φ is linear should be φ is multilinear.

Page 114 , line -2 : \mathbf{v}_{p}^{1} should be $k_{*}\left(\mathbf{v}_{p}^{1}\right)$ and \mathbf{v}_{p}^{j} should be $k_{*}\left(\mathbf{v}_{p}^{j}\right)$.

Page 116, line 5: $k(f(p))$ should be $f(k(p))$.

Page 117, line -6: Lemma 3.3.8 should be Lemma 3.2.7.

Page 118, line 7: $k\left(u_{1}, \ldots, u_{n}\right)$ should be $k\left(u_{1}, \ldots, u_{m}\right)$.

Page 119, lines 2 and 3, and page 120, line 8: $v^{3}+2 v$ should be $2 v^{3}+v$.

Page 119, lines 4 and 5, and page 120, lines 10 and 11 should both be: $=\left(2 u^{3}+4 v^{3}+5 u^{2}+2 u+3 v\right) d u+\left(3 u^{2}+v^{3}+u^{2}+2 u-v+1\right) d v$.

Page 120, line -4: The sum should be over H, not over I.

Page 121, line 4: Theorem 2.2.19 should be Theorem 2.2.20.

Page 123, lines -5 through -2: All occurrences of \mathbf{v} should be \mathbf{v}_{p}.

Page 125, line -10: $(2 u v+1)$ should be $(2 u-v+1)$.

Page 127, line 7: should read \ldots so $k^{*}(d A)=k^{*}\left(d x_{i}\right)$ is closed.

Page 128 , line 13: $d\left(k^{*}\left(A^{I_{0}}\right)\right.$ should be $d\left(k^{*}\left(A^{I_{0}}\right)\right)$.

Page 130, line 1 (twice) and lines 5 and 6: $A_{I}\left(x_{1}, \ldots, x_{n}, t\right)$ should be $A^{I}\left(x_{1}, \ldots, x_{n}, t\right)$.

Page 131, lines -10 and -6: $\tilde{\xi}(\theta)$ should be $\tilde{\xi}(\varphi)$.

Page 132, line 8: by linearity should be by multilinearity.

Page 132, line -4: $d x_{I}$ should be $d x_{I} d t$ (twice).

Page 133, line -5: \mathbf{e}_{p}^{H} should be $d x_{I}\left(\mathbf{e}_{p}^{H}\right)$.

Page 134, lines -8 to -1 : replace by

$$
\begin{aligned}
(\tilde{\xi}(d \varphi))\left(\mathbf{e}_{p}^{H}\right) & =(-1)^{((\ell+1)-1)} \sum_{i=1}^{n} \int_{0}^{1}\left[A_{x_{i}}(p, t) d x_{i} d x_{I} d t\left(\tilde{\mathbf{e}}_{(p, t)}^{H}, \tilde{\mathbf{f}}_{(p, t)}\right)\right] d t \\
& =(-1)^{\ell} \sum_{i=1}^{n} \int_{0}^{1}\left[A_{x_{i}}(p, t) d x_{i} d x_{I}\left(\tilde{\mathbf{e}}_{(p, t)}^{H}\right)\right] d t \\
& =(-1)^{\ell} \sum_{i=1}^{n}\left[\int_{0}^{1} A_{x_{i}}(p, t) d t\right] d x_{i} d x_{I}\left(\mathbf{e}_{p}^{H}\right) .
\end{aligned}
$$

For T_{2} : First note that for any $\left(\mathbf{v}_{p}^{1}, \ldots, \mathbf{v}_{p}^{\ell-1}\right)$,

$$
\begin{aligned}
\tilde{\xi}(\varphi)\left(\mathbf{v}_{p}^{1}, \ldots, \mathbf{v}_{p}^{\ell-1}\right) & =(-1)^{\ell-1} \int_{0}^{1}\left[A(p, t) d x_{I} d t\left(\tilde{\mathbf{v}}_{(p, t)}^{1}, \ldots, \tilde{\mathbf{v}}_{(p, t)}^{\ell-1}, \tilde{\mathbf{f}}_{(p, t)}\right)\right] d t \\
& =(-1)^{\ell-1} \int_{0}^{1}\left[A(p, t) d x_{I}\left(\tilde{\mathbf{v}}_{(p, t)}^{1}, \ldots, \tilde{\mathbf{v}}_{(p, t)}^{\ell-1}\right)\right] d t \\
& =(-1)^{\ell-1}\left[\int_{0}^{1} A(p, t) d t\right] d x_{I}\left(\mathbf{v}_{p}^{1}, \ldots, \mathbf{v}_{p}^{\ell-1}\right)
\end{aligned}
$$

Thus

$$
\tilde{\xi}(\varphi)=(-1)^{\ell-1}\left[\int_{0}^{1} A(p, t) d t\right] d x_{I}
$$

and hence

$$
\begin{aligned}
d(\tilde{\xi}(\varphi)) & =(-1)^{\ell-1} \sum_{i=1}^{n}\left[\int_{0}^{1} A(p, t) d t\right]_{x_{i}} d x_{i} d x_{I} \\
& =(-1)^{\ell-1} \sum_{i=1}^{n}\left[\int_{0}^{1} A_{x_{i}}(p, t) d t\right] d x_{i} d x_{I}
\end{aligned}
$$

so, for any $\left(\mathbf{e}_{p}^{H}\right)$,

$$
d(\tilde{\xi}(\varphi))\left(\mathbf{e}_{p}^{H}\right)=(-1)^{\ell-1} \sum_{i=1}^{n}\left[\int_{0}^{1} A_{x_{i}}(p, t) d t\right] d x_{i} d x_{I}\left(\mathbf{e}_{p}^{H}\right) .
$$

Page 135, line 9: $S=\operatorname{supp}(\tilde{\xi}(\varphi))$ should be $S=\operatorname{supp}(\varphi)$.

Page 137 , lines $10,11,12$: $d(\xi(\varphi))$ should be $d(\Xi(\varphi))$.

Page 157 , line -13: the complement of \mathbb{R}_{--}^{n-1} in \mathbb{R}^{n-1} should be the complement of \mathbb{R}_{--}^{n} in \mathbb{R}_{-}^{n}.

Page 160, lines 15: the) should not be there.

Page 162, line - $12: \mathbf{v}_{q}^{1}$ should be \mathbf{v}_{p}^{1} and \mathbf{v}_{q}^{2} should be \mathbf{v}_{p}^{2}.

Page 162 , line -11 should be: $c^{1} \mathbf{v}_{p}^{1}+c^{2} \mathbf{v}_{p}^{2}=k_{*}\left(c^{1} \mathbf{w}_{q}^{1}+c^{2} \mathbf{w}_{q}^{2}\right)$.

Page 163, line -6: restriction of f should be restriction of φ.

Page 166, lines 4 and 5: Definition 1.2.17 should be Example 1.2.17 and Definition 1.2.21 should be Example 1.2.21.

Page 184, lines -3 and -2: a linear transformation should be an isomorphism.

Page 185, lines 8, 11, and 13: $[L(v)]$ should be $[L]$ (seven times).

Page 190, line 16: There should be a space after the word "If".

Page 192, line -14: Definition 4.6.17 should be Definition 4.5.25.

Page 193, line 10: we will call the standard basis of $T_{0} \mathbb{R}^{n-1}$ should be we will call the standard basis of $T_{0} \partial \mathbb{R}_{-}^{n}$.

Page 193, lines -10 and -9: \mathbb{R}_{-}^{n} should be \mathbb{R}_{+}^{n} (twice).

Page 195 , lines -7 and $-5:\left(k, \varepsilon_{k}\right)$ should be $\left(k, \sigma_{k}\right)$.

Page 196, line -2: The correct definition of the function $f_{3}(x)$ is

$$
f_{3}(x)=f_{2}(x) /\left(f_{2}(x)+f_{2}(1+x)\right) .
$$

Page 197, line -13: The first occurrence of the word "the" should be eliminated.

Page 197, line -3: \mathcal{R}^{n} should be \mathbb{R}^{n}.

Page 198, line 3: x_{i}^{0} should be x_{1}^{0}.

Page 198, line 10: subscript $s-1$ should be $j-1$.

Page 198, line $16 k^{-1}$ should be k_{j}^{-1} (twice).

Page 201 lines 12 and 24: ℓ-form(s) should be $\ell-1$ form(s) (twice).

Page 201 lines $-3,-2,-1$ should read:

$$
\begin{aligned}
& F(p, 0)=f_{0}(p) \text { and } \\
& F(p, 1)=f_{1}(p)
\end{aligned}
$$

for every $p \in M$.

Page 209, line 2: $k_{i}(a, v)$ should be $\tilde{k}_{i}(a, v)$.

Page 209, line -3: $F: E \longrightarrow E^{\prime}$ should be a smooth map $F: E \longrightarrow E^{\prime}$.

Page 212, lines 16-17: replace where $\tilde{\ell}_{i_{2} i_{1}}=\left(\ell_{i_{2} i_{1}}, L_{i_{2} i_{1}}\right)$, with $\ell_{i_{2} i_{1}}$ a diffeomorphism and $L_{i_{2} i_{1}}$ a vector space isomorphism by where $\tilde{\ell}_{i_{2} i_{1}}\left(q_{1}, v_{1}\right)=$ $\left(\ell_{i_{2} i_{1}}\left(q_{1}\right), L_{i_{2} i_{1}}\left(q_{1}\right)\left(v_{1}\right)\right)$, with $\ell_{i_{2} i_{1}}$ a diffeomorphism and for every $q_{1}, L_{i_{2} i_{1}}\left(q_{1}\right)$ a vector space isomorphism.

Page 212, line 20: replace $L_{i_{3} i_{1}}=L_{i_{3} i_{2}} \circ L_{i_{2} i_{1}}$ by $L_{i_{3} i_{1}}\left(q_{1}\right)=L_{i_{3} i_{2}}\left(q_{2}\right) \circ$ $L_{i_{2} i_{1}}\left(q_{1}\right)$, where $q_{2}=\ell_{i_{2} i_{1}}\left(q_{1}\right)$.

Page 214, line -8: Remark 5.1.8(ii) should be Remark 5.1.8(i).

Page 217, line 3: the second occurrence of $\left(M^{*}\right)^{-1} \circ\left(L^{*}\right)^{-1}$ should be $\left(M^{-1}\right)^{*} \circ\left(L^{-1}\right)^{*}$.

Page 217, line -11: Theorem 4.4.9 should be Theorem 5.1.9.

Page 219, line 5: ${ }^{t} g^{t} B v$ should be ent $\left({ }^{t} g^{t} B v\right)$.
page 227 , line 5 : add We implicitly assume throughout this chapter, unless explicitly stated otherwise, that φ has compact support (which is automatically true if M is compact).

Page 231, line -12: ε should be ε_{k}.

Page 232, lines 16 and 24: $f(u)$ should be $f(k(u))$.

Page 235, line 10: insert ε_{k} after $=$.

Page 236, lines 2 and 3 should read:

$$
\begin{aligned}
\int_{N} \varphi & =\int_{s}\left(k^{*}(\varphi)\right)\left(\mathbf{e}^{1}, \ldots, \mathbf{e}^{n}\right) d V_{x_{1}, \ldots, x_{n}} \\
& =\int_{s} \varphi\left(\left(k_{*}\left(\mathbf{e}^{1}\right), \ldots, k_{*}\left(\mathbf{e}^{n}\right)\right) d V_{x_{1}, \ldots, x_{n}}\right.
\end{aligned}
$$

Page 242, line -7 : 80 should be 100 and -80 should be -100 .

Page 244, line -5: \mathbf{e}^{1} should be \mathbf{e}_{t}^{1} (twice).

Page 245, line 14: insert $d t$ after $(-2 t)$.

Page 245 , line -7 : -144 should be -656 (twice).

Page 248, lines -4 and -3 should read:

$$
\begin{aligned}
k^{*}(\omega) & =\frac{\cos \theta}{\cos ^{2} \theta+\sin ^{2} \theta}(-\sin \theta d \theta)+\frac{\sin \theta}{\cos ^{2} \theta+\sin ^{2} \theta}(\cos \theta d \theta) \\
& =0
\end{aligned}
$$

Page 249, line -10: $\varphi\left(k^{\prime}(t)\right)$ should be $\varphi\left(\mathbf{k}^{\prime}(t)\right)$.

Page 249, line -1: $\rho_{1}\left(\mathbf{v}_{p}\right)=$ should be $\rho_{1}\left(\mathbf{v}_{p}\right)=1$.

Page 251, lines -4 to -1 should read:

$$
\begin{array}{rlrlrl}
\int_{C_{1}} \varphi_{1} & =0 & \int_{C_{1}} \varphi_{2} & =2 & \int_{C_{1}} \varphi & =2 \\
\int_{C_{2}} \varphi_{1} & =2 & \int_{C_{2}} \varphi_{2} & =0 & \int_{C_{2}} \varphi=2 \\
\int_{C_{3}} \varphi_{1} & =7 / 6 & \int_{C_{3}} \varphi_{2} & =5 / 6 & \int_{C_{3}} \varphi=2 \\
\int_{C_{4}} \varphi_{1} & =8 / 5 & & \int_{C_{4}} \varphi_{2} & =2 / 5 & \int_{C_{4}} \varphi=2
\end{array}
$$

Page 254, line 4: being should be beginning.

Page 256, line -4: q_{1} should be q.

Page 256, line -3: line should read $r(t)=\left(x_{0}^{1}, \ldots, x_{0}^{i-1}, t, x_{0}^{i+1}, \ldots, x_{0}^{n}\right)$.

Page 257 , line -5: $a^{\prime}\left(x_{0}\right)$ should be $a^{\prime}\left(x_{0}^{i}\right)$.

Page 260, lines 15 and 19: Corollary 6.4.14 should be Corollary 6.4.13.

Page 261, line 1: Corollary 6.4.14 should be Corollary 6.4.13.

Page 261 , lines 15 and 16 : f^{*} should be f_{0}^{*}.

Page 264, line 7: line should end with a period instead of a comma.

Page 264, line 8: where φ^{1} is should be $\operatorname{Let} \varphi^{1}$ be.

Page 265, illustration following line 2: the region labelled R_{1} should be labelled R_{t}.

Page 267, line 2: $a \geq 0$ should be $a \leq 0$.

Page 270, line 1: $\mathbf{F}(t)$ should be $\mathbf{F}(r(t))$.

Page 276 lines -8 and -7 should read:

$$
\begin{aligned}
\int_{S} \varphi & =\int_{s} k_{R}^{*}(\varphi)\left(\mathbf{e}^{1}, \mathbf{e}^{2}\right) d A_{u v}=\int_{s} \varphi\left(k_{*}\left(\mathbf{e}^{1}\right), k_{*}\left(\mathbf{e}^{2}\right)\right) d A_{u v} \\
& =\int_{s} \varphi\left(\mathbf{k}_{u}, \mathbf{k}_{v}\right) d A_{u v},
\end{aligned}
$$

Page 287, lines 6 and -5: delete second occurrence of $d y=d y$,.

Page 289, line 7: H_{N} should be H_{S}.

Page 298, line - $1:\left.\right|_{0} ^{2}$ should be $\left.\right|_{0} ^{3}$.

Page 299, line -4: smooth map k should be smooth map c.

Page 300, line 8: basic chain k_{i} should be basic chain c_{i}.

Page 310, line 9: compactly should be compactly supported.

Page 319 line 12, should read:

$$
\int_{C} \varphi=\int_{C^{\prime} \cup C^{\prime \prime}} \varphi=\int_{C^{\prime}} \varphi+\int_{C^{\prime \prime}} \varphi=0
$$

Page 320 , line - $8: \mathbb{R}^{2}$ should be \mathbb{R}^{3}.

Page 341, line -9: φ_{i} should be φ^{i}, ψ_{i} should be ψ^{i}, and $d \varphi_{i}$ should be $d \varphi^{i}$.

