A PROOF OF THE IRREDUCIBILITY OF THE p-TH CYCLOTOMIC POLYNOMIAL, FOLLOWING GAUSS

STEVEN H. WEINTRAUB

Abstract

We present a proof of the fact that for a prime p, the p-th cyclotomic polynomial $\Phi_{p}(x)$ is irreducible, that is a simplification of Gauss's proof.

It is well-known and very easy to prove that the p-th cyclotomic polynomial $\Phi_{p}(x)$ is irreducible for p prime by using Eisenstein's criterion. But this result is originally due to Gauss in the Disquisitiones Arithmeticae [1, article 341], by a rather complicated proof. We present a simplified version of Gauss's proof.

Theorem 1. Let p be a prime. Then the p-th cyclotomic polynomial $\Phi_{p}(x)=x^{p-1}+$ $x^{p-2}+\ldots+1$ is irreducible.

Proof. We have the identity

$$
\prod_{i=1}^{d}\left(x-r_{i}\right)=\sum_{i=0}^{d}(-1)^{i} s_{i}\left(r_{1}, \ldots, r_{d}\right) x^{d-i}
$$

where the s_{i} are the elementary symmetric functions.
Let $\varphi\left(r_{1}, \ldots, r_{d}\right)=\prod_{i=1}^{d}\left(1-r_{i}\right)$. Then we see that

$$
\varphi\left(r_{1}, \ldots, r_{d}\right)=\sum_{i=0}^{d}(-1)^{i} s_{i}\left(r_{1}, \ldots, r_{d}\right)
$$

The theorem is trivial for $p=2$ so we may suppose p is an odd prime.
Suppose that $\Phi_{p}(x)$ is not irreducible and let $f_{1}(x)$ be an irreducible factor of $\Phi_{p}(x)$ of degree d. Then $f_{1}(x)=\left(x-\zeta_{1}\right) \cdots\left(x-\zeta_{d}\right)$ for some set of primitive p-th roots of unity $\left\{\zeta_{1}, \ldots, \zeta_{d}\right\}$. For $k=1, \ldots, p-1$, let $f_{k}(x)=\left(x-\zeta_{1}^{k}\right) \cdots\left(x-\zeta_{d}^{k}\right)$. The coefficients of $f_{k}(x)$ are symmetric polynomials in $\left\{\zeta_{1}^{k}, \ldots, \zeta_{d}^{k}\right\}$, hence symmetric polynomials in $\left\{\zeta_{1}, \ldots, \zeta_{d}\right\}$, hence polynomials in the coefficients of $f_{1}(x)$, and so $f_{k}(x)$ has rational coefficients. Since each $f_{k}(x)$ divides $\Phi_{p}(x)$, by Gauss's Lemma in fact each $f_{k}(x)$ is a polynomial with integer coefficients.
(It is easy to see that each $f_{k}(x)$ is irreducible, that d must divide $p-1$, and that there are exactly $(p-1) / d$ distinct polynomials $f_{k}(x)$, but we do not need these facts.)

Since $f_{k}(x)$ has leading coefficient 1 and no real roots, $f_{k}(x)>0$ for all real x. Also,

$$
\Phi_{p}(x)^{d}=\prod_{k=1}^{p-1} f_{k}(x)
$$

Key words and phrases. cyclotomic polynomial, irreducibility.
since every primitive p-th root of 1 is a root of the right-hand side of multiplicity d. Then

$$
p^{d}=\Phi_{p}(1)^{d}=\prod_{k=1}^{p-1} f_{k}(1)
$$

and $d<p-1$, so we must have $f_{k}(1)=1$ for some $g>0$ values of k, and $f_{k}(1)$ a power of p for the remaining values of k, and hence

$$
\sum_{k=1}^{p-1} f_{k}(1) \equiv g \not \equiv 0(\bmod p) .
$$

But

$$
\varphi\left(\zeta_{1}^{k}, \ldots, \zeta_{d}^{k}\right)=f_{k}(1) \text { for } k=1, \ldots, p-1, \text { and } \varphi\left(\zeta_{1}^{p}, \ldots, \zeta_{d}^{p}\right)=\varphi(1, \ldots, 1)=0
$$

Thus

$$
\begin{aligned}
\sum_{k=1}^{p-1} f_{k}(1) & =\sum_{k=1}^{p-1} \varphi\left(\zeta_{1}^{k}, \ldots, \zeta_{d}^{k}\right) \\
& =\sum_{k=1}^{p} \varphi\left(\zeta_{1}^{k}, \ldots, \zeta_{d}^{k}\right) \\
& =\sum_{k=1}^{p} \sum_{i=0}^{d}(-1)^{i} s_{i}\left(\zeta_{1}^{k}, \ldots, \zeta_{d}^{k}\right) \\
& =\sum_{i=0}^{d}(-1)^{i} \sum_{k=1}^{p} s_{i}\left(\zeta_{1}^{k}, \ldots, \zeta_{d}^{k}\right)
\end{aligned}
$$

But $s_{i}\left(r_{1}, \ldots, r_{d}\right)$ is a sum of terms of the form $r_{j_{1}} \cdots r_{j_{i}}$, so each term in the inner sum above is a sum of terms

$$
\sum_{k=1}^{p} \zeta_{j_{1}}^{k} \cdots \zeta_{j_{i}}^{k}=\sum_{k=1}^{p}\left(\zeta_{j_{1}} \cdots \zeta_{j_{i}}\right)^{k}=0 \text { or } p
$$

according as $\zeta_{j_{1}} \cdots \zeta_{j_{i}}$ is a primitive p-th root of unity or is equal to 1 . Thus

$$
\sum_{k=1}^{p-1} f_{k}(1) \equiv 0(\bmod p)
$$

a contradiction.

REFERENCES

[1] C.-F. Gauss, Disquisitiones Arithmeticae, Leipzig 1801, available in German translation in Untersuchungen über höhere Arithmetik (trans. H. Maser), American Mathematical Society/Chelsea, Providence 2006 and in English translation in Disquisitiones Arithmeticae (trans. A. Clarke), Yale University Press 1966 and Springer Verlag 1986.

Department of Mathematics, Lehigh University, Bethlehem, PA 18015-3174, USA
E-mail address: shw2@lehigh.edu

