A PROOF OF THE IRREDUCIBILITY OF THE *p*-TH CYCLOTOMIC POLYNOMIAL, FOLLOWING GAUSS

STEVEN H. WEINTRAUB

ABSTRACT. We present a proof of the fact that for a prime *p*, the *p*-th cyclotomic polynomial $\Phi_p(x)$ is irreducible, that is a simplification of Gauss's proof.

It is well-known and very easy to prove that the *p*-th cyclotomic polynomial $\Phi_p(x)$ is irreducible for *p* prime by using Eisenstein's criterion. But this result is originally due to Gauss in the *Disquisitiones Arithmeticae* [1, article 341], by a rather complicated proof. We present a simplified version of Gauss's proof.

Theorem 1. Let p be a prime. Then the p-th cyclotomic polynomial $\Phi_p(x) = x^{p-1} + x^{p-2} + \ldots + 1$ is irreducible.

Proof. We have the identity

$$\prod_{i=1}^{d} (x - r_i) = \sum_{i=0}^{d} (-1)^i s_i (r_1, \dots, r_d) x^{d-i},$$

where the s_i are the elementary symmetric functions.

Let $\varphi(r_1, \ldots, r_d) = \prod_{i=1}^d (1 - r_i)$. Then we see that

$$\varphi(r_1,\ldots,r_d) = \sum_{i=0}^d (-1)^i s_i(r_1,\ldots,r_d).$$

The theorem is trivial for p = 2 so we may suppose p is an odd prime.

Suppose that $\Phi_p(x)$ is not irreducible and let $f_1(x)$ be an irreducible factor of $\Phi_p(x)$ of degree *d*. Then $f_1(x) = (x - \zeta_1) \cdots (x - \zeta_d)$ for some set of primitive *p*-th roots of unity $\{\zeta_1, \ldots, \zeta_d\}$. For $k = 1, \ldots, p-1$, let $f_k(x) = (x - \zeta_1^k) \cdots (x - \zeta_d^k)$. The coefficients of $f_k(x)$ are symmetric polynomials in $\{\zeta_1^k, \ldots, \zeta_d^k\}$, hence symmetric polynomials in $\{\zeta_1, \ldots, \zeta_d\}$, hence polynomials in the coefficients of $f_1(x)$, and so $f_k(x)$ has rational coefficients. Since each $f_k(x)$ divides $\Phi_p(x)$, by Gauss's Lemma in fact each $f_k(x)$ is a polynomial with integer coefficients.

(It is easy to see that each $f_k(x)$ is irreducible, that *d* must divide p-1, and that there are exactly (p-1)/d distinct polynomials $f_k(x)$, but we do not need these facts.)

Since $f_k(x)$ has leading coefficient 1 and no real roots, $f_k(x) > 0$ for all real x. Also,

$$\Phi_p(x)^d = \prod_{k=1}^{p-1} f_k(x)$$

²⁰⁰⁰ Mathematics Subject Classification. 12E05.

Key words and phrases. cyclotomic polynomial, irreducibility.

since every primitive p-th root of 1 is a root of the right-hand side of multiplicity d. Then

$$p^d = \Phi_p(1)^d = \prod_{k=1}^{p-1} f_k(1)$$

and $d , so we must have <math>f_k(1) = 1$ for some g > 0 values of k, and $f_k(1)$ a power of p for the remaining values of k, and hence

$$\sum_{k=1}^{p-1} f_k(1) \equiv g \not\equiv 0 \pmod{p}.$$

But

$$\varphi(\zeta_1^k, ..., \zeta_d^k) = f_k(1)$$
 for $k = 1, ..., p - 1$, and $\varphi(\zeta_1^p, ..., \zeta_d^p) = \varphi(1, ..., 1) = 0$.

Thus

$$\sum_{k=1}^{p-1} f_k(1) = \sum_{k=1}^{p-1} \varphi(\zeta_1^k, \dots, \zeta_d^k)$$
$$= \sum_{k=1}^p \varphi(\zeta_1^k, \dots, \zeta_d^k)$$
$$= \sum_{k=1}^p \sum_{i=0}^d (-1)^i s_i(\zeta_1^k, \dots, \zeta_d^k)$$
$$= \sum_{i=0}^d (-1)^i \sum_{k=1}^p s_i(\zeta_1^k, \dots, \zeta_d^k).$$

But $s_i(r_1,...,r_d)$ is a sum of terms of the form $r_{j_1}\cdots r_{j_i}$, so each term in the inner sum above is a sum of terms

$$\sum_{k=1}^{p} \zeta_{j_{1}}^{k} \cdots \zeta_{j_{i}}^{k} = \sum_{k=1}^{p} (\zeta_{j_{1}} \cdots \zeta_{j_{i}})^{k} = 0 \text{ or } p$$

according as $\zeta_{j_1} \cdots \zeta_{j_i}$ is a primitive *p*-th root of unity or is equal to 1. Thus

$$\sum_{k=1}^{p-1} f_k(1) \equiv 0 \pmod{p},$$

a contradiction.

REFERENCES

[1] C.-F. Gauss, Disquisitiones Arithmeticae, Leipzig 1801, available in German translation in Untersuchungen über höhere Arithmetik (trans. H. Maser), American Mathematical Society/Chelsea, Providence 2006 and in English translation in Disquisitiones Arithmeticae (trans. A. Clarke), Yale University Press 1966 and Springer Verlag 1986.

DEPARTMENT OF MATHEMATICS, LEHIGH UNIVERSITY, BETHLEHEM, PA 18015-3174, USA *E-mail address:* shw2@lehigh.edu