Algebra: An Approach via Module Theory–Errata

Page 81, line 12: for all $a \in R$ should be for all $a \in A$ Page 103, exercise 49: add the condition $z \neq 0$ Page 104, exercise 57: replace f(X) by $f(X) \in R[X]$ Page 123, line -10: $\operatorname{Hom}_{R}(M)$ should be $\operatorname{Hom}_{R}(M, M)$ Page 135, line 14: $V \cup \{v\}$ should be $B \cup \{v\}$ Page 147, line 13: b'x should be $b'x_1$ Page 151, line 15: x_2 should be x'_2 Page 155, line -7: first occurrence of a_3 should be a_2 Page 166, line 6: $Rw_1 \oplus \cdots Rw_n$ should be $Rw_1 \oplus \cdots \oplus Rw_n$ Page 166, line 17: $Rz_{i1} \oplus \cdots Rz_{ik}$ should be $Rz_{i1} \oplus \cdots \oplus Rz_{ik}$ Page 172, Corollaries 8.4, 8.5, and 8.6: add the hypothesis that M is a finite-rank free R-module Page 173, lines -2 and -1: delete these lines Page 174, exercise 4: Example 1.5(10) should be Example 1.5(7)Page 178, lines 1 and 2: delete these lines Page 179, exercise 43: $R\langle x \rangle$ should be RxPage 219, line -2: finte should be finite Page 228, line -13: n should be mPage 236, line -7: v_T should be V_T Page 240, line -1: Theorem 2.11 should be Theorem 2.13 Page 241, line 8: delete $\in F[X]$ Page 244, line 19: co(T) should be $co(V_T)$ Page 244, line 20: $co(T_1) \cdots co(T_t)$ should be $co(V_{T_1}) \cdots co(V_{T_t})$ Page 245, line 5: $(X - \lambda_t)^{n_k}$ should be $(X - \lambda_t)^{n_t}$ Page 246, line -10: $c_{T_{\lambda,n}}$ should be $c_{T_{\lambda,n}}(X)$ Page 247, line 4: $(T - \lambda I_V)$ should be $(T - \lambda 1_V)$ Page 247, lines 9, 10, 11: all occurrences of $(T - \lambda)$ should be $(T - \lambda I_V)$ Page 249, line -12: $(T - \lambda_i)$ should be $(T - \lambda_i 1_V)$ Page 250, lines 3 and 193: $(T - \lambda)$ should be $(T - \lambda 1_V)$

Page 262, line 10: $v_2 \in F^3$ should be $v_3 \in F^3$ Page 301, line 25: $1 \le n_1 < n_2 < \cdots < n_r \le m$ should be $1 \le n_1 < n_2 < \cdots < n_r \le n$

Page 505, exercise 18: in the character table of S_4 , $\alpha(C_5) = -1$

Page 505, exercise 19: in the character table of S_5 , $\tilde{\alpha}_4(C_7) = -1$